Search results for: motion representation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2533

Search results for: motion representation

2233 The Rail Traffic Management with Usage of C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev, Dmitry V. Egorov

Abstract:

This paper presents development results of usage of C-OTDR monitoring systems for rail traffic management. The C-OTDR method is based on vibrosensitive properties of optical fibers. Analysis of Rayleigh backscattering radiation parameters changes which take place due to microscopic seismoacoustic impacts on the optical fiber allows to determine seismoacoustic emission source positions and to identify their types. This approach proved successful for rail traffic management (moving block system, weigh- in-motion system etc).

Keywords: C-OTDR systems, moving block-sections, rail traffic management, Rayleigh backscattering, weigh-in-motion

Procedia PDF Downloads 585
2232 Kinetic Façade Design Using 3D Scanning to Convert Physical Models into Digital Models

Authors: Do-Jin Jang, Sung-Ah Kim

Abstract:

In designing a kinetic façade, it is hard for the designer to make digital models due to its complex geometry with motion. This paper aims to present a methodology of converting a point cloud of a physical model into a single digital model with a certain topology and motion. The method uses a Microsoft Kinect sensor, and color markers were defined and applied to three paper folding-inspired designs. Although the resulted digital model cannot represent the whole folding range of the physical model, the method supports the designer to conduct a performance-oriented design process with the rough physical model in the reduced folding range.

Keywords: design media, kinetic facades, tangible user interface, 3D scanning

Procedia PDF Downloads 416
2231 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems

Authors: P. W. Tsai, W. L. Hong, C. W. Chen, C. Y. Chen

Abstract:

In this paper, we present a neural network (NN) based approach represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.

Keywords: Lyapunov stability, parallel particle swarm optimization, linear differential inclusion, artificial intelligence

Procedia PDF Downloads 660
2230 Mapping Stress in Submerged Aquatic Vegetation Using Multispectral Imagery and Structure from Motion Photogrammetry

Authors: Amritha Nair, Fleur Visser, Ian Maddock, Jonas Schoelynck

Abstract:

Inland waters such as streams sustain a rich variety of species and are essentially hotspots for biodiversity. Submerged aquatic vegetation, also known as SAV, forms an important part of ecologically healthy river systems. Direct and indirect human influences, such as climate change are putting stress on aquatic plant communities, ranging from the invasion of non-native species and grazing, to changes in the river flow conditions and temperature. There is a need to monitor SAV, because they are in a state of deterioration and their disappearance will greatly impact river ecosystems. Like terrestrial plants, SAV can show visible signs of stress. However, the techniques used to map terrestrial vegetation from its spectral reflectance, are not easily transferable to a submerged environment. Optical remote sensing techniques are employed to detect the stress from remotely sensed images through multispectral imagery and Structure from Motion photogrammetry. The effect of the overlying water column in the form of refraction, attenuation of visible and near infrared bands in water, as well as highly moving targets, are NIR) key challenges that arise when remotely mapping SAV. This study looks into the possibility of mapping the changes in spectral signatures from SAV and their response to certain stresses.

Keywords: submerged aquatic vegetation, structure from motion, photogrammetry, multispectral, spectroscopy

Procedia PDF Downloads 104
2229 Effects of the Americans with Disabilities Act on Disability Representation in Mid-Century American Media Discourse

Authors: Si On Na

Abstract:

The development of American radio and print media since World War II has allowed people with disabilities to engage more directly with the public, gradually changing the perception that disabled people constitute a kind of social impairment or burden. People with disabilities have rarely been portrayed as equal to the non-disabled. In the postwar period, a dramatic shift from eugenicist conceptualizations of disability and widespread institutionalization gradually evolved into conditions of greater openness in public discourse. This discourse was marked at mid-century by telethons and news media (both print and television) which sought to commodify people with disabilities for commercial gain through stories that promoted alienating forms of empowerment alternating with paternalistic pity. By comparing studies of the history of American disability advocacy in the twentieth century and the evolution of the image of disability characteristic of mid-century media discourse, this paper will examine the relationship between the passage of the American with Disabilities Act of 1990 (ADA) and the expanded media representation of people with disabilities. This paper will argue that the legal mandate of the ADA ultimately transformed the image of people with disabilities from those who are weak and in need of support to viable consumers, encouraging traditional American print, film, and television media outlets to solicit the agency of people with disabilities in the authentic portrayal of themselves and their disabilities.

Keywords: ADA, disability representation, media portrayal, postwar United States

Procedia PDF Downloads 183
2228 Special Properties of the Zeros of the Analytic Representations of Finite Quantum Systems

Authors: Muna Tabuni

Abstract:

The paper contains an investigation on the special properties of the zeros of the analytic representations of finite quantum systems. These zeros and their paths completely define the finite quantum system. The present paper studies the construction of the analytic representation from its zeros. The analytic functions of finite quantum systems are introduced. The zeros of the analytic theta functions and their paths have been studied. The analytic function f(z) have exactly d zeros. The analytic function has been constructed from its zeros.

Keywords: construction, analytic, representation, zeros

Procedia PDF Downloads 212
2227 Detection of Patient Roll-Over Using High-Sensitivity Pressure Sensors

Authors: Keita Nishio, Takashi Kaburagi, Yosuke Kurihara

Abstract:

Recent advances in medical technology have served to enhance average life expectancy. However, the total time for which the patients are prescribed complete bedrest has also increased. With patients being required to maintain a constant lying posture- also called bedsore- development of a system to detect patient roll-over becomes imperative. For this purpose, extant studies have proposed the use of cameras, and favorable results have been reported. Continuous on-camera monitoring, however, tends to violate patient privacy. We have proposed unconstrained bio-signal measurement system that could detect body-motion during sleep and does not violate patient’s privacy. Therefore, in this study, we propose a roll-over detection method by the date obtained from the bi-signal measurement system. Signals recorded by the sensor were assumed to comprise respiration, pulse, body motion, and noise components. Compared the body-motion and respiration, pulse component, the body-motion, during roll-over, generate large vibration. Thus, analysis of the body-motion component facilitates detection of the roll-over tendency. The large vibration associated with the roll-over motion has a great effect on the Root Mean Square (RMS) value of time series of the body motion component calculated during short 10 s segments. After calculation, the RMS value during each segment was compared to a threshold value set in advance. If RMS value in any segment exceeded the threshold, corresponding data were considered to indicate occurrence of a roll-over. In order to validate the proposed method, we conducted experiment. A bi-directional microphone was adopted as a high-sensitivity pressure sensor and was placed between the mattress and bedframe. Recorded signals passed through an analog Band-pass Filter (BPF) operating over the 0.16-16 Hz bandwidth. BPF allowed the respiration, pulse, and body-motion to pass whilst removing the noise component. Output from BPF was A/D converted with the sampling frequency 100Hz, and the measurement time was 480 seconds. The number of subjects and data corresponded to 5 and 10, respectively. Subjects laid on a mattress in the supine position. During data measurement, subjects—upon the investigator's instruction—were asked to roll over into four different positions—supine to left lateral, left lateral to prone, prone to right lateral, and right lateral to supine. Recorded data was divided into 48 segments with 10 s intervals, and the corresponding RMS value for each segment was calculated. The system was evaluated by the accuracy between the investigator’s instruction and the detected segment. As the result, an accuracy of 100% was achieved. While reviewing the time series of recorded data, segments indicating roll-over tendencies were observed to demonstrate a large amplitude. However, clear differences between decubitus and the roll-over motion could not be confirmed. Extant researches possessed a disadvantage in terms of patient privacy. The proposed study, however, demonstrates more precise detection of patient roll-over tendencies without violating their privacy. As a future prospect, decubitus estimation before and after roll-over could be attempted. Since in this paper, we could not confirm the clear differences between decubitus and the roll-over motion, future studies could be based on utilization of the respiration and pulse components.

Keywords: bedsore, high-sensitivity pressure sensor, roll-over, unconstrained bio-signal measurement

Procedia PDF Downloads 125
2226 Hardware-In-The-Loop Relative Motion Control: Theory, Simulation and Experimentation

Authors: O. B. Iskender, K. V. Ling, V. Dubanchet, L. Simonini

Abstract:

This paper presents a Guidance and Control (G&C) strategy to address spacecraft maneuvering problem for future Rendezvous and Docking (RVD) missions. The proposed strategy allows safe and propellant efficient trajectories for space servicing missions including tasks such as approaching, inspecting and capturing. This work provides the validation test results of the G&C laws using a Hardware-In-the-Loop (HIL) setup with two robotic mockups representing the chaser and the target spacecraft. Through this paper, the challenges of the relative motion control in space are first summarized, and in particular, the constraints imposed by the mission, spacecraft and, onboard processing capabilities. Second, the proposed algorithm is introduced by presenting the formulation of constrained Model Predictive Control (MPC) to optimize the fuel consumption and explicitly handle the physical and geometric constraints in the system, e.g. thruster or Line-Of-Sight (LOS) constraints. Additionally, the coupling between translational motion and rotational motion is addressed via dual quaternion based kinematic description and accordingly explained. The resulting convex optimization problem allows real-time implementation capability based on a detailed discussion on the computational time requirements and the obtained results with respect to the onboard computer and future trends of space processors capabilities. Finally, the performance of the algorithm is presented in the scope of a potential future mission and of the available equipment. The results also cover a comparison between the proposed algorithms with Linear–quadratic regulator (LQR) based control law to highlight the clear advantages of the MPC formulation.

Keywords: autonomous vehicles, embedded optimization, real-time experiment, rendezvous and docking, space robotics

Procedia PDF Downloads 128
2225 Defects Estimation of Embedded Systems Components by a Bond Graph Approach

Authors: I. Gahlouz, A. Chellil

Abstract:

The paper concerns the estimation of system components faults by using an unknown inputs observer. To reach this goal, we used the Bond Graph approach to physical modelling. We showed that this graphical tool is allowing the representation of system components faults as unknown inputs within the state representation of the considered physical system. The study of the causal and structural features of the system (controllability, observability, finite structure, and infinite structure) based on the Bond Graph approach was hence fulfilled in order to design an unknown inputs observer which is used for the system component fault estimation.

Keywords: estimation, bond graph, controllability, observability

Procedia PDF Downloads 417
2224 Theoretical and Experimental Investigation of the Interaction Behavior of a Bouncing Ball upon a Flexible Surface Impacted in Two Dimensions

Authors: Wiwat Chumai, Perawit Boonsomchua, Kanjana Ongkasin

Abstract:

The ball bouncing problem is a well-known problem in physics involving a ball dropped from a height to the ground. In this paper, the work investigates the theoretical and experimental setup that describes the dynamics of a rigid body on a chaotic elastic surface under air-damp conditions. Examination of four different types of balls is made, including marble, metal ball, tennis ball, and ping-pong ball. In this experiment, the effect of impact velocities is not considered; the ball is dropped from a fixed height. The method in this work employs the Rayleigh Dissipation Function to specify the effects of dissipative forces in Lagrangian mechanics. Our discoveries reveal that the dynamics of the ball exhibit horizontal motion while damping oscillation occurs, forming the destabilization in vertical pinch-off motion. Moreover, rotational motion is studied. According to the investigation of four different balls, the outcomes illustrate that greater mass results in more frequent dynamics, and the experimental results at some points align with the theoretical model. This knowledge contributes to our understanding of the complex fluid system and could serve as a foundation for further developments in water droplet simulation.

Keywords: droplet, damping oscillation, nonlinear damping oscillation, bouncing ball problem, elastic surface

Procedia PDF Downloads 109
2223 Assessing Pain Using Morbid Motion Monitor System in the Pain Management of Nurse Practitioner

Authors: Mohammad Reza Dawoudi

Abstract:

With the increasing rate of patients suffering from chronic pain, several methods for evaluating of chronic pain are suggested. Motion of morbid has been defined as the rate of pine and it is linked with various co-morbid conditions. This study provides a summary of procedure useful to statistics performing direct behavioral observation in hospital settings. We describe the need for and usefulness of comprehensive “morbid motions” observations; provide a primer on the identification, definition, and assessment of morbid behaviors; and outline and discuss specific statistical procedures, including formulating referral motions, describing and conducting the observation. We also provide practical devices for observing and analyzing the obtained information into a report that guides clinical intervention.

Keywords: assessing pain, DNA modeling, image matching technique, pain scale

Procedia PDF Downloads 415
2222 Analytical Model of Locomotion of a Thin-Film Piezoelectric 2D Soft Robot Including Gravity Effects

Authors: Zhiwu Zheng, Prakhar Kumar, Sigurd Wagner, Naveen Verma, James C. Sturm

Abstract:

Soft robots have drawn great interest recently due to a rich range of possible shapes and motions they can take on to address new applications, compared to traditional rigid robots. Large-area electronics (LAE) provides a unique platform for creating soft robots by leveraging thin-film technology to enable the integration of a large number of actuators, sensors, and control circuits on flexible sheets. However, the rich shapes and motions possible, especially when interacting with complex environments, pose significant challenges to forming well-generalized and robust models necessary for robot design and control. In this work, we describe an analytical model for predicting the shape and locomotion of a flexible (steel-foil-based) piezoelectric-actuated 2D robot based on Euler-Bernoulli beam theory. It is nominally (unpowered) lying flat on the ground, and when powered, its shape is controlled by an array of piezoelectric thin-film actuators. Key features of the models are its ability to incorporate the significant effects of gravity on the shape and to precisely predict the spatial distribution of friction against the contacting surfaces, necessary for determining inchworm-type motion. We verified the model by developing a distributed discrete element representation of a continuous piezoelectric actuator and by comparing its analytical predictions to discrete-element robot simulations using PyBullet. Without gravity, predicting the shape of a sheet with a linear array of piezoelectric actuators at arbitrary voltages is straightforward. However, gravity significantly distorts the shape of the sheet, causing some segments to flatten against the ground. Our work includes the following contributions: (i) A self-consistent approach was developed to exactly determine which parts of the soft robot are lifted off the ground, and the exact shape of these sections, for an arbitrary array of piezoelectric voltages and configurations. (ii) Inchworm-type motion relies on controlling the relative friction with the ground surface in different sections of the robot. By adding torque-balance to our model and analyzing shear forces, the model can then determine the exact spatial distribution of the vertical force that the ground is exerting on the soft robot. Through this, the spatial distribution of friction forces between ground and robot can be determined. (iii) By combining this spatial friction distribution with the shape of the soft robot, in the function of time as piezoelectric actuator voltages are changed, the inchworm-type locomotion of the robot can be determined. As a practical example, we calculated the performance of a 5-actuator system on a 50-µm thick steel foil. Piezoelectric properties of commercially available thin-film piezoelectric actuators were assumed. The model predicted inchworm motion of up to 200 µm per step. For independent verification, we also modelled the system using PyBullet, a discrete-element robot simulator. To model a continuous thin-film piezoelectric actuator, we broke each actuator into multiple segments, each of which consisted of two rigid arms with appropriate mass connected with a 'motor' whose torque was set by the applied actuator voltage. Excellent agreement between our analytical model and the discrete-element simulator was shown for both for the full deformation shape and motion of the robot.

Keywords: analytical modeling, piezoelectric actuators, soft robot locomotion, thin-film technology

Procedia PDF Downloads 185
2221 Nonlinear Mathematical Model of the Rotor Motion in a Thin Hydrodynamic Gap

Authors: Jaroslav Krutil, Simona Fialová, , František Pochylý

Abstract:

A nonlinear mathematical model of mutual fluid-structure interaction is presented in the work. The model is applicable to the general shape of sealing gaps. An in compressible fluid and turbulent flow is assumed. The shaft carries a rotational and procession motion, the gap is axially flowed through. The achieved results of the additional mass, damping and stiffness matrices may be used in the solution of the rotor dynamics. The usage of this mathematical model is expected particularly in hydraulic machines. The method of control volumes in the ANSYS Fluent was used for the simulation. The obtained results of the pressure and velocity fields are used in the mathematical model of additional effects.

Keywords: nonlinear mathematical model, CFD modeling, hydrodynamic sealing gap, matrices of mass, stiffness, damping

Procedia PDF Downloads 539
2220 The Effect of Foot Progression Angle on Human Lower Extremity

Authors: Sungpil Ha, Ju Yong Kang, Sangbaek Park, Seung-Ju Lee, Soo-Won Chae

Abstract:

The growing number of obese patients in aging societies has led to an increase in the number of patients with knee medial osteoarthritis (OA). Artificial joint insertion is the most common treatment for knee medial OA. Surgery is effective for patients with serious arthritic symptoms, but it is costly and dangerous. It is also inappropriate way to prevent a disease as an early stage. Therefore Non-operative treatments such as toe-in gait are proposed recently. Toe-in gait is one of non-surgical interventions, which restrain the progression of arthritis and relieves pain by reducing knee adduction moment (KAM) to facilitate lateral distribution of load on to knee medial cartilage. Numerous studies have measured KAM in various foot progression angle (FPA), and KAM data could be obtained by motion analysis. However, variations in stress at knee cartilage could not be directly observed or evaluated by these experiments of measuring KAM. Therefore, this study applied motion analysis to major gait points (1st peak, mid –stance, 2nd peak) with regard to FPA, and to evaluate the effects of FPA on the human lower extremity, the finite element (FE) method was employed. Three types of gait analysis (toe-in, toe-out, baseline gait) were performed with markers placed at the lower extremity. Ground reaction forces (GRF) were obtained by the force plates. The forces associated with the major muscles were computed using GRF and marker trajectory data. MRI data provided by the Visible Human Project were used to develop a human lower extremity FE model. FE analyses for three types of gait simulations were performed based on the calculated muscle force and GRF. We observed the maximum stress point during toe-in gait was lower than the other types, by comparing the results of FE analyses at the 1st peak across gait types. This is the same as the trend exhibited by KAM, measured through motion analysis in other papers. This indicates that the progression of knee medial OA could be suppressed by adopting toe-in gait. This study integrated motion analysis with FE analysis. One advantage of this method is that re-modeling is not required even with changes in posture. Therefore another type of gait simulation or various motions of lower extremity can be easily analyzed using this method.

Keywords: finite element analysis, gait analysis, human model, motion capture

Procedia PDF Downloads 338
2219 The Effect of Modified Posterior Shoulder Stretching Exercises on Posterior Shoulder Tightness, Shoulder Pain, and Dysfunction in Patients with Subacromial Impingement

Authors: Ozge Tahran, Sevgi Sevi Yesilyaprak

Abstract:

Objective: The aim of the study was to investigate the effect of the Wilk’s modified two different stretching exercises on posterior shoulder tightness, pain, and dysfunction in patients with subacromial impingement syndrome (SIS). Method: This study was carried out on 67 patients who have more than 15° difference in shoulder internal rotation range of motion between two sides and had been diagnosed as SIS. Before treatment, all patients were randomly assigned into three groups. Standard physiotherapy programme was applied to the Group 3 (n=23), standard physiotherapy program with Wilk’s modified cross-body stretching exercises were applied to Group 1 (n=22), and standard physiotherapy program with Wilk’s modified sleeper stretching exercises were applied to Group 2 (n= 23). All the patients received 20 sessions of physiotherapy during 4 weeks, 5 days in a week by a physiotherapist. The patients continued their exercises at home at the weekends. Pain severity, shoulder rotation range of motion, posterior shoulder tightness, upper extremity functionality with Constant and Murley Score (CMS) and disability level with The Disabilities of the Arm, Shoulder and Hand Score (QuickDASH) were evaluated before and after physiotherapy programme. Results: Before treatment, demographic and anthropometric characteristics were similar in groups and there was no statistical difference (p > 0.05). It was determined that pain severity decreased, shoulder rotation range of motion, posterior shoulder tightness, upper extremity functionality, and disability were improved after physiotherapy in both groups (p < 0.05). Group 1 and 2 had better results in terms of reduction of pain severity during activity, increase in shoulder rotation range of motion, posterior shoulder mobility and upper extremity functionality and improvement in upper extremity disability, compared to Group 3 (p < 0.05). Conclusion: Modified posterior shoulder stretching exercises in addition to standard physiotherapy programme is more effective for reduction of pain during activity, to improve shoulder rotation range of motion, posterior shoulder mobility, and upper extremity functionality in patients with SIS compared to standard physiotherapy programme alone.

Keywords: modified posterior shoulder stretching exercises, posterior shoulder tightness, shoulder complex, subacromial impingement syndrome

Procedia PDF Downloads 180
2218 Motion of an Infinitesimal Particle in Binary Stellar Systems: Kepler-34, Kepler-35, Kepler-16, Kepler-413

Authors: Rajib Mia, Badam Singh Kushvah

Abstract:

The present research was motivated by the recent discovery of the binary star systems. In this paper, we use the restricted three-body problem in the binary stellar systems, considering photogravitational effects of both the stars. The aim of this study is to investigate the motion of the infinitesimal mass in the vicinity of the Lagrangian points. The stability and periodic orbits of collinear points and the stability and trajectories of the triangular points are studied in stellar binary systems Kepler-34, Kepler-35, Kepler-413 and Kepler-16 systems. A detailed comparison is made among periodic orbits and trajectories.

Keywords: exoplanetary systems, lagrangian points, periodic orbit, restricted three body problem, stability

Procedia PDF Downloads 436
2217 Controlling Interactions and Non-Equilibrium Steady State in Spinning Active Matter Monolayers

Authors: Joshua Paul Steimel, Michael Pappas, Ethan Hall

Abstract:

Particle-particle interactions are critical in determining the state of an active matter system. Unique and ubiquitous non-equilibrium behavior like swarming, vortexing, spiraling, and much more is governed by interactions between active units or particles. In hybrid active-passive matter systems, the attraction between spinning active units in a 2D monolayer of passive particles is controlled by the mechanical behavior of the passive monolayer. We demonstrate here that the range and dynamics of this attraction can be controlled by changing the composition of the passive monolayer by adding dopant passive particles. These dopant passive particles effectively pin the movement of dislocation motion in the passive media and reduce the probability of defect motion required to erode the bridge of passive particles between active spinners, thus reducing the range of attraction. Additionally, by adding an out of plane component to the magnetic moment and creating a top-like motion a short range repulsion emerges between the top-like particle. At inter-top distances less than four particle diameters apart, the tops repel but beyond that, distance attract up to 13 particle diameters apart. The tops were also able to locally and transiently anneal the passive monolayer. Thus we demonstrate that by tuning several parameters of the hybrid active matter system, one can observe very different emergent behavior.

Keywords: active matter, colloids, ferromagnetic, annealing

Procedia PDF Downloads 114
2216 Motion Performance Analyses and Trajectory Planning of the Movable Leg-Foot Lander

Authors: Shan Jia, Jinbao Chen, Jinhua Zhou, Jiacheng Qian

Abstract:

In response to the functional limitations of the fixed landers, those are to expand the detection range by the use of wheeled rovers with unavoidable path-repeatability in deep space exploration currently, a movable lander based on the leg-foot walking mechanism is presented. Firstly, a quadruped landing mechanism based on pushrod-damping is proposed. The configuration is of the bionic characteristics such as hip, knee and ankle joints, and the multi-function main/auxiliary buffers based on the crumple-energy absorption and screw-nut mechanism. Secondly, the workspace of the end of the leg-foot mechanism is solved by Monte Carlo method, and the key points on the desired trajectory of the end of the leg-foot mechanism are fitted by cubic spline curve. Finally, an optimal time-jerk trajectory based on weight coefficient is planned and analyzed by an adaptive genetic algorithm (AGA). The simulation results prove the rationality and stability of walking motion of the movable leg-foot lander in the star catalogue. In addition, this research can also provide a technical solution integrating of soft-landing, large-scale inspection and material transfer for future star catalogue exploration, and can even serve as the technical basis for developing the reusable landers.

Keywords: motion performance, trajectory planning, movable, leg-foot lander

Procedia PDF Downloads 144
2215 Application of Ontologies to Contract for Difference Documents

Authors: Renato Figueira Franco

Abstract:

This paper aims to create a representational information system applied to the securities market, particularly the development of an ontology applied to the analysis of the Key Information Documents of Contracts for Difference. The process of obtaining knowledge and its proper formal representation has raised the attention both from the scientific literature and the capital markets supervisory authorities. The formal knowledge representation is embodied in the construction of ontologies, which are responsible for defining a knowledge base structure of a given scientific domain, facilitating its understanding, and allowing its sharing among the scientific community. The scope of this study is restricted to the analysis of capital markets ontologies in order to capture its structure, semantics and knowledge sharing between people and systems.

Keywords: ontology, financial markets, CFD, PRIIPs, key information documents

Procedia PDF Downloads 70
2214 Ontology-Based Representation of Islamic Rules to Perform Salah

Authors: Hamza Zafar, Quratulain Rajput

Abstract:

Salah (نماز ) is one of five pillars of Islam and obligatory for every Muslims. However, due to the lack of Islamic knowledge it might be very difficult for a layperson to perform it correctly. This paper presents an ontology based representation of Islamic rules to perform Salah. The Salah ontology has been built under the guidance of domain expert in light of Quran and Hadith. The ontology consists of basic concepts as well as relationship among concepts and constraints on them. The basic concepts include cleanness, body cover, Salah timing and steps to perform Salah. The SWRL rule language has been used to represent rule to determine whether the Salah performed correctly or it should be repeated. Finally, we evaluate the use of the Salat ontology through user’s example queries using SPARQL queries.

Keywords: prayer, salah, ontology, SPARQL queries, reasoning

Procedia PDF Downloads 421
2213 Influence Analysis of Pelamis Wave Energy Converter Structure Parameters

Authors: Liu Shengnan, Sun Liping, Zhu Jianxun

Abstract:

Based on three dimensional potential flow theory and hinged rigid body motion equations, structure RAOs of Pelamis wave energy converter is analyzed. Analysis of numerical simulation is carried out on Pelamis in the irregular wave conditions, and the motion response of structures and total generated power is obtained. The paper analyzes influencing factors on the average power including diameter of floating body, section form of floating body, draft, hinged stiffness and damping. The optimum parameters are achieved in Zhejiang Province. Compared with the results of the pelamis experiment made by Glasgow University, the method applied in this paper is feasible.

Keywords: Pelamis, hinge, floating multibody, wave energy

Procedia PDF Downloads 467
2212 Association Between Hip Internal and External Rotation Range of Motion and Low Back Pain in Table Tennis Players

Authors: Kaili Wang, Botao Zhang, Enming Zhang

Abstract:

Background: Low back pain (LBP) is a common problem affecting athletes' training and competition. Although the association between a limited hip range of motion and prevalence of low back pain has been studied extensively, it has not been studied in table tennis. Aim: The main purposes of this study in table tennis players were (1) to investigate if there is a difference in hip internal rotation (HIR) and external rotation (HER) range of motion (ROM) between players with LBP and players without LBP and (2) to analyze the association between HIR and HER ROM and LBP. Methods: Forty-six table tennis players from the Chinese table tennis team were evaluated for passive maximum HIR and HER ROM. LBP was retrospectively recorded for the last 12 months before the date of ROM assessment by a physical therapist. The data were analyzed the difference in HIR and HER ROM between players with LBP and players without LBP by Mann-Whitney U test, and the association between the difference in HIR and HER ROM and LBP was analyzed via a binary logistic regression. Results: The 54% of players had developed LBP during the retrospective study period. Significant difference between LBP group and the asymptomatic group for HIR ROM (z=4.007, p<0.001) was observed. Difference between LBP group and asymptomatic group for HER ROM (z=1.117, p=0.264) was not significant. Players who had HIR ROM deficit had an increased risk of LBP compared with players without HIR ROM deficit (OR=5.344, 95%CI: 1.006-28.395, P=0.049). Conclusion: HIR ROM of a table tennis player with LBP was less than a table tennis player without LBP. Compared with player whose HIR ROM was normal, player who had HIR ROM deficit appeared to have a higher risk for LBP.

Keywords: assessment, injury prevention, low back pain, table tennis players

Procedia PDF Downloads 114
2211 Sound Instance: Art, Perception and Composition through Soundscapes

Authors: Ricardo Mestre

Abstract:

The soundscape stands out as an agglomeration of sounds available in the world, associated with different contexts and origins, being a theme studied by various areas of knowledge, seeking to guide their benefits and their consequences, contributing to the welfare of society and other ecosystems. Murray Schafer, the author who originally developed this concept, highlights the need for a greater recognition of sound reality, through the selection and differentiation of sounds, contributing to a tuning of the world and to the balance and well-being of humanity. According to some authors sound environment, produced and created in various ways, provides various sources of information, contributing to the orientation of the human being, alerting and manipulating him during his daily journey, like small notifications received on a cell phone or other device with these features. In this way, it becomes possible to give sound its due importance in relation to the processes of individual representation, in manners of social, professional and emotional life. Ensuring an individual representation means providing the human being with new tools for the long process of reflection by recognizing his environment, the sounds that represent him, and his perspective on his respective function in it. In order to provide more information about the importance of the sound environment inherent to the individual reality, one introduces the term sound instance, in order to refer to the whole sound field existing in the individual's life, which is divided into four distinct subfields, but essential to the process of individual representation, called sound matrix, sound cycles, sound traces and sound interference.

Keywords: sound instance, soundscape, sound art, perception, composition

Procedia PDF Downloads 151
2210 Representation of Violence in Contemporary Chinese Literature: A Case Study of Chi Zijian’s Work

Authors: Xiaowen Yang

Abstract:

Violence has been gaining an increasing presence among contemporary Chinese writers, yet scholarship on the representation of violence in contemporary Chinese literature is disappointingly sparse. The violence which took place in the Cultural Revolution attracted the most attention in previous literary work and academic studies. Known as a writer of the quotidian, chi Zijian is one of China’s most prominent and prolific writers. It is noticeable that in her depiction of ordinary people, an overwhelming presence of violence features which embodies one of the on-going characteristics of contemporary Chinese literature. The violence present in her texts are not about graphic and minute depiction of violent acts, But rather about the character’s complex interrelation with violence. Is it an obsession with extreme figures and events to create powerful tensions within the texts? Or is it a necessary tool to achieve criticism about social realities? This paper argues that based on her grassroots writing philosophy which is characterized by her long-standing concern about ordinary and even marginal people, it is necessary for her texts to involve characters related to violence. This endows her texts with great potential for reading their social and political implications. This paper also contends that though a shocking effect could make the criticism of social realities more powerful, an over-reliance on the excessive exterior representation of violence inhibits the writer’s literary innovation.

Keywords: Chi Zijian, contemporary Chinese literature, Violence, grassroots writing philosophy

Procedia PDF Downloads 344
2209 FEM Simulation of Triple Diffusive Magnetohydrodynamics Effect of Nanofluid Flow over a Nonlinear Stretching Sheet

Authors: Rangoli Goyal, Rama Bhargava

Abstract:

The triple diffusive boundary layer flow of nanofluid under the action of constant magnetic field over a non-linear stretching sheet has been investigated numerically. The model includes the effect of Brownian motion, thermophoresis, and cross-diffusion; slip mechanisms which are primarily responsible for the enhancement of the convective features of nanofluid. The governing partial differential equations are transformed into a system of ordinary differential equations (by using group theory transformations) and solved numerically by using variational finite element method. The effects of various controlling parameters, such as the magnetic influence number, thermophoresis parameter, Brownian motion parameter, modified Dufour parameter, and Dufour solutal Lewis number, on the fluid flow as well as on heat and mass transfer coefficients (both of solute and nanofluid) are presented graphically and discussed quantitatively. The present study has industrial applications in aerodynamic extrusion of plastic sheets, coating and suspensions, melt spinning, hot rolling, wire drawing, glass-fibre production, and manufacture of polymer and rubber sheets, where the quality of the desired product depends on the stretching rate as well as external field including magnetic effects.

Keywords: FEM, thermophoresis, diffusiophoresis, Brownian motion

Procedia PDF Downloads 421
2208 Product Design and Development of Wearable Assistant Device

Authors: Hao-Jun Hong, Jung-Tang Huang

Abstract:

The world is gradually becoming an aging society, and with the lack of laboring forces, this phenomenon is affecting the nation’s economy growth. Although nursing centers are booming in recent years, the lack of medical resources are yet to be resolved, thus creating an innovative wearable medical device could be a vital solution. This research is focused on the design and development of a wearable device which obtains a more precise heart failure measurement than products on the market. The method used by the device is based on the sensor fusion and big data algorithm. From the test result, the modified structure of wearable device can significantly decrease the MA (Motion Artifact) and provide users a more cozy and accurate physical monitor experience.

Keywords: big data, heart failure, motion artifact, sensor fusion, wearable medical device

Procedia PDF Downloads 354
2207 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation-Based Approach

Authors: Sujoy Das, M. M. Ghosh

Abstract:

The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solid-solid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulse-like pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.

Keywords: brownian dynamics, molecular dynamics, nanofluid, thermal conductivity

Procedia PDF Downloads 373
2206 Hand Motion Trajectory Analysis for Dynamic Hand Gestures Used in Indian Sign Language

Authors: Daleesha M. Viswanathan, Sumam Mary Idicula

Abstract:

Dynamic hand gestures are an intrinsic component in sign language communication. Extracting spatial temporal features of the hand gesture trajectory plays an important role in a dynamic gesture recognition system. Finding a discrete feature descriptor for the motion trajectory based on the orientation feature is the main concern of this paper. Kalman filter algorithm and Hidden Markov Models (HMM) models are incorporated with this recognition system for hand trajectory tracking and for spatial temporal classification, respectively.

Keywords: orientation features, discrete feature vector, HMM., Indian sign language

Procedia PDF Downloads 376
2205 On the Representation of Actuator Faults Diagnosis and Systems Invertibility

Authors: F. Sallem, B. Dahhou, A. Kamoun

Abstract:

In this work, the main problem considered is the detection and the isolation of the actuator fault. A new formulation of the linear system is generated to obtain the conditions of the actuator fault diagnosis. The proposed method is based on the representation of the actuator as a subsystem connected with the process system in cascade manner. The designed formulation is generated to obtain the conditions of the actuator fault detection and isolation. Detectability conditions are expressed in terms of the invertibility notions. An example and a comparative analysis with the classic formulation illustrate the performances of such approach for simple actuator fault diagnosis by using the linear model of nuclear reactor.

Keywords: actuator fault, Fault detection, left invertibility, nuclear reactor, observability, parameter intervals, system inversion

Procedia PDF Downloads 411
2204 Calculation the Left Ventricle Wall Radial Strain and Radial SR Using Tagged Magnetic Resonance Imaging Data (tMRI)

Authors: Mohammed Alenezy

Abstract:

The function of cardiac motion can be used as an indicator of the heart abnormality by evaluating longitudinal, circumferential, and Radial Strain of the left ventricle. In this paper, the Radial Strain and SR is studied using tagged MRI (tMRI) data during the cardiac cycle on the mid-ventricle level of the left ventricle. Materials and methods: The short-axis view of the left ventricle of five healthy human (three males and two females) and four healthy male rats were imaged using tagged magnetic resonance imaging (tMRI) technique covering the whole cardiac cycle on the mid-ventricle level. Images were processed using Image J software to calculate the left ventricle wall Radial Strain and radial SR. The left ventricle Radial Strain and radial SR were calculated at the mid-ventricular level during the cardiac cycle. The peak Radial Strain for the human and rat heart was 40.7±1.44, and 46.8±0.68 respectively, and it occurs at 40% of the cardiac cycle for both human and rat heart. The peak diastolic and systolic radial SR for human heart was -1.78 s-1 ± 0.02 s-1 and 1.10±0.08 s-1 respectively, while for rat heart it was -5.16± 0.23s-1 and 4.25±0.02 s-1 respectively. Conclusion: This results show the ability of the tMRI data to characterize the cardiac motion during the cardiac cycle including diastolic and systolic phases which can be used as an indicator of the cardiac dysfunction by estimating the left ventricle Radial Strain and radial SR at different locations of the cardiac tissue. This study approves the validity of the tagged MRI data to describe accurately the cardiac radial motion.

Keywords: left ventricle, radial strain, tagged MRI, cardiac cycle

Procedia PDF Downloads 486