Search results for: multiwavelenght dataset
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1166

Search results for: multiwavelenght dataset

866 Prediction of Mental Health: Heuristic Subjective Well-Being Model on Perceived Stress Scale

Authors: Ahmet Karakuş, Akif Can Kilic, Emre Alptekin

Abstract:

A growing number of studies have been conducted to determine how well-being may be predicted using well-designed models. It is necessary to investigate the backgrounds of features in order to construct a viable Subjective Well-Being (SWB) model. We have picked the suitable variables from the literature on SWB that are acceptable for real-world data instructions. The goal of this work is to evaluate the model by feeding it with SWB characteristics and then categorizing the stress levels using machine learning methods to see how well it performs on a real dataset. Despite the fact that it is a multiclass classification issue, we have achieved significant metric scores, which may be taken into account for a specific task.

Keywords: machine learning, multiclassification problem, subjective well-being, perceived stress scale

Procedia PDF Downloads 131
865 Analysis of Brownfield Soil Contamination Using Local Government Planning Data

Authors: Emma E. Hellawell, Susan J. Hughes

Abstract:

BBrownfield sites are currently being redeveloped for residential use. Information on soil contamination on these former industrial sites is collected as part of the planning process by the local government. This research project analyses this untapped resource of environmental data, using site investigation data submitted to a local Borough Council, in Surrey, UK. Over 150 site investigation reports were collected and interrogated to extract relevant information. This study involved three phases. Phase 1 was the development of a database for soil contamination information from local government reports. This database contained information on the source, history, and quality of the data together with the chemical information on the soil that was sampled. Phase 2 involved obtaining site investigation reports for development within the study area and extracting the required information for the database. Phase 3 was the data analysis and interpretation of key contaminants to evaluate typical levels of contaminants, their distribution within the study area, and relating these results to current guideline levels of risk for future site users. Preliminary results for a pilot study using a sample of the dataset have been obtained. This pilot study showed there is some inconsistency in the quality of the reports and measured data, and careful interpretation of the data is required. Analysis of the information has found high levels of lead in shallow soil samples, with mean and median levels exceeding the current guidance for residential use. The data also showed elevated (but below guidance) levels of potentially carcinogenic polyaromatic hydrocarbons. Of particular concern from the data was the high detection rate for asbestos fibers. These were found at low concentrations in 25% of the soil samples tested (however, the sample set was small). Contamination levels of the remaining chemicals tested were all below the guidance level for residential site use. These preliminary pilot study results will be expanded, and results for the whole local government area will be presented at the conference. The pilot study has demonstrated the potential for this extensive dataset to provide greater information on local contamination levels. This can help inform regulators and developers and lead to more targeted site investigations, improving risk assessments, and brownfield development.

Keywords: Brownfield development, contaminated land, local government planning data, site investigation

Procedia PDF Downloads 140
864 An Improvement of ComiR Algorithm for MicroRNA Target Prediction by Exploiting Coding Region Sequences of mRNAs

Authors: Giorgio Bertolazzi, Panayiotis Benos, Michele Tumminello, Claudia Coronnello

Abstract:

MicroRNAs are small non-coding RNAs that post-transcriptionally regulate the expression levels of messenger RNAs. MicroRNA regulation activity depends on the recognition of binding sites located on mRNA molecules. ComiR (Combinatorial miRNA targeting) is a user friendly web tool realized to predict the targets of a set of microRNAs, starting from their expression profile. ComiR incorporates miRNA expression in a thermodynamic binding model, and it associates each gene with the probability of being a target of a set of miRNAs. ComiR algorithms were trained with the information regarding binding sites in the 3’UTR region, by using a reliable dataset containing the targets of endogenously expressed microRNA in D. melanogaster S2 cells. This dataset was obtained by comparing the results from two different experimental approaches, i.e., inhibition, and immunoprecipitation of the AGO1 protein; this protein is a component of the microRNA induced silencing complex. In this work, we tested whether including coding region binding sites in the ComiR algorithm improves the performance of the tool in predicting microRNA targets. We focused the analysis on the D. melanogaster species and updated the ComiR underlying database with the currently available releases of mRNA and microRNA sequences. As a result, we find that the ComiR algorithm trained with the information related to the coding regions is more efficient in predicting the microRNA targets, with respect to the algorithm trained with 3’utr information. On the other hand, we show that 3’utr based predictions can be seen as complementary to the coding region based predictions, which suggests that both predictions, from 3'UTR and coding regions, should be considered in a comprehensive analysis. Furthermore, we observed that the lists of targets obtained by analyzing data from one experimental approach only, that is, inhibition or immunoprecipitation of AGO1, are not reliable enough to test the performance of our microRNA target prediction algorithm. Further analysis will be conducted to investigate the effectiveness of the tool with data from other species, provided that validated datasets, as obtained from the comparison of RISC proteins inhibition and immunoprecipitation experiments, will be available for the same samples. Finally, we propose to upgrade the existing ComiR web-tool by including the coding region based trained model, available together with the 3’UTR based one.

Keywords: AGO1, coding region, Drosophila melanogaster, microRNA target prediction

Procedia PDF Downloads 451
863 Leveraging Unannotated Data to Improve Question Answering for French Contract Analysis

Authors: Touila Ahmed, Elie Louis, Hamza Gharbi

Abstract:

State of the art question answering models have recently shown impressive performance especially in a zero-shot setting. This approach is particularly useful when confronted with a highly diverse domain such as the legal field, in which it is increasingly difficult to have a dataset covering every notion and concept. In this work, we propose a flexible generative question answering approach to contract analysis as well as a weakly supervised procedure to leverage unannotated data and boost our models’ performance in general, and their zero-shot performance in particular.

Keywords: question answering, contract analysis, zero-shot, natural language processing, generative models, self-supervision

Procedia PDF Downloads 194
862 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity

Authors: Shaan Khosla, Jon Krohn

Abstract:

In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.

Keywords: AI, machine learning, NLP, recruiting

Procedia PDF Downloads 84
861 Application of a New Efficient Normal Parameter Reduction Algorithm of Soft Sets in Online Shopping

Authors: Xiuqin Ma, Hongwu Qin

Abstract:

A new efficient normal parameter reduction algorithm of soft set in decision making was proposed. However, up to the present, few documents have focused on real-life applications of this algorithm. Accordingly, we apply a New Efficient Normal Parameter Reduction algorithm into real-life datasets of online shopping, such as Blackberry Mobile Phone Dataset. Experimental results show that this algorithm is not only suitable but feasible for dealing with the online shopping.

Keywords: soft sets, parameter reduction, normal parameter reduction, online shopping

Procedia PDF Downloads 510
860 Evaluating the Effects of a Positive Bitcoin Shock on the U.S Economy: A TVP-FAVAR Model with Stochastic Volatility

Authors: Olfa Kaabia, Ilyes Abid, Khaled Guesmi

Abstract:

This pioneer paper studies whether and how Bitcoin shocks are transmitted to the U.S economy. We employ a new methodology: TVP FAVAR model with stochastic volatility. We use a large dataset of 111 major U.S variables from 1959:m1 to 2016:m12. The results show that Bitcoin shocks significantly impact the U.S. economy. This significant impact is pronounced in a volatile and increasing U.S economy. The Bitcoin has a positive relationship on the U.S real activity, and a negative one on U.S prices and interest rates. Effects on the Monetary Policy exist via the inter-est rates and the Money, Credit and Finance transmission channels.

Keywords: bitcoin, US economy, FAVAR models, stochastic volatility

Procedia PDF Downloads 248
859 Intelligent Prediction System for Diagnosis of Heart Attack

Authors: Oluwaponmile David Alao

Abstract:

Due to an increase in the death rate as a result of heart attack. There is need to develop a system that can be useful in the diagnosis of the disease at the medical centre. This system will help in preventing misdiagnosis that may occur from the medical practitioner or the physicians. In this research work, heart disease dataset obtained from UCI repository has been used to develop an intelligent prediction diagnosis system. The system is modeled on a feedforwad neural network and trained with back propagation neural network. A recognition rate of 86% is obtained from the testing of the network.

Keywords: heart disease, artificial neural network, diagnosis, prediction system

Procedia PDF Downloads 450
858 Do the Health Benefits of Oil-Led Economic Development Outweigh the Potential Health Harms from Environmental Pollution in Nigeria?

Authors: Marian Emmanuel Okon

Abstract:

Introduction: The Niger Delta region of Nigeria has a vast reserve of oil and gas, which has globally positioned the nation as the sixth largest exporter of crude oil. Production rapidly rose following oil discovery. In most oil producing nations of the world, the wealth generated from oil production and export has propelled economic advancement, enabling the development of industries and other relevant infrastructures. Therefore, it can be assumed that majority of the oil resource such as Nigeria’s, has the potential to improve the health of the population via job creation and derived revenues. However, the health benefits of this economic development might be offset by the environmental consequences of oil exploitation and production. Objective: This research aims to evaluate the balance between the health benefits of oil-led economic development and harmful environmental consequences of crude oil exploitation in Nigeria. Study Design: A pathway has been designed to guide data search and this study. The model created will assess the relationship between oil-led economic development and population health development via job creation, improvement of education, development of infrastructure and other forms of development as well as through harmful environmental consequences from oil activities. Data/Emerging Findings: Diverse potentially suitable datasets which are at different geographical scales have been identified, obtained or applied for and the dataset from the World Bank has been the most thoroughly explored. This large dataset contains information that would enable the longitudinal assessment of both the health benefits and harms from oil exploitation in Nigeria as well as identify the disparities that exist between the communities, states and regions. However, these data do not extend far back enough in time to capture the start of crude oil production. Thus, it is possible that the maximum economic benefits and health harms could be missed. To deal with this shortcoming, the potential for a comparative study with countries like United Kingdom, Morocco and Cote D’ivoire has also been taken into consideration, so as to evaluate the differences between these countries as well as identify the areas of improvement in Nigeria’s environmental and health policies. Notwithstanding, these data have shown some differences in each country’s economic, environmental and health state over time as well as a corresponding summary statistics. Conclusion: In theory, the beneficial effects of oil exploitation to the health of the population may be substantial as large swaths of the ‘wider determinants’ of population heath are influenced by the wealth of a nation. However, if uncontrolled, the consequences from environmental pollution and degradation may outweigh these benefits. Thus, there is a need to address this, in order to improve environmental and population health in Nigeria.

Keywords: environmental pollution, health benefits, oil-led economic development, petroleum exploitation

Procedia PDF Downloads 339
857 Empirical Study of Partitions Similarity Measures

Authors: Abdelkrim Alfalah, Lahcen Ouarbya, John Howroyd

Abstract:

This paper investigates and compares the performance of four existing distances and similarity measures between partitions. The partition measures considered are Rand Index (RI), Adjusted Rand Index (ARI), Variation of Information (VI), and Normalised Variation of Information (NVI). This work investigates the ability of these partition measures to capture three predefined intuitions: the variation within randomly generated partitions, the sensitivity to small perturbations, and finally the independence from the dataset scale. It has been shown that the Adjusted Rand Index performed well overall, with regards to these three intuitions.

Keywords: clustering, comparing partitions, similarity measure, partition distance, partition metric, similarity between partitions, clustering comparison.

Procedia PDF Downloads 203
856 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 56
855 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 40
854 Causal Relationship between Corporate Governance and Financial Information Transparency: A Simultaneous Equations Approach

Authors: Maali Kachouri, Anis Jarboui

Abstract:

We focus on the causal relationship between governance and information transparency as well as interrelation among the various governance mechanisms. This paper employs a simultaneous equations approach to show this relationship in the Tunisian context. Based on an 8-year dataset, our sample covers 28 listed companies over 2006-2013. Our findings suggest that internal and external governance mechanisms are interdependent. Moreover, in order to analyze the causal effect between information transparency and governance mechanisms, we found evidence that information transparency tends to increase good corporate governance practices.

Keywords: simultaneous equations approach, transparency, causal relationship, corporate governance

Procedia PDF Downloads 355
853 Deep Learning to Enhance Mathematics Education for Secondary Students in Sri Lanka

Authors: Selvavinayagan Babiharan

Abstract:

This research aims to develop a deep learning platform to enhance mathematics education for secondary students in Sri Lanka. The platform will be designed to incorporate interactive and user-friendly features to engage students in active learning and promote their mathematical skills. The proposed platform will be developed using TensorFlow and Keras, two widely used deep learning frameworks. The system will be trained on a large dataset of math problems, which will be collected from Sri Lankan school curricula. The results of this research will contribute to the improvement of mathematics education in Sri Lanka and provide a valuable tool for teachers to enhance the learning experience of their students.

Keywords: information technology, education, machine learning, mathematics

Procedia PDF Downloads 83
852 Proposed Anticipating Learning Classifier System for Cloud Intrusion Detection (ALCS-CID)

Authors: Wafa' Slaibi Alsharafat

Abstract:

Cloud computing is a modern approach in network environment. According to increased number of network users and online systems, there is a need to help these systems to be away from unauthorized resource access and detect any attempts for privacy contravention. For that purpose, Intrusion Detection System is an effective security mechanism to detect any attempts of attacks for cloud resources and their information. In this paper, Cloud Intrusion Detection System has been proposed in term of reducing or eliminating any attacks. This model concerns about achieving high detection rate after conducting a set of experiments using benchmarks dataset called KDD'99.

Keywords: IDS, cloud computing, anticipating classifier system, intrusion detection

Procedia PDF Downloads 474
851 Building and Tree Detection Using Multiscale Matched Filtering

Authors: Abdullah H. Özcan, Dilara Hisar, Yetkin Sayar, Cem Ünsalan

Abstract:

In this study, an automated building and tree detection method is proposed using DSM data and true orthophoto image. A multiscale matched filtering is used on DSM data. Therefore, first watershed transform is applied. Then, Otsu’s thresholding method is used as an adaptive threshold to segment each watershed region. Detected objects are masked with NDVI to separate buildings and trees. The proposed method is able to detect buildings and trees without entering any elevation threshold. We tested our method on ISPRS semantic labeling dataset and obtained promising results.

Keywords: building detection, local maximum filtering, matched filtering, multiscale

Procedia PDF Downloads 320
850 Urdu Text Extraction Method from Images

Authors: Samabia Tehsin, Sumaira Kausar

Abstract:

Due to the vast increase in the multimedia data in recent years, efficient and robust retrieval techniques are needed to retrieve and index images/ videos. Text embedded in the images can serve as the strong retrieval tool for images. This is the reason that text extraction is an area of research with increasing attention. English text extraction is the focus of many researchers but very less work has been done on other languages like Urdu. This paper is focusing on Urdu text extraction from video frames. This paper presents a text detection feature set, which has the ability to deal up with most of the problems connected with the text extraction process. To test the validity of the method, it is tested on Urdu news dataset, which gives promising results.

Keywords: caption text, content-based image retrieval, document analysis, text extraction

Procedia PDF Downloads 516
849 QSAR Study and Haptotropic Rearrangement in Estradiol Derivatives

Authors: Mohamed Abd Esselem Dems, Souhila Laib, Nadjia Latelli, Nadia Ouddai

Abstract:

In this work, we have developed QSAR model for Relative Binding Affinity (RBA) of a large diverse set of estradiol among these derivatives, the organometallic derivatives. By dividing the dataset into a training set of 24 compounds and a test set of 6 compounds. The DFT method was used to calculate quantum chemical descriptors and physicochemical descriptors (MR and MLOGP) were performed using E-Dragon. All the validations indicated that the QSAR model built was robust and satisfactory (R2 = 90.12, Q2LOO = 86.61, RMSE = 0.272, F = 60.6473, Q2ext =86.07). We have therefore apply this model to predict the RBA, for two isomers β and α wherein Mn(CO)3 complex with the aromatic ring of estradiol, and the two isomers show little appreciation for the estrogenic receptor (RBAβ = 1.812 and RBAα = 1.741).

Keywords: DFT, estradiol, haptotropic rearrangement, QSAR, relative binding affinity

Procedia PDF Downloads 295
848 A Multivariate Exploratory Data Analysis of a Crisis Text Messaging Service in Order to Analyse the Impact of the COVID-19 Pandemic on Mental Health in Ireland

Authors: Hamda Ajmal, Karen Young, Ruth Melia, John Bogue, Mary O'Sullivan, Jim Duggan, Hannah Wood

Abstract:

The Covid-19 pandemic led to a range of public health mitigation strategies in order to suppress the SARS-CoV-2 virus. The drastic changes in everyday life due to lockdowns had the potential for a significant negative impact on public mental health, and a key public health goal is to now assess the evidence from available Irish datasets to provide useful insights on this issue. Text-50808 is an online text-based mental health support service, established in Ireland in 2020, and can provide a measure of revealed distress and mental health concerns across the population. The aim of this study is to explore statistical associations between public mental health in Ireland and the Covid-19 pandemic. Uniquely, this study combines two measures of emotional wellbeing in Ireland: (1) weekly text volume at Text-50808, and (2) emotional wellbeing indicators reported by respondents of the Amárach public opinion survey, carried out on behalf of the Department of Health, Ireland. For this analysis, a multivariate graphical exploratory data analysis (EDA) was performed on the Text-50808 dataset dated from 15th June 2020 to 30th June 2021. This was followed by time-series analysis of key mental health indicators including: (1) the percentage of daily/weekly texts at Text-50808 that mention Covid-19 related issues; (2) the weekly percentage of people experiencing anxiety, boredom, enjoyment, happiness, worry, fear and stress in Amárach survey; and Covid-19 related factors: (3) daily new Covid-19 case numbers; (4) daily stringency index capturing the effect of government non-pharmaceutical interventions (NPIs) in Ireland. The cross-correlation function was applied to measure the relationship between the different time series. EDA of the Text-50808 dataset reveals significant peaks in the volume of texts on days prior to level 3 lockdown and level 5 lockdown in October 2020, and full level 5 lockdown in December 2020. A significantly high positive correlation was observed between the percentage of texts at Text-50808 that reported Covid-19 related issues and the percentage of respondents experiencing anxiety, worry and boredom (at a lag of 1 week) in Amárach survey data. There is a significant negative correlation between percentage of texts with Covid-19 related issues and percentage of respondents experiencing happiness in Amárach survey. Daily percentage of texts at Text-50808 that reported Covid-19 related issues to have a weak positive correlation with daily new Covid-19 cases in Ireland at a lag of 10 days and with daily stringency index of NPIs in Ireland at a lag of 2 days. The sudden peaks in text volume at Text-50808 immediately prior to new restrictions in Ireland indicate an association between a rise in mental health concerns following the announcement of new restrictions. There is also a high correlation between emotional wellbeing variables in the Amárach dataset and the number of weekly texts at Text-50808, and this confirms that Text-50808 reflects overall public sentiment. This analysis confirms the benefits of the texting service as a community surveillance tool for mental health in the population. This initial EDA will be extended to use multivariate modeling to predict the effect of additional Covid-19 related factors on public mental health in Ireland.

Keywords: COVID-19 pandemic, data analysis, digital health, mental health, public health, digital health

Procedia PDF Downloads 143
847 Synthetic Classicism: A Machine Learning Approach to the Recognition and Design of Circular Pavilions

Authors: Federico Garrido, Mostafa El Hayani, Ahmed Shams

Abstract:

The exploration of the potential of artificial intelligence (AI) in architecture is still embryonic, however, its latent capacity to change design disciplines is significant. 'Synthetic Classism' is a research project that questions the underlying aspects of classically organized architecture not just in aesthetic terms but also from a geometrical and morphological point of view, intending to generate new architectural information using historical examples as source material. The main aim of this paper is to explore the uses of artificial intelligence and machine learning algorithms in architectural design while creating a coherent narrative to be contained within a design process. The purpose is twofold: on one hand, to develop and train machine learning algorithms to produce architectural information of small pavilions and on the other, to synthesize new information from previous architectural drawings. These algorithms intend to 'interpret' graphical information from each pavilion and then generate new information from it. The procedure, once these algorithms are trained, is the following: parting from a line profile, a synthetic 'front view' of a pavilion is generated, then using it as a source material, an isometric view is created from it, and finally, a top view is produced. Thanks to GAN algorithms, it is also possible to generate Front and Isometric views without any graphical input as well. The final intention of the research is to produce isometric views out of historical information, such as the pavilions from Sebastiano Serlio, James Gibbs, or John Soane. The idea is to create and interpret new information not just in terms of historical reconstruction but also to explore AI as a novel tool in the narrative of a creative design process. This research also challenges the idea of the role of algorithmic design associated with efficiency or fitness while embracing the possibility of a creative collaboration between artificial intelligence and a human designer. Hence the double feature of this research, both analytical and creative, first by synthesizing images based on a given dataset and then by generating new architectural information from historical references. We find that the possibility of creatively understand and manipulate historic (and synthetic) information will be a key feature in future innovative design processes. Finally, the main question that we propose is whether an AI could be used not just to create an original and innovative group of simple buildings but also to explore the possibility of fostering a novel architectural sensibility grounded on the specificities on the architectural dataset, either historic, human-made or synthetic.

Keywords: architecture, central pavilions, classicism, machine learning

Procedia PDF Downloads 140
846 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network

Authors: Gulfam Haider, sana danish

Abstract:

Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.

Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent

Procedia PDF Downloads 125
845 A Comparative Study of Deep Learning Methods for COVID-19 Detection

Authors: Aishrith Rao

Abstract:

COVID 19 is a pandemic which has resulted in thousands of deaths around the world and a huge impact on the global economy. Testing is a huge issue as the test kits have limited availability and are expensive to manufacture. Using deep learning methods on radiology images in the detection of the coronavirus as these images contain information about the spread of the virus in the lungs is extremely economical and time-saving as it can be used in areas with a lack of testing facilities. This paper focuses on binary classification and multi-class classification of COVID 19 and other diseases such as pneumonia, tuberculosis, etc. Different deep learning methods such as VGG-19, COVID-Net, ResNET+ SVM, Deep CNN, DarkCovidnet, etc., have been used, and their accuracy has been compared using the Chest X-Ray dataset.

Keywords: deep learning, computer vision, radiology, COVID-19, ResNet, VGG-19, deep neural networks

Procedia PDF Downloads 160
844 Automatic Segmentation of Lung Pleura Based On Curvature Analysis

Authors: Sasidhar B., Bhaskar Rao N., Ramesh Babu D. R., Ravi Shankar M.

Abstract:

Segmentation of lung pleura is a preprocessing step in Computer-Aided Diagnosis (CAD) which helps in reducing false positives in detection of lung cancer. The existing methods fail in extraction of lung regions with the nodules at the pleura of the lungs. In this paper, a new method is proposed which segments lung regions with nodules at the pleura of the lungs based on curvature analysis and morphological operators. The proposed algorithm is tested on 06 patient’s dataset which consists of 60 images of Lung Image Database Consortium (LIDC) and the results are found to be satisfactory with 98.3% average overlap measure (AΩ).

Keywords: curvature analysis, image segmentation, morphological operators, thresholding

Procedia PDF Downloads 596
843 Geographical Information System and Multi-Criteria Based Approach to Locate Suitable Sites for Industries to Minimize Agriculture Land Use Changes in Bangladesh

Authors: Nazia Muhsin, Tofael Ahamed, Ryozo Noguchi, Tomohiro Takigawa

Abstract:

One of the most challenging issues to achieve sustainable development on food security is land use changes. The crisis of lands for agricultural production mainly arises from the unplanned transformation of agricultural lands to infrastructure development i.e. urbanization and industrialization. Land use without sustainability assessment could have impact on the food security and environmental protections. Bangladesh, as the densely populated country with limited arable lands is now facing challenges to meet sustainable food security. Agricultural lands are using for economic growth by establishing industries. The industries are spreading from urban areas to the suburban areas and using the agricultural lands. To minimize the agricultural land losses for unplanned industrialization, compact economic zones should be find out in a scientific approach. Therefore, the purpose of the study was to find out suitable sites for industrial growth by land suitability analysis (LSA) by using Geographical Information System (GIS) and multi-criteria analysis (MCA). The goal of the study was to emphases both agricultural lands and industries for sustainable development in land use. The study also attempted to analysis the agricultural land use changes in a suburban area by statistical data of agricultural lands and primary data of the existing industries of the study place. The criteria were selected as proximity to major roads, and proximity to local roads, distant to rivers, waterbodies, settlements, flood-flow zones, agricultural lands for the LSA. The spatial dataset for the criteria were collected from the respective departments of Bangladesh. In addition, the elevation spatial dataset were used from the SRTM (Shuttle Radar Topography Mission) data source. The criteria were further analyzed with factors and constraints in ArcGIS®. Expert’s opinion were applied for weighting the criteria according to the analytical hierarchy process (AHP), a multi-criteria technique. The decision rule was set by using ‘weighted overlay’ tool to aggregate the factors and constraints with the weights of the criteria. The LSA found only 5% of land was most suitable for industrial sites and few compact lands for industrial zones. The developed LSA are expected to help policy makers of land use and urban developers to ensure the sustainability of land uses and agricultural production.

Keywords: AHP (analytical hierarchy process), GIS (geographic information system), LSA (land suitability analysis), MCA (multi-criteria analysis)

Procedia PDF Downloads 263
842 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging

Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.

Keywords: breast, machine learning, MRI, radiomics

Procedia PDF Downloads 267
841 TDApplied: An R Package for Machine Learning and Inference with Persistence Diagrams

Authors: Shael Brown, Reza Farivar

Abstract:

Persistence diagrams capture valuable topological features of datasets that other methods cannot uncover. Still, their adoption in data pipelines has been limited due to the lack of publicly available tools in R (and python) for analyzing groups of them with machine learning and statistical inference. In an easy-to-use and scalable R package called TDApplied, we implement several applied analysis methods tailored to groups of persistence diagrams. The two main contributions of our package are comprehensiveness (most functions do not have implementations elsewhere) and speed (shown through benchmarking against other R packages). We demonstrate applications of the tools on simulated data to illustrate how easily practical analyses of any dataset can be enhanced with topological information.

Keywords: machine learning, persistence diagrams, R, statistical inference

Procedia PDF Downloads 86
840 Facial Emotion Recognition Using Deep Learning

Authors: Ashutosh Mishra, Nikhil Goyal

Abstract:

A 3D facial emotion recognition model based on deep learning is proposed in this paper. Two convolution layers and a pooling layer are employed in the deep learning architecture. After the convolution process, the pooling is finished. The probabilities for various classes of human faces are calculated using the sigmoid activation function. To verify the efficiency of deep learning-based systems, a set of faces. The Kaggle dataset is used to verify the accuracy of a deep learning-based face recognition model. The model's accuracy is about 65 percent, which is lower than that of other facial expression recognition techniques. Despite significant gains in representation precision due to the nonlinearity of profound image representations.

Keywords: facial recognition, computational intelligence, convolutional neural network, depth map

Procedia PDF Downloads 231
839 Net Interest Margin of Cooperative Banks in Low Interest Rate Environment

Authors: Karolína Vozková, Matěj Kuc

Abstract:

This paper deals with the impact of decrease in interest rates on the performance of commercial and cooperative banks in the Eurozone measured by net interest margin. The analysis was performed on balanced dataset of 268 commercial and 726 cooperative banks spanning the 2008-2015 period. We employed Fixed Effects estimation panel method. As expected, we found a negative relationship between market rates and net interest margin. Our results suggest that the impact of negative interest income differs across individual banking business models. More precisely, those cooperative banks were much more hit by the decrease of market interest rates which might be due to their ownership structure and more restrictive business regulation.

Keywords: cooperative banks, performance, negative interest rates, risk management

Procedia PDF Downloads 182
838 Optimizing Communications Overhead in Heterogeneous Distributed Data Streams

Authors: Rashi Bhalla, Russel Pears, M. Asif Naeem

Abstract:

In this 'Information Explosion Era' analyzing data 'a critical commodity' and mining knowledge from vertically distributed data stream incurs huge communication cost. However, an effort to decrease the communication in the distributed environment has an adverse influence on the classification accuracy; therefore, a research challenge lies in maintaining a balance between transmission cost and accuracy. This paper proposes a method based on Bayesian inference to reduce the communication volume in a heterogeneous distributed environment while retaining prediction accuracy. Our experimental evaluation reveals that a significant reduction in communication can be achieved across a diverse range of dataset types.

Keywords: big data, bayesian inference, distributed data stream mining, heterogeneous-distributed data

Procedia PDF Downloads 161
837 Cellular Traffic Prediction through Multi-Layer Hybrid Network

Authors: Supriya H. S., Chandrakala B. M.

Abstract:

Deep learning based models have been recently successful adoption for network traffic prediction. However, training a deep learning model for various prediction tasks is considered one of the critical tasks due to various reasons. This research work develops Multi-Layer Hybrid Network (MLHN) for network traffic prediction and analysis; MLHN comprises the three distinctive networks for handling the different inputs for custom feature extraction. Furthermore, an optimized and efficient parameter-tuning algorithm is introduced to enhance parameter learning. MLHN is evaluated considering the “Big Data Challenge” dataset considering the Mean Absolute Error, Root Mean Square Error and R^2as metrics; furthermore, MLHN efficiency is proved through comparison with a state-of-art approach.

Keywords: MLHN, network traffic prediction

Procedia PDF Downloads 89