Search results for: oil recovery
1511 Capability of Marine Macroalgae Chaetomorpha linum for Wastewater Phytoremediation and Biofuel Recovery
Authors: Zhipeng Chen, Lingfeng Wang, Shuang Qiu, Shijian Ge
Abstract:
Macroalgae are larger in size compared with microalgae; hence, they imposed lower separation and drying costs. To explore the potential for enhancing cultivation conditions in macroalgae Chaetomorpha linum (C. linum)-based bioreactor for nutrient recovery from municipal wastewaters and examine the biochemical composition of the macroalgae for the potential downstream production of biofuels, screening experiments were performed. This study suggested that C. linum grew well on primary (PW), secondary (SW), and centrate wastewater (CW). A step feeding approach was shown to significantly enhance biomass productivity when grown on 10% CW; meanwhile, nitrogen and phosphorus removal efficiencies increased to 86.8 ± 1.1% and 92.6 ± 0.2%, respectively. The CO₂-supplemented SW cultures were 1.20 times more productive than the corresponding controls without CO₂ supplementation. These findings demonstrate that C. linum could represent a promising and efficient wastewater treatment alternative which could also provide a feedstock for downstream processing to biofuels.Keywords: biofuel production, macroalgae, nutrient removal, wastewater
Procedia PDF Downloads 1671510 Urban Agriculture for Sustainable Cities: Using Wastewater and Urban Wetlands as Resource
Authors: Hussnain Mukhtar, Yu-Pin Lin
Abstract:
This paper deals with the concept of ecologically engineered system for sustainable agriculture production with the view of sustainable cities development. Sustainable cities offer numerous eco-services to its inhabitants, and where, among other issues, wastewater nutrients can be considered to be a valuable resource to be used for a sustainable enhancement of urban agriculture in wetlands. Existing cities can be transferred from being only consumer of food and other agriculture product into important resource conserving and sustainable generators of these products. The review provides the food production capacity through introduction of wastewater into urban wetlands, potential for nutrient recovery and ecological engineering intervention to reduce the risk of food contamination by pathogens. Finally, we discuss the potential nutrients accumulating in our cities, as an important aspect of sustainable urban development.Keywords: ecological engineering, nutrient recovery, pathogens, urban agriculture, wetlands
Procedia PDF Downloads 2601509 Power Recovery from Waste Air of Mine Ventilation Fans Using Wind Turbines
Authors: Soumyadip Banerjee, Tanmoy Maity
Abstract:
The recovery of power from waste air generated by mine ventilation fans presents a promising avenue for enhancing energy efficiency in mining operations. This abstract explores the feasibility and benefits of utilizing turbine generators to capture the kinetic energy present in waste air and convert it into electrical power. By integrating turbine generator systems into mine ventilation infrastructures, the potential to harness and utilize the previously untapped energy within the waste air stream is realized. This study examines the principles underlying turbine generator technology and its application within the context of mine ventilation systems. The process involves directing waste air from ventilation fans through specially designed turbines, where the kinetic energy of the moving air is converted into rotational motion. This mechanical energy is then transferred to connected generators, which convert it into electrical power. The recovered electricity can be employed for various on-site applications, including powering mining equipment, lighting, and control systems. The benefits of power recovery from waste air using turbine generators are manifold. Improved energy efficiency within the mining environment results in reduced dependence on external power sources and associated cost savings. Additionally, this approach contributes to environmental sustainability by utilizing a previously wasted resource for power generation. Resource conservation is further enhanced, aligning with modern principles of sustainable mining practices. However, successful implementation requires careful consideration of factors such as waste air characteristics, turbine design, generator efficiency, and integration into existing mine infrastructure. Maintenance and monitoring protocols are necessary to ensure consistent performance and longevity of the turbine generator systems. While there is an initial investment associated with equipment procurement, installation, and integration, the long-term benefits of reduced energy costs and environmental impact make this approach economically viable. In conclusion, the recovery of power from waste air from mine ventilation fans using turbine generators offers a tangible solution to enhance energy efficiency and sustainability within mining operations. By capturing and converting the kinetic energy of waste air into usable electrical power, mines can optimize resource utilization, reduce operational costs, and contribute to a greener future for the mining industry.Keywords: waste to energy, wind power generation, exhaust air, power recovery
Procedia PDF Downloads 411508 Eco-Friendly Softener Extracted from Ricinus communis (Castor) Seeds for Organic Cotton Fabric
Authors: Fisaha Asmelash
Abstract:
The processing of textiles to achieve a desired handle is a crucial aspect of finishing technology. Softeners can enhance the properties of textiles, such as softness, smoothness, elasticity, hydrophilicity, antistatic properties, and soil release properties, depending on the chemical nature used. However, human skin is sensitive to rough textiles, making softeners increasingly important. Although synthetic softeners are available, they are often expensive and can cause allergic reactions on human skin. This paper aims to extract a natural softener from Ricinus communis and produce an eco-friendly and user-friendly alternative due to its 100% herbal and organic nature. Crushed Ricinus communis seeds were soaked in a mechanical oil extractor for one hour with a 100g cotton fabric sample. The defatted cake or residue obtained after the extraction of oil from the seeds, also known as Ricinus communis meal, was obtained by filtering the raffinate and then dried at 1030c for four hours before being stored under laboratory conditions for the softening process. The softener was applied directly to 100% cotton fabric using the padding process, and the fabric was tested for stiffness, crease recovery, and drape ability. The effect of different concentrations of finishing agents on fabric stiffness, crease recovery, and drape ability was also analyzed. The results showed that the change in fabric softness depends on the concentration of the finish used. As the concentration of the finish was increased, there was a decrease in bending length and drape coefficient. Fabrics with a high concentration of softener showed a maximum decrease in drape coefficient and stiffness, comparable to commercial softeners such as silicon. The highest decrease in drape coefficient was found to be comparable with commercial softeners, silicon. Maximum increases in crease recovery were seen in fabrics treated with Ricinus communis softener at a concentration of 30gpl. From the results, the extracted softener proved to be effective in the treatment of 100% cotton fabricKeywords: ricinus communis, crease recovery, drapability, softeners, stiffness
Procedia PDF Downloads 951507 Algae for Wastewater Treatment and CO₂ Sequestration along with Recovery of Bio-Oil and Value Added Products
Authors: P. Kiran Kumar, S. Vijaya Krishna, Kavita Verma1, V. Himabindu
Abstract:
Concern about global warming and energy security has led to increased biomass utilization as an alternative feedstock to fossil fuels. Biomass is a promising feedstock since it is abundant and cheap and can be transformed into fuels and chemical products. Microalgae biofuels are likely to have a much lower impact on the environment. Microalgae cultivation using sewage with industrial flue gases is a promising concept for integrated biodiesel production, CO₂ sequestration, and nutrients recovery. Autotrophic, Mixotrophic, and Heterotrophic are the three modes of cultivation for microalgae biomass. Several mechanical and chemical processes are available for the extraction of lipids/oily components from microalgae biomass. In organic solvent extraction methods, a prior drying of biomass and recovery of the solvent is required, which are energy-intensive. Thus, the hydrothermal process overcomes the drawbacks of conventional solvent extraction methods. In the hydrothermal process, the biomass is converted into oily components by processing in a hot, pressurized water environment. In this process, in addition to the lipid fraction of microalgae, other value-added products such as proteins, carbohydrates, and nutrients can also be recovered. In the present study was (Scenedesmus quadricauda) was isolated and cultivated in autotrophic, heterotrophic, and mixotrophically using sewage wastewater and industrial flue gas in batch and continuous mode. The harvested algae biomass from S. quadricauda was used for the recovery of lipids and bio-oil. The lipids were extracted from the algal biomass using sonication as a cell disruption method followed by solvent (Hexane) extraction, and the lipid yield obtained was 8.3 wt% with Palmitic acid, Oleic acid, and Octadeonoic acid as fatty acids. The hydrothermal process was also carried out for extraction of bio-oil, and the yield obtained was 18wt%. The bio-oil compounds such as nitrogenous compounds, organic acids, and esters, phenolics, hydrocarbons, and alkanes were obtained by the hydrothermal process of algal biomass. Nutrients such as NO₃⁻ (68%) and PO₄⁻ (15%) were also recovered along with bio-oil in the hydrothermal process.Keywords: flue gas, hydrothermal process, microalgae, sewage wastewater, sonication
Procedia PDF Downloads 1421506 Experimental Investigation of the Impact of Biosurfactants on Residual-Oil Recovery
Authors: S. V. Ukwungwu, A. J. Abbas, G. G. Nasr
Abstract:
The increasing high price of natural gas and oil with attendant increase in energy demand on world markets in recent years has stimulated interest in recovering residual oil saturation across the globe. In order to meet the energy security, efforts have been made in developing new technologies of enhancing the recovery of oil and gas, utilizing techniques like CO2 flooding, water injection, hydraulic fracturing, surfactant flooding etc. Surfactant flooding however optimizes production but poses risk to the environment due to their toxic nature. Amongst proven records that have utilized other type of bacterial in producing biosurfactants for enhancing oil recovery, this research uses a technique to combine biosurfactants that will achieve a scale of EOR through lowering interfacial tension/contact angle. In this study, three biosurfactants were produced from three Bacillus species from freeze dried cultures using sucrose 3 % (w/v) as their carbon source. Two of these produced biosurfactants were screened with the TEMCO Pendant Drop Image Analysis for reduction in IFT and contact angle. Interfacial tension was greatly reduced from 56.95 mN.m-1 to 1.41 mN.m-1 when biosurfactants in cell-free culture (Bacillus licheniformis) were used compared to 4. 83mN.m-1 cell-free culture of Bacillus subtilis. As a result, cell-free culture of (Bacillus licheniformis) changes the wettability of the biosurfactant treatment for contact angle measurement to more water-wet as the angle decreased from 130.75o to 65.17o. The influence of microbial treatment on crushed rock samples was also observed by qualitative wettability experiments. Treated samples with biosurfactants remained in the aqueous phase, indicating a water-wet system. These results could prove that biosurfactants can effectively change the chemistry of the wetting conditions against diverse surfaces, providing a desirable condition for efficient oil transport in this way serving as a mechanism for EOR. The environmental friendly effect of biosurfactants applications for industrial purposes play important advantages over chemically synthesized surfactants, with various possible structures, low toxicity, eco-friendly and biodegradability.Keywords: bacillus, biosurfactant, enhanced oil recovery, residual oil, wettability
Procedia PDF Downloads 2821505 Evaluation of Cyclic Steam Injection in Multi-Layered Heterogeneous Reservoir
Authors: Worawanna Panyakotkaew, Falan Srisuriyachai
Abstract:
Cyclic steam injection (CSI) is a thermal recovery technique performed by injecting periodically heated steam into heavy oil reservoir. Oil viscosity is substantially reduced by means of heat transferred from steam. Together with gas pressurization, oil recovery is greatly improved. Nevertheless, prediction of effectiveness of the process is difficult when reservoir contains degree of heterogeneity. Therefore, study of heterogeneity together with interest reservoir properties must be evaluated prior to field implementation. In this study, thermal reservoir simulation program is utilized. Reservoir model is firstly constructed as multi-layered with coarsening upward sequence. The highest permeability is located on top layer with descending of permeability values in lower layers. Steam is injected from two wells located diagonally in quarter five-spot pattern. Heavy oil is produced by adjusting operating parameters including soaking period and steam quality. After selecting the best conditions for both parameters yielding the highest oil recovery, effects of degree of heterogeneity (represented by Lorenz coefficient), vertical permeability and permeability sequence are evaluated. Surprisingly, simulation results show that reservoir heterogeneity yields benefits on CSI technique. Increasing of reservoir heterogeneity impoverishes permeability distribution. High permeability contrast results in steam intruding in upper layers. Once temperature is cool down during back flow period, condense water percolates downward, resulting in high oil saturation on top layers. Gas saturation appears on top after while, causing better propagation of steam in the following cycle due to high compressibility of gas. Large steam chamber therefore covers most of the area in upper zone. Oil recovery reaches approximately 60% which is of about 20% higher than case of heterogeneous reservoir. Vertical permeability exhibits benefits on CSI. Expansion of steam chamber occurs within shorter time from upper to lower zone. For fining upward permeability sequence where permeability values are reversed from the previous case, steam does not override to top layers due to low permeability. Propagation of steam chamber occurs in middle of reservoir where permeability is high enough. Rate of oil recovery is slower compared to coarsening upward case due to lower permeability at the location where propagation of steam chamber occurs. Even CSI technique produces oil quite slowly in early cycles, once steam chamber is formed deep in the reservoir, heat is delivered to formation quickly in latter cycles. Since reservoir heterogeneity is unavoidable, a thorough understanding of its effect must be considered. This study shows that CSI technique might be one of the compatible solutions for highly heterogeneous reservoir. This competitive technique also shows benefit in terms of heat consumption as steam is injected periodically.Keywords: cyclic steam injection, heterogeneity, reservoir simulation, thermal recovery
Procedia PDF Downloads 4611504 Recovery of Food Waste: Production of Dog Food
Authors: K. Nazan Turhan, Tuğçe Ersan
Abstract:
The population of the world is approximately 8 billion, and it increases uncontrollably and irrepressibly, leading to an increase in consumption. This situation causes crucial problems, and food waste is one of these. The Food and Agriculture Organization of the United Nations (FAO) defines food waste as the discarding or alternative utilization of food that is safe and nutritious for the consumption of humans along the entire food supply chain, from primary production to end household consumer level. In addition, according to the estimation of FAO, one-third of all food produced for human consumption is lost or wasted worldwide every year. Wasting food endangers natural resources and causes hunger. For instance, excessive amounts of food waste cause greenhouse gas emissions, contributing to global warming. Therefore, waste management has been gaining significance in the last few decades at both local and global levels due to the expected scarcity of resources for the increasing population of the world. There are several ways to recover food waste. According to the United States Environmental Protection Agency’s Food Recovery Hierarchy, food waste recovery ways are source reduction, feeding hungry people, feeding animals, industrial uses, composting, and landfill/incineration from the most preferred to the least preferred, respectively. Bioethanol, biodiesel, biogas, agricultural fertilizer and animal feed can be obtained from food waste that is generated by different food industries. In this project, feeding animals was selected as a food waste recovery method and food waste of a plant was used to provide ingredient uniformity. Grasshoppers were used as a protein source. In other words, the project was performed to develop a dog food product by recovery of the plant’s food waste after following some steps. The collected food waste and purchased grasshoppers were sterilized, dried and pulverized. Then, they were all mixed with 60 g agar-agar solution (4%w/v). 3 different aromas were added, separately to the samples to enhance flavour quality. Since there are differences in the required amounts of different species of dogs, fulfilling all nutritional needs is one of the problems. In other words, there is a wide range of nutritional needs in terms of carbohydrates, protein, fat, sodium, calcium, and so on. Furthermore, the requirements differ depending on age, gender, weight, height, and species. Therefore, the product that was developed contains average amounts of each substance so as not to cause any deficiency or surplus. On the other hand, it contains more protein than similar products in the market. The product was evaluated in terms of contamination and nutritional content. For contamination risk, detection of E. coli and Salmonella experiments were performed, and the results were negative. For the nutritional value test, protein content analysis was done. The protein contents of different samples vary between 33.68% and 26.07%. In addition, water activity analysis was performed, and the water activity (aw) values of different samples ranged between 0.2456 and 0.4145.Keywords: food waste, dog food, animal nutrition, food waste recovery
Procedia PDF Downloads 691503 Understanding the Dynamics of Linker Histone Using Mathematical Modeling and FRAP Experiments
Authors: G. Carrero, C. Contreras, M. J. Hendzel
Abstract:
Linker histones or histones H1 are highly mobile nuclear proteins that regulate the organization of chromatin and limit DNA accessibility by binding to the chromatin structure (DNA and associated proteins). It is known that this binding process is driven by both slow (strong binding) and rapid (weak binding) interactions. However, the exact binding mechanism has not been fully described. Moreover, the existing models only account for one type of bound population that does not distinguish explicitly between the weakly and strongly bound proteins. Thus, we propose different systems of reaction-diffusion equations to describe explicitly the rapid and slow interactions during a FRAP (Fluorescence Recovery After Photobleaching) experiment. We perform a model comparison analysis to characterize the binding mechanism of histone H1 and provide new meaningful biophysical information on the kinetics of histone H1.Keywords: FRAP (Fluorescence Recovery After Photobleaching), histone H1, histone H1 binding kinetics, linker histone, reaction-diffusion equation
Procedia PDF Downloads 4441502 Modeling and Performance Evaluation of Three Power Generation and Refrigeration Energy Recovery Systems from Thermal Loss of a Diesel Engine in Different Driving Conditions
Authors: H. Golchoobian, M. H. Taheri, S. Saedodin, A. Sarafraz
Abstract:
This paper investigates the possibility of using three systems of organic Rankine auxiliary power generation, ejector refrigeration and absorption to recover energy from a diesel car. The analysis is done for both urban and suburban driving modes that vary from 60 to 120 km/h. Various refrigerants have also been used for organic Rankine and Ejector refrigeration cycles. The capacity was evaluated by Organic Rankine Cycle (ORC) system in both urban and suburban conditions for cyclopentane and ammonia as refrigerants. Also, for these two driving plans, produced cooling by absorption refrigeration system under variable ambient temperature conditions and in ejector refrigeration system for R123, R134a and R141b refrigerants were investigated.Keywords: absorption system, diesel engine, ejector refrigeration, energy recovery, organic Rankine cycle
Procedia PDF Downloads 2401501 Synthesis of Bismuth-Hyaluronic Acid Nanoparticles Containing Melittin Coated with Chitosan for Treating Eye Cancer Cells with Radiotherapy
Authors: Akbar Esmaeili, Fateme Dadashi
Abstract:
Bismuth can increase radiation and reduce the dose of radiotherapy. On the other hand, hyaluronic acid plays a role in healing damaged cells, and melittin has been used to destroy cancer cells. This research aims to destroy eye cancer cells and accelerate the recovery of damaged healthy cells during treatment. In this research, we used this nanoparticle, the sol-gel method. According to the optimization process that was carried out, we obtained the optimal value of the desired variables for the manufacture of nanoparticles. The advantage of doing this is reducing the amount of medicine used, as a result of reducing the number of side effects during the treatment and using melittin as an anti-eye cancer drug and the presence of hyaluronic acid to accelerate the recovery of cells, as well as coating the bismuth nanoparticle with chitosan to increase the half-life of the nanoparticle and prevent its adhesion.Keywords: synthesis, nanoparticles, coated, cancer
Procedia PDF Downloads 731500 Non-linear Analysis of Spontaneous EEG After Spinal Cord Injury: An Experimental Study
Authors: Jiangbo Pu, Hanhui Xu, Yazhou Wang, Hongyan Cui, Yong Hu
Abstract:
Spinal cord injury (SCI) brings great negative influence to the patients and society. Neurological loss in human after SCI is a major challenge in clinical. Instead, neural regeneration could have been seen in animals after SCI, and such regeneration could be retarded by blocking neural plasticity pathways, showing the importance of neural plasticity in functional recovery. Here we used sample entropy as an indicator of nonlinear dynamical in the brain to quantify plasticity changes in spontaneous EEG recordings of rats before and after SCI. The results showed that the entropy values were increased after the injury during the recovery in one week. The increasing tendency of sample entropy values is consistent with that of behavioral evaluation scores. It is indicated the potential application of sample entropy analysis for the evaluation of neural plasticity in spinal cord injury rat model.Keywords: spinal cord injury (SCI), sample entropy, nonlinear, complex system, firing pattern, EEG, spontaneous activity, Basso Beattie Bresnahan (BBB) score
Procedia PDF Downloads 4681499 Identification of the Most Effective Dosage of Clove Oil Solution as an Alternative for Synthetic Anaesthetics on Zebrafish (Danio rerio)
Authors: D. P. N. De Silva, N. P. P. Liyanage
Abstract:
Zebrafish (Danio rerio) in the family Cyprinidae, is a tropical freshwater fish widely used as a model organism in scientific research. Use of effective and economical anaesthetic is very important when handling fish. Clove oil (active ingredient: eugenol) was identified as a natural product which is safer and economical compared to synthetic chemicals like methanesulfonate (MS-222). Therefore, the aim of this study was to identify the most effective dosage of clove oil solution as an anaesthetic on mature Zebrafish. Clove oil solution was prepared by mixing pure clove oil with 94% ethanol at a ratio of 1:9 respectively. From that solution, different volumes were selected as (0.4 ml, 0.6 ml and 0.8 ml) and dissolved in one liter of conditioned water (dosages : 0.4 ml/L, 0.6 ml/L and 0.8 ml/L). Water quality parameters (pH, temperature and conductivity) were measured before and after adding clove oil solution. Mature Zebrafish with similar standard length (2.76 ± 0.1 cm) and weight (0.524 ± 0.1 g) were selected for this experiment. Time taken for loss of equilibrium (initiation phase) and complete loss of movements including opercular movement (anaesthetic phase) were measured. To detect the efficacy on anaesthetic recovery, time taken to begin opercular movements (initiation of recovery phase) until swimming (post anaesthetic phase) were observed. The results obtained were analyzed according to the analysis of variance (ANOVA) and Tukeys’ method using SPSS version 17.0 at 95% confidence interval (p<0.5). According to the results, there was no significant difference at the initiation phase of anaesthesia in all three doses though the time taken was varied from 0.14 to 0.41 minutes. Mean value of the time taken to complete the anaesthetic phase at 0.4 ml/L dosage was significantly different with 0.6 ml/L and 0.8 ml/L dosages independently (p=0.01). There was no significant difference among recovery times at all dosages but 0.8 ml/L dosage took longer time compared to 0.6 ml/L dosage. The water quality parameters (pH and temperature) were stable throughout the experiment except conductivity, which increased with the higher dosage. In conclusion, the best dosage need to anaesthetize Zebrafish using clove oil solution was 0.6 ml/L due to its fast initiation of anaesthesia and quick recovery compared to the other two dosages. Therefore clove oil can be used as a good substitute for synthetic anaesthetics because of its efficacy at a lower dosage with higher safety at a low cost.Keywords: anaesthetics, clove oil, zebrafish, Cyprinidae
Procedia PDF Downloads 7161498 Date Palm Wastes Turning into Biochars for Phosphorus Recovery from Aqueous Solutions: Static and Dynamic Investigations
Authors: Salah Jellali, Nusiba Suliman, Yassine Charabi, Jamal Al-Sabahi, Ahmed Al Raeesi, Malik Al-Wardy, Mejdi Jeguirim
Abstract:
Huge amounts of agricultural biomasses are worldwide produced. At the same time, large quantities of phosphorus are annually discharged into water bodies with possible serious effects onto the environment quality. The main objective of this work is to turn a local Omani biomass (date palm fronds wastes: DPFW) into an effective material for phosphorus recovery from aqueous and the reuse of this P-loaded material in agriculture as ecofriendly amendment. For this aim, the raw DPFW were firstly impregnated with 1 M salt separated solutions of CaCl₂, MgCl₂, FeCl₃, AlCl₃, and a mixture of MgCl₂/AlCl₃ for 24 h, and then pyrolyzed under N2 flow at 500 °C for 2 hours by using an adapted tubular furnace (Carbolite, UK). The synthetized biochars were deeply characterized through specific analyses concerning their morphology, structure, texture, and surface chemistry. These analyses included the use of a scanning electron microscope (SEM) coupled with an energy-dispersive X-Ray spectrometer (EDS), X-Ray diffraction (XRD), Fourier Transform Infrared (FTIR), sorption micrometrics, and X-ray Fluorescence (XRF) apparatus. Then, their efficiency in recovering phosphorus was investigated in batch mode for various contact times (1 min to 3 h), aqueous pH values (from 3 to 11), initial phosphorus concentrations (10-100 mg/L), presence of anions (nitrates, sulfates, and chlorides). In a second step, dynamic assays, by using laboratory columns (height of 30 cm and diameter of 3 cm), were performed in order to investigate the recovery of phosphorus by the modified biochar with a mixture of Mg/Al. The effect of the initial P concentration (25-100 mg/L), the bed depth height (3 to 8 g), and the flow rate (10-30 mL/min) was assessed. Experimental results showed that the biochars physico-chemical properties were very dependent on the type of the used modifying salt. The main affected parameters concerned the specific surface area, microporosity area, and the surface chemistry (pH of zero-point charge and available functional groups). These characteristics have significantly affected the phosphorus recovery efficiency from aqueous solutions. Indeed, the P removal efficiency in batch mode varies from about 5 mg/g for the Fe-modified biochar to more than 13 mg/g for the biochar functionalized with Mg/Al layered double hydroxides. Moreover, the P recovery seems to be a time dependent process and significantly affected by the pH of the aqueous media and the presence of foreign anions due to competition phenomenon. The laboratory column study of phosphorus recovery by the biochar functionalized with Mg/Al layered double hydroxides showed that this process is affected by the used phosphorus concentration, the flow rate, and especially the column bed depth height. Indeed, the phosphorus recovered amount increased from about 4.9 to more than 9.3 mg/g used biochar mass of 3 and 8 g, respectively. This work proved that salt-modified palm fronds-derived biochars could be considered as attractive and promising materials for phosphorus recovery from aqueous solutions even under dynamic conditions. The valorization of these P-loaded-modified biochars as eco-friendly amendment for agricultural soils is necessary will promote sustainability and circular economy concepts in the management of both liquid and solid wastes.Keywords: date palm wastes, Mg/Al double-layered hydroxides functionalized biochars, phosphorus, recovery, sustainability, circular economy
Procedia PDF Downloads 851497 Plasma Actuator Application to Control Surfaces of a Model Aircraft
Authors: Yuta Moriyama, Etsuo Morishita
Abstract:
Plasma actuator is very effective to recover stall flows over an upper airfoil surface. We first manufacture the actuator, test the stability of the device by trial and error basis and find the conditions for steady operations. We visualize the flow around an airfoil in the smoke tunnel and observe the stall recovery. The plasma actuator is stationary device and has no moving parts, and it might be an ideal device to control a model aircraft. We can use the actuator not only as a stall recovery device but also as a spoiler. We put the actuator near the leading edge of an elevator of a model aircraft as a spoiler, and measure the aerodynamic forces by a three-component balance. We observe the effect of the plasma actuator on the aerodynamic forces and the device effectiveness changes depending on the angle of attack whether it is positive or negative. We also visualize the flow caused by the plasma actuator by a desk-top Schlieren photography which is otherwise very difficult in a low-speed wind tunnel experiment.Keywords: aerodynamics, plasma actuator, model aircraft, wind tunnel
Procedia PDF Downloads 3741496 Loss in Efficacy of Viscoelastic Ionic Liquid Surfactants under High Salinity during Surfactant Flooding
Authors: Shilpa K. Nandwani, Mousumi Chakraborty, Smita Gupta
Abstract:
When selecting surfactants for surfactant flooding during enhanced oil recovery, the most important criteria is that the surfactant system should reduce the interfacial tension between water and oil to ultralow values. In the present study, a mixture of ionic liquid surfactant and commercially available binding agent sodium tosylate has been used as a surfactant mixture. Presence of wormlike micelles indicates the possibility of achieving ultralow interfacial tension. Surface tension measurements of the mixed surfactant system have been studied. The emulsion size distribution of the mixed surfactant system at varying salinities has been studied. It has been found that at high salinities the viscoelastic surfactant system loses their efficacy and degenerate. Hence the given system may find application in low salinity reservoirs, providing good mobility to the flood during tertiary oil recovery process.Keywords: ionic liquis, interfacial tension, Na-tosylate, viscoelastic surfactants
Procedia PDF Downloads 2611495 Controlling RPV Embrittlement through Wet Annealing in Support of Life Extension
Authors: E. A. Krasikov
Abstract:
As a main barrier against radioactivity outlet reactor pressure vessel (RPV) is a key component in terms of NPP safety. Therefore, present-day demands in RPV reliability enhance have to be met by all possible actions for RPV in-service embrittlement mitigation. Annealing treatment is known to be the effective measure to restore the RPV metal properties deteriorated by neutron irradiation. There are two approaches to annealing. The first one is so-called ‘dry’ high temperature (~475°C) annealing. It allows obtaining practically complete recovery, but requires the removal of the reactor core and internals. External heat source (furnace) is required to carry out RPV heat treatment. The alternative approach is to anneal RPV at a maximum coolant temperature which can be obtained using the reactor core or primary circuit pumps while operating within the RPV design limits. This low temperature «wet» annealing, although it cannot be expected to produce complete recovery, is more attractive from the practical point of view especially in cases when the removal of the internals is impossible. The first RPV «wet» annealing was done using nuclear heat (US Army SM-1A reactor). The second one was done by means of primary pumps heat (Belgian BR-3 reactor). As a rule, there is no recovery effect up to annealing and irradiation temperature difference of 70°C. It is known, however, that along with radiation embrittlement neutron irradiation may mitigate the radiation damage in metals. Therefore, we have tried to test the possibility to use the effect of radiation-induced ductilization in ‘wet’ annealing technology by means of nuclear heat utilization as heat and neutron irradiation sources at once. In support of the above-mentioned conception the 3-year duration reactor experiment on 15Cr3NiMoV type steel with preliminary irradiation at operating PWR at 270°C and following extra irradiation (87 h at 330°C) at IR-8 test reactor was fulfilled. In fact, embrittlement was partly suppressed up to value equivalent to 1,5 fold neutron fluence decrease. The degree of recovery in case of radiation enhanced annealing is equal to 27% whereas furnace annealing results in zero effect under existing conditions. Mechanism of the radiation-induced damage mitigation is proposed. It is hoped that «wet » annealing technology will help provide a better management of the RPV degradation as a factor affecting the lifetime of nuclear power plants which, together with associated management methods, will help facilitate safe and economic long-term operation of PWRs.Keywords: controlling, embrittlement, radiation, steel, wet annealing
Procedia PDF Downloads 3841494 The Flotation Device Designed to Treat Phosphate Rock
Authors: Z. Q. Zhang, Y. Zhang, D. L. Li
Abstract:
To overcome the some shortcomings associated with traditional flotation machines and columns in collophanite flotation, a flotation device was designed and fabricated in the laboratory. A multi-impeller pump with same function as a mechanical cell was used instead of the injection sparger and circulation pump in column flotation unit. The influence of main operational parameters of the device like feed flow rate, air flow rate and impellers’ speed on collophanite flotation was analyzed. Experiment results indicate that the influence of the operational parameters were significant on flotation recovery and grade of phosphate concentrate. The best operating conditions of the device were: feed flow rate 0.62 L/min, air flow rate 6.67 L/min and impellers speed 900 rpm. At these conditions, a phosphate concentrate assaying about 30.5% P2O5 and 1% MgO with a P2O5 recovery of about 81% was obtained from a Yuan'an phosphate ore sample containing about 22.30% P2O5 and 3.2% MgO.Keywords: collophanite flotation, flotation columns, flotation machines, multi-impeller pump
Procedia PDF Downloads 2661493 Sparse Signal Restoration Algorithm Based on Piecewise Adaptive Backtracking Orthogonal Least Squares
Authors: Linyu Wang, Jiahui Ma, Jianhong Xiang, Hanyu Jiang
Abstract:
the traditional greedy compressed sensing algorithm needs to know the signal sparsity when recovering the signal, but the signal sparsity in the practical application can not be obtained as a priori information, and the recovery accuracy is low, which does not meet the needs of practical application. To solve this problem, this paper puts forward Piecewise adaptive backtracking orthogonal least squares algorithm. The algorithm is divided into two stages. In the first stage, the sparsity pre-estimation strategy is adopted, which can quickly approach the real sparsity and reduce time consumption. In the second stage iteration, the correction strategy and adaptive step size are used to accurately estimate the sparsity, and the backtracking idea is introduced to improve the accuracy of signal recovery. Through experimental simulation, the algorithm can accurately recover the estimated signal with fewer iterations when the sparsity is unknown.Keywords: compressed sensing, greedy algorithm, least square method, adaptive reconstruction
Procedia PDF Downloads 1541492 Magnetic Cellulase/Halloysite Nanotubes as Biocatalytic System for Converting Agro-Waste into Value-Added Product
Authors: Devendra Sillu, Shekhar Agnihotri
Abstract:
The 'nano-biocatalyst' utilizes an ordered assembling of enzyme on to nanomaterial carriers to catalyze desirable biochemical kinetics and substrate selectivity. The current study describes an inter-disciplinary approach for converting agriculture waste, sugarcane bagasse into D-glucose exploiting halloysite nanotubes (HNTs) decorated cellulase enzyme as nano-biocatalytic system. Cellulase was successfully immobilized on HNTs employing polydopamine as an eco-friendly crosslinker while iron oxide nanoparticles were attached to facilitate magnetic recovery of material. The characterization studies (UV-Vis, TEM, SEM, and XRD) displayed the characteristic features of both cellulase and magnetic HNTs in the resulting nanocomposite. Various factors (i.e., working pH, temp., crosslinker conc., enzyme conc.) which may influence the activity of biocatalytic system were investigated. The experimental design was performed using Response Surface Methodology (RSM) for process optimization. Analyses data demonstrated that the nanobiocatalysts retained 80.30% activity even at elevated temperature (55°C) and excellent storage stabilities after 10 days. The repeated usage of system revealed a remarkable consistent relative activity over several cycles. The immobilized cellulase was employed to decompose agro-waste and the maximum decomposition rate of 67.2 % was achieved. Conclusively, magnetic HNTs can serve as a potential support for enzyme immobilization with long term usage, good efficacy, reusability and easy recovery from solution.Keywords: halloysite nanotubes, enzyme immobilization, cellulase, response surface methodology, magnetic recovery
Procedia PDF Downloads 1371491 Resilience and Renewal: Sustainable Tourism Development in Post-Earthquake Marrakech-El Haouz
Authors: Oumayma Hilal
Abstract:
The devastating earthquake in Marrakech-El Haouz in September 2023 underscores the critical need for sustainable tourism practices. This study proposes innovative approaches to territory tourism, prioritizing resilient and sustainable development to aid recovery and empower local communities. Using a mixed-methods approach, the research evaluates post-earthquake tourism impacts, gathers local perspectives, and benchmarks global models for disaster recovery through tourism. The paper aims to offer practical, community-centric tourism initiatives, integrated with strategic communication strategies, to enhance socio-economic welfare and ensure long-term resilience. The findings are expected to contribute significantly to sustainable tourism literature in post-disaster contexts and provide actionable strategies for the revitalization of the Marrakech-El Haouz region.Keywords: sustainable tourism, community development, Marrakech El Haouz, communication strategies, territory tourism, sustainable tourism, community development
Procedia PDF Downloads 591490 Inactivation and Stress Response of Salmonella enterica Serotype Typhimurium lt21 upon Cold Gas-Phase Plasma Treatment
Authors: Zoran Herceg, Tomislava Vukušić, Anet Režek Jambrak, Višnja Stulić
Abstract:
Today one of the greatest challenges are directed to the safety of food supply. If food pathogens are ingested they can cause human illnesses. Because of that new technologies that are effective in microbial reduction are developing to be used in food industries. One of such technology is cold gas phase plasma. Salmonella enterica was studied as one of the pathogenes that can be found in food. The aim of this work was to examine the inactivation rate and stress response of plasma treated cells of Salmonella enterica inoculated in apple juice. After the treatment cellular leakage, phenotypic changes in plasma treated cells-biofilm formation and degree of recovery were conducted. Sample volume was inoculated with 5 mL of pure culture of Salmonella enterica and 15 mL of apple juice. Statgraphics Centurion software (StatPoint Technologies, Inc., VA, USA) was used for experimental design and statistical analyses. Treatment time (1, 3, 5 min) and gas flow (40, 60, 80 L/min) were changed. Complete inactivation and 0 % of recovery after the 48 h was observed at these experimental treatments: 3 min; 40 L/min, 3 min; 80 L/min, 5 min; 40 L/min. Biofilm reduction was observed at all treated samples. Also, there was an increase in cellular leakage with a longer plasma treatment. Although there were a significant reduction and 0 % of recovery after the plasma treatments further investigation of the method is needed to clarify whether there are sensorial, physical and chemical changes in juices after the plasma treatment. Acknowledgments: The authors would like to acknowledge the support by Croatian Science Foundation and research project 'Application of electrical discharge plasma for the preservation of liquid foods'.Keywords: salmonella enterica serotype typhimurium lt21, gas-phase plasma treatment, inactivation, stress response
Procedia PDF Downloads 3181489 Performance Augmentation of a Combined Cycle Power Plant with Waste Heat Recovery and Solar Energy
Authors: Mohammed A. Elhaj, Jamal S. Yassin
Abstract:
In the present time, energy crises are considered a severe problem across the world. For the protection of global environment and maintain ecological balance, energy saving is considered one of the most vital issues from the view point of fuel consumption. As the industrial sectors everywhere continue efforts to improve their energy efficiency, recovering waste heat losses provides an attractive opportunity for an emission free and less costly energy resource. In the other hand the using of solar energy has become more insistent particularly after the high gross of prices and running off the conventional energy sources. Therefore, it is essential that we should endeavor for waste heat recovery as well as solar energy by making significant and concrete efforts. For these reasons this investigation is carried out to study and analyze the performance of a power plant working by a combined cycle in which Heat Recovery System Generator (HRSG) gets its energy from the waste heat of a gas turbine unit. Evaluation of the performance of the plant is based on different thermal efficiencies of the main components in addition to the second law analysis considering the exergy destructions for the whole components. The contribution factors including the solar as well as the wasted energy are considered in the calculations. The final results have shown that there is significant exergy destruction in solar concentrator and the combustion chamber of the gas turbine unit. Other components such as compressor, gas turbine, steam turbine and heat exchangers having insignificant exergy destruction. Also, solar energy can contribute by about 27% of the input energy to the plant while the energy lost with exhaust gases can contribute by about 64% at maximum cases.Keywords: solar energy, environment, efficiency, waste heat, steam generator, performance, exergy destruction
Procedia PDF Downloads 3011488 Reduction of Energy Consumption of Distillation Process by Recovering the Heat from Exit Streams
Authors: Apichit Svang-Ariyaskul, Thanapat Chaireongsirikul, Pawit Tangviroon
Abstract:
Distillation consumes enormous quantity of energy. This work proposed a process to recover the energy from exit streams during the distillation process of three consecutive columns. There are several novel techniques to recover the heat with the distillation system; however, a complex control system is required. This work proposed a simpler technique by exchanging the heat between streams without interrupting the internal distillation process that might cause a serious control problem. The proposed process is executed by using heat exchanger network with pinch analysis to maximize the process heat recovery. The test model is the distillation of butane, pentane, hexane, and heptanes, which is a common mixture in the petroleum refinery. This proposed process saved the energy consumption for hot and cold utilities of 29 and 27%, which is considered significant. Therefore, the recovery of heat from exit streams from distillation process is proved to be effective for energy saving.Keywords: distillation, heat exchanger, network pinch analysis, chemical engineering
Procedia PDF Downloads 3731487 Resourcing for Post-Disaster Housing Reconstruction: The Case of Cyclone Sidr and Aila in Bangladesh
Authors: Zahidul Islam
Abstract:
This study investigates the effectiveness of resourcing in post-disaster housing reconstruction with reference to Cyclones Sidr and Aila in Bangladesh. Through evaluating three key theories- Build Back Better approach, Balance Scorecard approach and Dynamic Competency theories, the synthesis of literature, and empirical fieldwork, this research develops a dynamic theoretical framework that moves the trajectory of post-disaster housing reconstruction towards the reconstruction of more resilient houses. The ultimate goal of any post-disaster housing reconstruction project is to provide quality houses and to achieve high levels of satisfaction for beneficiaries. However, post-disaster reconstruction projects often fail in their stated objectives; only 10-20% housing needs are met, with most houses constructed on a temporary rather than permanent basis. A number of scholars have argued that access to resources can significantly increase the capacity and capability of disaster victims to rebuild their lives, including the construction of new homes. This study draws on structured interviews of 285 villagers affected by cyclones to investigate the effectiveness of resourcing in rebuilding houses after Cyclone Sidr in 2007 and Cyclone Aila in 2009. Furthermore, semi-structured interviews were conducted with 20 key stakeholders in UNDP, Oxfam, government officials, and national and international NGOs. The results of this study show that recovery rate of cyclone resilient houses that can withstand cyclone is very low and majority of the population are still vulnerable. Furthermore, hierarchical regression of survey data and thematic analyses of qualitative data indicate that access to resources, level of education, quality of building materials and income generating activities of the respondents are critical for effective post-disaster recovery. Conversely, resource availability, lack of coordination among participant organisations, corruption and lack of access to appropriate land constituted significant obstacles to livelihood recovery. Finally, this study makes significant theoretical contributions to theories of post-disaster recovery by introducing new variables and measures for evaluating the quality and effectiveness of post-disaster housing.Keywords: disaster, resourcing, housing, resilience
Procedia PDF Downloads 1491486 Benefits of PRP in Third Molar Surgery - A Review of the Literature
Authors: Nitesh Kumar, Adel Elrasheed, Antonio Gagliardilugo
Abstract:
Introduction and aims: PRP has been increasing in popularity over the past decade. It is used in many facets of medicine and dentistry such as osteoarthritis, hair loss, skin rejunavation, healing of tendons after injury. Due to the increasing popularity of PRP in third molar surgery in dentistry, this study aims to identify the role of platelet rich plasma and its function in third molar surgery. Methodology: Three databases were chosen to source the articles for review: pubmed, science direct, and Cochrane. The keywords “platelet rich plasma”, “third molar extraction” and “wisdom tooth extraction” and literature review were used to search for relevant articles. Articles that were not in English were omitted and only systematic reviews relevant to the study were collected. All systematic reviews abstracts pertinent to the study were read by two reviewers to avoid bias. Results/statistics: 20 review articles were obtained of which 13 fulfilled the criteria. The Amstar tool validified the strength of these review articles. There is strong evidence in the literature that PRP in third molar surgery decreases post op pain, swelling and recovery time. 20 review articles were obtained of which 13 fulfilled the criteria. The Amstar tool validified the strength of these review articles. There is strong evidence in the literature that PRP in third molar surgery decreases post op pain, swelling and recovery time. Conclusions/clinical relevance: Platelet rich plasma plays a crucial role in patient recovery following the extraction of third molars and should be considered and offered as a routine part of third molar therapy.Keywords: PRP, third molar, extractions, wisdom teeth
Procedia PDF Downloads 661485 Relationship Building Between Peer Support Worker and Person in Recovery in the Community-based One-to-One Peer Support Service of Mental Health Setting
Authors: Yuen Man Yan
Abstract:
Peer support has been a rising prevalent mental health service in the globe. The community-based mental health services employ persons with lived experience of mental illness to be peer support workers (PSWs) to provide peer support service to those who are in the progress of recovery (PIRs). It represents the transformation of mental health service system to a recovery-oriented and person-centered care. Literatures proved the feasibility and effectiveness of the peer support service. Researchers have attempted to explore the unique good qualities of peer support service that benefit the PIRs. Empirical researches found that the strength of the relationship between those who sought for change and the change agents positively related to the outcomes in one-to-one therapies across theoretical orientations. However, there is lack of literature on investigating the relationship building between the PSWs and PIRs in the one-to-one community-based peer support service. This study aims to identify and characterise the relationship in the community-based one-to-one peer support service from the perspectives of PSWs and PIRs; and to conceptualize the components of relationship building between PSWs and PIRs in the community-based one-to-one peer support service. The study adopted the constructivist grounded theory approach. 10 pairs of the PSWs and PIRs participated in the study. Data were collected through multiple qualitative methods, including observation of the interaction and exchange of the PSWs and PIRs in the 1ₛₜ, 3ᵣ𝒹 and 9th sessions of the community-based one-to-one peer support service; and semi-structural interview with the PSWs and PIRs separately after the 3ᵣ𝒹and 9ₜₕ session of the peer support service. This presentation is going to report the preliminary findings of the study. PSWs and PIRs identified their relationship as “life alliance”. Empathy was found to be one of key components of the relationship between the PSWs and the PIRs. Unlike the empathy, as explained by Carl Roger, in which the service provider was able to put themselves into the shoes of the service recipients as if he was the service recipients, the intensity of the empathy was much greater in the relationship between PSWs and PIRs because PSWs had the lived experience of mental illness and recovery. The dimensions of the empathy in the relationship between PSWs and PIRs was found to be multiple, not only related to the mental illness but also related to various aspects in life, like family relationship, employment, interest of life, self-esteem and etc.Keywords: person with lived experience, peer support worker, peer support service, relationship building, therapeutic alliance, community-based mental health setting
Procedia PDF Downloads 771484 A Hydrometallurgical Route for the Recovery of Molybdenum from Spent Mo-Co Catalyst
Authors: Bina Gupta, Rashmi Singh, Harshit Mahandra
Abstract:
Molybdenum is a strategic metal and finds applications in petroleum refining, thermocouples, X-ray tubes and in making of steel alloy owing to its high melting temperature and tensile strength. The growing significance and economic value of molybdenum has increased interest in the development of efficient processes aiming its recovery from secondary sources. Main secondary sources of Mo are molybdenum catalysts which are used for hydrodesulphurisation process in petrochemical refineries. The activity of these catalysts gradually decreases with time during the desulphurisation process as the catalysts get contaminated with toxic material and are dumped as waste which leads to environmental issues. In this scenario, recovery of molybdenum from spent catalyst is significant from both economic and environmental point of view. Recently ionic liquids have gained prominence due to their low vapour pressure, high thermal stability, good extraction efficiency and recycling capacity. The present study reports recovery of molybdenum from Mo-Co spent leach liquor using Cyphos IL 102[trihexyl(tetradecyl)phosphonium bromide] as an extractant. Spent catalyst was leached with 3.0 mol/L HCl, and the leach liquor containing Mo-870 ppm, Co-341 ppm, Al-508 ppm and Fe-42 ppm was subjected to extraction step. The effect of extractant concentration on the leach liquor was investigated and almost 85% extraction of Mo was achieved with 0.05 mol/L Cyphos IL 102. Results of stripping studies revealed that 2.0 mol/L HNO3 can effectively strip 94% of the extracted Mo from the loaded organic phase. McCabe- Thiele diagrams were constructed to determine the number of stages required for quantitative extraction and stripping of molybdenum and were confirmed by countercurrent simulation studies. According to McCabe- Thiele extraction and stripping isotherms, two stages are required for quantitative extraction and stripping of molybdenum at A/O= 1:1. Around 95.4% extraction of molybdenum was achieved in two-stage counter current at A/O= 1:1 with the negligible extraction of Co and Al. However, iron was coextracted and removed from the loaded organic phase by scrubbing with 0.01 mol/L HCl. Quantitative stripping (~99.5 %) of molybdenum was achieved with 2.0 mol/L HNO₃ in two stages at O/A=1:1. Overall ~95.0% molybdenum with 99 % purity was recovered from Mo-Co spent catalyst. From the strip solution, MoO₃ was obtained by crystallization followed by thermal decomposition. The product obtained after thermal decomposition was characterized by XRD, FE-SEM and EDX techniques. XRD peaks of MoO₃ correspond to molybdite Syn-MoO₃ structure. FE-SEM depicts the rod-like morphology of synthesized MoO₃. EDX analysis of MoO₃ shows 1:3 atomic percentage of molybdenum and oxygen. The synthesised MoO₃ can find application in gas sensors, electrodes of batteries, display devices, smart windows, lubricants and as a catalyst.Keywords: cyphos Il 102, extraction, spent mo-co catalyst, recovery
Procedia PDF Downloads 1751483 Recovery of Wastewater Treated of Boumerdes Step for Irrigation
Authors: N. Ouslimani, M. T. Abadlia, S. Yakoub, F. Tebbani
Abstract:
Water has always been synonymous with life and growth. Blue gold is first essential to the survival of the human being whose body consists of more than 65% with the development of industrialization and consumption patterns; volumes of wastewater discharges have increased considerably whether industrial or domestic, waste water must be purified before discharge. Treatment, therefore, aims to reduce the pollution load which contain. The resources in Algeria are limited and unevenly distributed. Thus, to meet all the water needs of the country and to preserve the waters of good quality drinking water supply, one solution would be to use them according to their quality and to irrigate crops for the food or be directed to the irrigation of green areas or sports complex. The purification performance of this STEP has been established since the pH analyzed pollution criteria (7.36) and temperature (16°C), MES (10 mg / l), electrical conductivity (1122 / µs / cm), DBO5 (6mg / l), DCO (15mg / l) meet the discharge standards. Arguably the purified water discharged out of the boumerdes STEP comply with Algerian regulations and can be reused in agriculture. COD biodegradability of the coefficient / BOD5 is 2.5 (less than 3) indicates that of the effluent are biodegradable hence their urban origin.Keywords: irrigation, recovery, treated, wastewater
Procedia PDF Downloads 2581482 Characterization and Design of a Crumb Rubber Modified Asphalt Mix Formulation
Authors: H. Al-Baghli
Abstract:
Laboratory trial results of mixing crumb rubber produced from discarded tires with 60/70 pen grade Kuwaiti bitumen are presented on this paper. PG grading and multiple stress creep recovery tests were conducted on Kuwaiti bitumen blended with 15% and 18% crumb rubber at temperatures ranging from 40 to 70 °C. The results from elastic recovery and non-recoverable creep presented optimum performance at 18% rubber content. The optimum rubberized-bitumen mix was next transformed into a pelletized form (PelletPave®), and was used as a partial replacement to the conventional bitumen in the manufacture of continuously graded hot mix asphalts at a number of binder contents. The trialed PelletPave® contents were at 2.5%, 3.0%, and 3.5% by mass of asphalt mix. In this investigation, it was not possible to utilize the results of standard Marshall method of mix design (i.e. volumetric, stability and flow tests) and subsequently additional assessment of mix compactability was carried out using gyratory compactor in order to determine the optimum PelletPave® and total binder contents.Keywords: crumb rubber, Marshall mix design, PG grading, rubberized-bitumen
Procedia PDF Downloads 223