Search results for: lateral force microscopy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4489

Search results for: lateral force microscopy

4189 Magnetic Lines of Force and Diamagnetism

Authors: Angel Pérez Sánchez

Abstract:

Magnet attraction or repulsion is not a product of a strange force from afar but comes from anchored lines of force inside the magnet as if it were reinforced concrete since you can move a small block by taking the steel rods that protrude from its interior. This approach serves as a basis for studying the behavior of diamagnetic materials. The significance of this study is to unify all diamagnetic phenomena: Movement of grapes, cooper approaching a magnet, Magnet levitation, etc., with a single explanation for all these phenomena. The method followed has consisted of observation of hundreds of diamagnetism experiments (in copper, aluminum, grapes, tomatoes, and bismuth), including the creation of own and new experiments and application of logical deduction product of these observations. Approaching a magnet to a hanging grape, Diamagnetism seems to consist not only of a slight repulsion but also of a slight attraction at a small distance. Replacing the grapes with a copper sphere, it behaves like the grape, pushing and pulling a nearby magnet. Diamagnetism could be redefined in the following way: There are materials that don't magnetize their internal structure when approaching a magnet, as ferromagnetic materials do. But they do allow magnetic lines of force to run through its interior, enhancing them without creating their own lines of force. Magnet levitates on superconducting ceramics because magnet gives lines near poles a force superior to what a superconductor can enhance these lines. Little further from the magnet, enhancing of lines by the superconductor is greater than the strength provided by the magnet due to the distance from the magnet's pole. It is this point that defines the magnet's levitation band. The anchoring effect of lines is what ultimately keeps the magnet and superconductor at a certain distance. The magnet seeks to levitate the area in which magnetic lines are stronger near de magnet's poles. Pouring ferrofluid into a magnet, lines of force are observed coming out of the poles. On other occasions, diamagnetic materials simply enhance the lines they receive without moving their position since their own weight is greater than the strength of the enhanced lines. (This is the case with grapes and copper). Magnet and diamagnetic materials look for a place where the lines of force are most enhanced, and this is at a small distance. Once the ideal distance is established, they tend to keep it by pushing or pulling on each other. At a certain distance from the magnet: the power exerted by diamagnetic materials is greater than the force of lines in the vicinity of the magnet's poles. All Diamagnetism phenomena: copper, aluminum, grapes, tomatoes, bismuth levitation, and magnet levitation on superconducting ceramics can now be explained with the support of magnetic lines of force.

Keywords: diamagnetism, magnetic levitation, magnetic lines of force, enhancing magnetic lines

Procedia PDF Downloads 78
4188 Application of the Mesoporous Silica Oxidants on Immunochromatography Detections

Authors: Chang, Ya-Ju, Hsieh, Pei-Hsin, Wu, Jui-Chuang, Chen-Yang, Yui Whei

Abstract:

A mesoporous silica material was prepared to apply to the lateral-flow immunochromatography for detecting a model biosample. The probe antibody is immobilized on the silica surface as the test line to capture its affinity antigen, which laterally flows through the chromatography strips. The antigen is labeled with nano-gold particles, such that the detection can be visually read out from the test line without instrument aids. The result reveals that the mesoporous material provides a vast area for immobilizing the detection probes. Biosening surfaces corresponding with a positive proportion of detection signals is obtained with the biosample loading.

Keywords: mesoporous silica, immunochromatography, lateral-flow strips, biosensors, nano-gold particles

Procedia PDF Downloads 592
4187 The Effect of Chisel Edge on Drilling-Induced Delamination

Authors: Parnian Kianfar, Navid Zarif Karimi, Giangiacomo Minak

Abstract:

Drilling is one of the most important machining operations as numerous holes must be drilled in order to install mechanical fasteners for assembly in composite structures. Delamination is a major problem associated with the drilling of fiber reinforced composite materials, which degrades the mechanical properties of these materials. In drilling, delamination is initiated when the drilling force exceeds a threshold value, particularly at the critical entry and exit locations of the drill bit. The chisel edge of twist drill is a major contributor to the thrust force which is the primary cause of delamination. The main objective of this paper is to study the effect of chisel edge and pilot hole on thrust force and delamination during drilling of glass fiber reinforced composites. For this purpose, two sets of experiments, with and without pilot hole, were conducted with different drilling conditions. The results show a great reduction in the thrust force when a pilot hole is present which removes the chisel edge contribution.

Keywords: composites, chisel edge, drilling, delamination

Procedia PDF Downloads 428
4186 Single-Molecule Analysis of Structure and Dynamics in Polymer Materials by Super-Resolution Technique

Authors: Hiroyuki Aoki

Abstract:

The physical properties of polymer materials are dependent on the conformation and molecular motion of a polymer chain. Therefore, the structure and dynamic behavior of the single polymer chain have been the most important concerns in the field of polymer physics. However, it has been impossible to directly observe the conformation of the single polymer chain in a bulk medium. In the current work, the novel techniques to study the conformation and dynamics of a single polymer chain are proposed. Since a fluorescence method is extremely sensitive, the fluorescence microscopy enables the direct detection of a single molecule. However, the structure of the polymer chain as large as 100 nm cannot be resolved by conventional fluorescence methods because of the diffraction limit of light. In order to observe the single chains, we developed the labeling method of polymer materials with a photo-switchable dye and the super-resolution microscopy. The real-space conformational analysis of single polymer chains with the spatial resolution of 15-20 nm was achieved. The super-resolution microscopy enables us to obtain the three-dimensional coordinates; therefore, we succeeded the conformational analysis in three dimensions. The direct observation by the nanometric optical microscopy would reveal the detailed information on the molecular processes in the various polymer systems.

Keywords: polymer materials, single molecule, super-resolution techniques, conformation

Procedia PDF Downloads 292
4185 From Knives to Kites: Developments and Dilemmas around the Use of Force in the Israeli–Palestinian Conflict since "Protective Edge"

Authors: Hilly Moodrick-Even Khen

Abstract:

This study analyzes the legal regulation of the use of force in international law in the context of three emerging Palestinian forms of struggle against Israeli occupation: the Knife Intifada, Gaza border disturbances, and the launching of incendiary kites. It discusses what legal paradigms or concepts should regulate the type and level of force used in each situation—a question that is complicated by various dilemmas—and appraises the Israel Defence Forces policies tailored in response. Methodologically, the study is based on analysis of scholarship on the conceptual legal issues as well as dicta of the courts. It evaluates the applicability of two legal paradigms regulating the use of force in military operations—(i) the conduct of hostilities and (ii) law enforcement—as well as the concept of self-defense in international law and the escalation of force procedure. While the “Knife Intifada” clearly falls under the law enforcement paradigm, the disturbances at the border and the launching of incendiary kites raise more difficult questions, as applying law enforcement, especially in the latter case, can have undesirable ramifications for safeguarding humanitarian interests. The use of force in the cases of the border disturbances and the incendiary kites should thus be regulated, mutatis mutandis, by the concept of self-defense and escalation of force procedures; and in the latter case, the hostilities paradigm can also be applied. The study provides a factual description and analysis of the background and nature of the forms of struggle in Gaza and the West Bank—in each case surveying the geo-political developments since operation Protective Edge, contextualizing how the organized and unorganized violent activities evolved, and analyzing them in terms of level of organization and intensity. It then presents the two paradigms of the use of force—law enforcement and conduct of hostilities—and the concept of self-defense. Lastly, it uses the factual findings as the basis for legally analyzing which paradigm or concept regulating the use of force applies for each form of struggle. The study concludes that in most cases, the concept of self-defense is preferable to the hostilities or the law enforcement paradigms, as it best safeguards humanitarian interests and ensures the least loss of civilian lives.

Keywords: Israeli-Palestinian conflict, self defense, terrorism, use of force

Procedia PDF Downloads 114
4184 Age Estimation from Upper Anterior Teeth by Pulp/Tooth Ratio Using Peri-Apical X-Rays among Egyptians

Authors: Fatma Mohamed Magdy Badr El Dine, Amr Mohamed Abd Allah

Abstract:

Introduction: Age estimation of individuals is one of the crucial steps in forensic practice. Different traditional methods rely on the length of the diaphysis of long bones of limbs, epiphyseal-diaphyseal union, fusion of the primary ossification centers as well as dental eruption. However, there is a growing need for the development of precise and reliable methods to estimate age, especially in cases where dismembered corpses, burnt bodies, purified or fragmented parts are recovered. Teeth are the hardest and indestructible structure in the human body. In recent years, assessment of pulp/tooth area ratio, as an indirect quantification of secondary dentine deposition has received a considerable attention. However, scanty work has been done in Egypt in terms of applicability of pulp/tooth ratio for age estimation. Aim of the Work: The present work was designed to assess the Cameriere’s method for age estimation from pulp/tooth ratio of maxillary canines, central and lateral incisors among a sample from Egyptian population. In addition, to formulate regression equations to be used as population-based standards for age determination. Material and Methods: The present study was conducted on 270 peri-apical X-rays of maxillary canines, central and lateral incisors (collected from 131 males and 139 females aged between 19 and 52 years). The pulp and tooth areas were measured using the Adobe Photoshop software program and the pulp/tooth area ratio was computed. Linear regression equations were determined separately for canines, central and lateral incisors. Results: A significant correlation was recorded between the pulp/tooth area ratio and the chronological age. The linear regression analysis revealed a coefficient of determination (R² = 0.824 for canine, 0.588 for central incisor and 0.737 for lateral incisor teeth). Three regression equations were derived. Conclusion: As a conclusion, the pulp/tooth ratio is a useful technique for estimating age among Egyptians. Additionally, the regression equation derived from canines gave better result than the incisors.

Keywords: age determination, canines, central incisors, Egypt, lateral incisors, pulp/tooth ratio

Procedia PDF Downloads 174
4183 Highly Efficient Iron Oxide-Sulfonated Graphene Oxide Catalyst for Esterification and Trans-Esterification Reactions

Authors: Reena D. Souza, Tripti Vats, Prem F. Siril

Abstract:

Esterification of free fatty acid (oleic acid) and transesterification of waste cooking oil (WCO) with ethanol over graphene oxide (GO), GO-Fe2O3, sulfonated GO (GO-SO3H), and Fe2O3/GO-SO3H catalysts were examined in the present study. Iron oxide supported graphene-based acid catalyst (Fe2O3/GO-SO3H) exhibited highest catalytic activity. GO was prepared by modified Hummer’s process. The GO-Fe2O3 nanocomposites were prepared by the addition of NaOH to a solution containing GO and FeCl3. Sulfonation was done using concentrated sulfuric acid. Transmissionelectron microscopy (TEM) and atomic force microscopy (AFM) imaging revealed the presence of Fe2O3 particles having size in the range of 50-200 nm. Crystal structure was analyzed by XRD and defect states of graphene were characterized using Raman spectroscopy. The effects of the reaction variables such as catalyst loading, ethanol to acid ratio, reaction time and temperature on the conversion of fatty acids were studied. The optimum conditions for the esterification process were molar ratio of alcohol to oleic acid at 12:1 with 5 wt% of Fe2O3/GO-SO3H at 1000C with a reaction time of 4h yielding 99% of ethyl oleate. This is because metal oxide supported solid acid catalysts have advantages of having both strong Brønsted as well as Lewis acid properties. The biodiesel obtained by transesterification of WCO was characterized by 1H NMR and Gas Chromatography techniques. XRD patterns of the recycled catalyst evidenced that the catalyst structure was unchanged up to the 5th cycle, which indicated the long life of the catalyst.

Keywords: Fe₂O₃/GO-SO₃H, Graphene Oxide, GO-Fe₂O₃, GO-SO₃H, WCO

Procedia PDF Downloads 262
4182 Nanoparticle Based Green Inhibitor for Corrosion Protection of Zinc in Acidic Medium

Authors: Neha Parekh, Divya Ladha, Poonam Wadhwani, Nisha Shah

Abstract:

Nano scaled materials have attracted tremendous interest as corrosion inhibitor due to their high surface area on the metal surfaces. It is well known that the zinc oxide nanoparticles have higher reactivity towards aqueous acidic solution. This work presents a new method to incorporate zinc oxide nanoparticles with white sesame seeds extract (nano-green inhibitor) for corrosion protection of zinc in acidic medium. The morphology of the zinc oxide nanoparticles was investigated by TEM and DLS. The corrosion inhibition efficiency of the green inhibitor and nano-green inhibitor was determined by Gravimetric and electrochemical impedance spectroscopy (EIS) methods. Gravimetric measurements suggested that nano-green inhibitor is more effective than green inhibitor. Furthermore, with the increasing temperature, inhibition efficiency increases for both the inhibitors. In addition, it was established the Temkin adsorption isotherm fits well with the experimental data for both the inhibitors. The effect of temperature and Temkin adsorption isotherm revealed Chemisorption mechanism occurring in the system. The activation energy (Ea) and other thermodynamic parameters for inhibition process were calculated. The data of EIS showed that the charge transfer controls the corrosion process. The surface morphology of zinc metal (specimen) in absence and presence of green inhibitor and nano-green inhibitor were performed using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) techniques. The outcomes indicated a formation of a protective layer over zinc metal (specimen).

Keywords: corrosion, green inhibitor, nanoparticles, zinc

Procedia PDF Downloads 434
4181 Soil Stress State under Tractive Tire and Compaction Model

Authors: Prathuang Usaborisut, Dithaporn Thungsotanon

Abstract:

Soil compaction induced by a tractor towing trailer becomes a major problem associated to sugarcane productivity. Soil beneath the tractor’s tire is not only under compressing stress but also shearing stress. Therefore, in order to help to understand such effects on soil, this research aimed to determine stress state in soil and predict compaction of soil under a tractive tire. The octahedral stress ratios under the tires were higher than one and much higher under higher draft forces. Moreover, the ratio was increasing with increase of number of tire’s passage. Soil compaction model was developed using data acquired from triaxial tests. The model was then used to predict soil bulk density under tractive tire. The maximum error was about 4% at 15 cm depth under lower draft force and tended to increase with depth and draft force. At depth of 30 cm and under higher draft force, the maximum error was about 16%.

Keywords: draft force, soil compaction model, stress state, tractive tire

Procedia PDF Downloads 341
4180 Pale, Firm and Non-Exudative (PFN): An Emerging Major Broiler Breast Meat Group

Authors: Cintia Midori Kaminishikawahara, Fernanda Jéssica Mendonça, Moisés Grespan, Elza Iouko Ida, Massami Shimokomaki, Adriana Lourenço Soares

Abstract:

The quality of broiler breast meat is changing as a result of continuing emphasis on genetically bird’s selection for efficiently higher meat production. The consumer is experiencing a cooked product that is drier and less juicy when consumed. Breast meat has been classified as PSE (pale, soft, exudative), DFD (dark, firm, dry) and normal color meat. However, recently variations of this color have been observed and they are not in line with the specificity of the meat functional properties. Thus, the objective of this work was to report the finding of a new pale meat color group characterized as Pale, Firm and Non-exudative (PFN) based on its pH, color, meat functional properties and micro structural evaluation. Breast meat fillets samples (n=1045) from commercial line were classified into PSE (pH ≤5.8, L* ≥ 53.0), PFN (pH > 5.8 and L* ≥ 53.0) and Normal (pH >5.8 and L* < 53.0), based on pH and L* values. In sequence, a total of 30 samples of each group were analyzed for the water holding capacity (WHC) and shear force (SF). The incidence was 9.1% for PSE meat, 85.7% for PFN and 5.2% for Normal meat. The PSE meat presented lower values of WHC (P ≤ 0.05) followed in sequence by PFN and Normal samples and also the SF values of fresh PFN was higher than PSE meat (P ≤ 0.05) and similar to Normal samples. Under optical microscopy, the cell diameter was 10% higher for PFN in relation to PSE meat and similar to Normal meat. These preliminary results indicate an emerging group of breast meat and it should be considered that the Pale, Firm and Non-exudative should be considered as an ideal broiler breast meat quality.

Keywords: broiler PSE meat, light microscopy, texture, water holding capacity

Procedia PDF Downloads 336
4179 An Interlock Model of Friction and Superlubricity

Authors: Azadeh Malekan, Shahin Rouhani

Abstract:

Superlubricity is a phenomenon where two surfaces in contact show negligible friction;this may be because the asperities of the two surfaces do not interlock. Two rough surfaces, when pressed against each other, can get into a formation where the summits of asperities of one surface lock into the valleys of the other surface. The amount of interlock depends on the geometry of the two surfaces. We suggest the friction force may then be proportional to the amount of interlock; this explains Superlubricity as the situation where there is little interlock. Then the friction force will be directly proportional to the normal force as it is related to the work necessary to lift the upper surface in order to clear the interlock. To investigate this model, we simulate the contact of two surfaces. In order to validate our model, we first investigate Amontons‘ law. Assuming that asperities retain deformations in the time scale while the top asperity moves across the lattice spacing Amonton’s law is observed. Structural superlubricity is examined by the hypothesis that surfaces are very rigid and there is no deformation in asperities. This may happen at small normal forces. When two identical surfaces come into contact, rotating the top surface we observe a peak in friction force near the angle of orientation where the two surfaces can interlock.

Keywords: friction, amonton`s law, superlubricity, contact model

Procedia PDF Downloads 137
4178 A Study of Kinematical Parameters I9N Instep Kicking in Soccer

Authors: Abdolrasoul Daneshjoo

Abstract:

Introduction: Soccer is a game which draws more attention in different countries especially in Brazil. Kicking among different skills in soccer and soccer players is an excellent role for the success and preference of a team. The way of point gaining in this game is passing the ball over the goal lines which are gained by shoot skill in attack time and or during the penalty kicks.Regarding the above assumption, identifying the effective factors in instep kicking in different distances shoot with maximum force and high accuracy or pass and penalty kick, may assist the coaches and players in raising qualitative level of performing the skill. Purpose: The aim of the present study was to study of a few kinematical parameters in instep kicking from 3 and 5 meter distance among the male and female elite soccer players. Methods: 24 right dominant lower limb subjects (12 males and 12 females) among Tehran elite soccer players with average and the standard deviation (22.5 ± 1.5) & (22.08± 1.31) years, height of (179.5 ± 5.81) & (164.3 ± 4.09) cm, weight of (69.66 ± 4.09) & (53.16 ± 3.51) kg, %BMI (21.06 ± .731) & (19.67 ± .709), having playing history of (4 ± .73) & (3.08 ± .66) years respectively participated in this study. They had at least two years of continuous playing experience in Tehran soccer league.For sampling player's kick; Kinemetrix Motion analysis with three cameras with 500 Hz was used. Five reflective markers were placed laterally on the kicking leg over anatomical points (the iliac crest, major trochanter, lateral epicondyle of femur, lateral malleolus, and lateral aspect of distal head of the fifth metatarsus). Instep kick was filmed, with one step approach and 30 to 45 degrees angle from stationary ball. Three kicks were filmed, one kick selected for further analyses. Using Kinemetrix 3D motion analysis software, the position of the markers was analyzed. Descriptive statistics were used to describe the mean and standard deviation, while the analysis of variance, and independent t-test (P < 0.05) were used to compare the kinematic parameters between two genders. Results and Discussion: Among the evaluated parameters, the knee acceleration, the thigh angular velocity, the angle of knee proportionately showed significant relationship with consequence of kick. While company performance on 5m in 2 genders, significant differences were observed in internal – external displacement of toe, ankle, hip and the velocity of toe, ankle and the acceleration of toe and the angular velocity of pelvic, thigh and before time contact. Significant differences showed the internal – external displacement of toe, the ankle, the knee and the hip, the iliac crest and the velocity of toe, the ankle and acceleration of ankle and angular velocity of the pelvic and the knee.

Keywords: biomechanics, kinematics, soccer, instep kick, male, female

Procedia PDF Downloads 408
4177 Numerical Modeling to Validate Theoretical Models of Toppling Failure in Rock Slopes

Authors: Hooman Dabirmanesh, Attila M. Zsaki

Abstract:

Traditionally, rock slope stability is carried out using limit equilibrium analysis when investigating toppling failure. In these equilibrium methods, internal forces exerted between columns are not clearly defined, and to the authors’ best knowledge, there is no consensus in literature with respect to the results of analysis. A discrete element method-based numerical model was developed and applied to simulate the behavior of rock layers subjected to toppling failure. Based on this calibrated numerical model, a study of the location and distribution of internal forces that result in equilibrium was carried out. The sum of side forces was applied at a point on a block which properly represents the force to determine the inter-column force distribution. In terms of the side force distribution coefficient, the result was compared to those obtained from laboratory centrifuge tests. The results of the simulation show the suitable criteria to select the correct position for the internal exerted force between rock layers. In addition, the numerical method demonstrates how a theoretical method could be reliable by considering the interaction between the rock layers.

Keywords: contact bond, discrete element, force distribution, limit equilibrium, tensile stress

Procedia PDF Downloads 134
4176 Case Report and Literature Review of Opalski Syndrome: A Rare Brainstem Stroke

Authors: Ramuel Spirituel Mattathiah A. San Juan, Neil Ambasing

Abstract:

Background: In lateral medullary strokes, hemiparesis doesn't typically manifest due to the distinct vascular supply to the corticospinal tract located within the medulla's tegmentum. Hemiparesis resulting from a medullary infarct would likely be attributable to a medial medullary stroke characterized by contralateral hemiparesis since the corticospinal tract fibers at this level have yet to cross over. This paper reports a unique case of a lateral medullary stroke variant that presented with ipsilateral hemiparesis. Objective: There have only been 23 other cases of reported Opalski syndrome, making this only the 24th and 25th case reported worldwide. Case Presentation: A 53-year-old male was admitted with slurring of speech with gait instability, numbness on the right face, Horner’s syndrome, and 4/5 motor strength on the right extremities. Hyperreflexia was noted on the right, together with a Babinski’s sign. Cranial magnetic resonance imaging (MRI) showed an infarct on the right dorsolateral medulla. A 48-year-old male was admitted complaining of dizziness, ataxic gait, veering to the left during ambulation, left facial numbness, left hemiplegia, crossed sensory disturbance, and right limb ataxia. MRI revealed an acute left lateral medullary infarction. Conclusion: A rare type of lateral medullary infarction, the Opalski Syndrome, is a weakness ipsilateral to the lesion of the infarct. The lesion involves the ipsilateral corticospinal tract below the pyramidal decussation. The considerable diversity in the posterior brain circulation serves as a contributing factor to the clinical observation of incomplete textbook syndromes, underscoring the significance of the neurological clinical approach and a solid foundation in neuroanatomy.

Keywords: Opalski syndrome, rare stroke, stroke, Wallenberg's syndrome

Procedia PDF Downloads 59
4175 Coupled Flexural-Lateral-Torsional of Shear Deformable Thin-Walled Beams with Asymmetric Cross-Section–Closed Form Exact Solution

Authors: Mohammed Ali Hjaji, Magdi Mohareb

Abstract:

This paper develops the exact solutions for coupled flexural-lateral-torsional static response of thin-walled asymmetric open members subjected to general loading. Using the principle of stationary total potential energy, the governing differential equations of equilibrium are formulated as well as the associated boundary conditions. The formulation is based on a generalized Timoshenko-Vlasov beam theory and accounts for the effects of shear deformation due to bending and warping, and captures the effects of flexural–torsional coupling due to cross-section asymmetry. Closed-form solutions are developed for cantilever and simply supported beams under various forces. In order to demonstrate the validity and the accuracy of this solution, numerical examples are presented and compared with well-established ABAQUS finite element solutions and other numerical results available in the literature. In addition, the results are compared against non-shear deformable beam theories in order to demonstrate the shear deformation effects.

Keywords: asymmetric cross-section, flexural-lateral-torsional response, Vlasov-Timoshenko beam theory, closed form solution

Procedia PDF Downloads 462
4174 Values Education in Military Schools and Işıklar Air Force High School Sample

Authors: Mehmet Eren Çelik

Abstract:

Values are notions that help people to decide what is good or not and to direct their attitude. Teaching values has always been very important throughout the history. Values should be thought in younger ages to get more efficiency. Therefore military schools are the last stop to learn values effectively. That’s why values education in military schools has vital importance. In this study the military side of values education is examined. The purpose of the study is to show how important values education is and why military students need values education. First of all what value is and what values education means is clearly explained and values education in schools and specifically in military schools is stated. Then values education in Işıklar Air Force High School exemplifies the given information.

Keywords: Işıklar Air Force High School, military school, values, values education

Procedia PDF Downloads 372
4173 Clustered Regularly Interspaced Short Palindromic Repeat/cas9-Based Lateral Flow and Fluorescence Diagnostics for Rapid Pathogen Detection

Authors: Mark Osborn

Abstract:

Clustered, regularly interspaced short palindromic repeat (CRISPR/Cas) proteins can be designed to bind specified DNA and RNA sequences and hold great promise for the accurate detection of nucleic acids for diagnostics. Commercially available reagents were integrated into a CRISPR/Cas9-based lateral flow assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences with single-base specificity. This approach requires minimal equipment and represents a simplified platform for field-based deployment. A rapid, multiplex fluorescence CRISPR/Cas9 nuclease cleavage assay capable of detecting and differentiating SARS-CoV-2, influenza A and B, and respiratory syncytial virus in a single reaction was also developed. These findings provide proof of principle for CRISPR/Cas9 point-of-care diagnosis that can detect specific SARS-CoV-2 strain(s). Further, Cas9 cleavage allows for a scalable fluorescent platform for identifying respiratory viral pathogens with overlapping symptomology. Collectively, this approach is a facile platform for diagnostics with broad application to user-defined sequence interrogation and detection.

Keywords: CRISPR/Cas9, lateral flow assay, SARS-Co-V2, single-nucleotide resolution

Procedia PDF Downloads 173
4172 Hybrid Lateral-Directional Robust Flight Control with Propulsive Systems

Authors: Alexandra Monteiro, K. Bousson, Fernando J. O. Moreira, Ricardo Reis

Abstract:

Fixed-wing flying vehicles are usually controlled by means of control surfaces such as elevators, ailerons, and rudders. The failure of these systems may lead to severe or even fatal crashes. These failures resulted in increased popularity for research activities on propulsion control in the last decades. The present work deals with a hybrid control architecture in which the propulsion-controlled vehicle maintains its traditional control surfaces, addressing the issue of robust lateral-directional dynamics control. The challenges stem from the parameter uncertainties in the stability and control derivatives and some unknown terms in the flight dynamics model. Two approaches are implemented and tested: linear quadratic regulation with robustness characteristics and H∞ control. The problem is centered on roll-yaw controller design with full state-feedback, which is able to deal with a standalone propulsion control mode as well as a hybrid mode combining both propulsion control and conventional control surface concepts while maintaining the original flight maneuverability characteristics. The results for both controllers emphasized very good control performances; however, the H∞ controller showed higher stabilization rates and robustness albeit with a slightly higher control magnitude than using the linear quadratic regulator.

Keywords: robust propulsion control, h-infinity control, lateral-directional flight dynamics, parameter uncertainties

Procedia PDF Downloads 137
4171 Scale Prototype to Estimate the Resistance to Lateral Displacement Buried Pipes and submerged in non-Cohesive Soils

Authors: Enrique Castañeda, Tomas Hernadez, Mario Ulloa

Abstract:

Recent studies related to submarine pipelines under high pressure, temperature and buried, forces us to make bibliographical and documentary research to make us of references applicable to our problem. This paper presents an experimental methodology to the implementation of results obtained in a scale model, bibliography soil mechanics and finite element simulation. The model consists of a tank of 0.60 x 0.90 x 0.60 basis equipped high side windows, tires and digital hardware devices for measuring different variables to be applied to the model, where the mechanical properties of the soil are determined, simulation of drag a pipeline buried in a non-cohesive seafloor of the Gulf of Mexico, estimate the failure surface and application of each of the variables for the determination of mechanical elements.

Keywords: static friction coefficient, maximum passive force resistant soil, normal, tangential stress

Procedia PDF Downloads 346
4170 Water-Repellent Coating Based on Thermoplastic Polyurethane, Silica Nanoparticles and Graphene Nanoplatelets

Authors: S. Naderizadeh, A. Athanassiou, I. S. Bayer

Abstract:

This work describes a layer-by-layer spraying method to produce a non-wetting coating, based on thermoplastic polyurethane (TPU) and silica nanoparticles (Si-NPs). The main purpose of this work was to transform a hydrophilic polymer to superhydrophobic coating. The contact angle of pure TPU was measured about 77˚ ± 2, and water droplets did not roll away upon tilting even at 90°. But after applying a layer of Si-NPs on top of this, not only the contact angle increased to 165˚ ± 2, but also water droplets can roll away even below 5˚ tilting. The most important restriction in this study was the weak interfacial adhesion between polymer and nanoparticles, which had a bad effect on durability of the coatings. To overcome this problem, we used a very thin layer of graphene nanoplatelets (GNPs) as an interlayer between TPU and Si-NPs layers, followed by thermal treatment at 150˚C. The sample’s morphology and topography were characterized by scanning electron microscopy (SEM), EDX analysis and atomic force microscopy (AFM). It was observed that Si-NPs embedded into the polymer phase in the presence of GNPs layer. It is probably because of the high surface area and considerable thermal conductivity of the graphene platelets. The contact angle value for the sample containing graphene decreased a little bit respected to the coating without graphene and reached to 156.4˚ ± 2, due to the depletion of the surface roughness. The durability of the coatings against abrasion was evaluated by Taber® abrasion test, and it was observed that superhydrophobicity of the coatings remains for a longer time, in the presence of GNPs layer. Due to the simple fabrication method and good durability of the coating, this coating can be used as a durable superhydrophobic coating for metals and can be produced in large scale.

Keywords: graphene, silica nanoparticles, superhydrophobicity, thermoplastic polyurethane

Procedia PDF Downloads 171
4169 Effect of O2 Pressure of Fe-Doped TiO2 Nanostructure on Morphology Properties for Gas Sensing

Authors: Samar Y. Al-Dabagh, Adawiya J. Haider, Mirvat D. Majed

Abstract:

Pure nanostructure TiO2 and thin films doped with transition metal Fe were prepared by pulsed laser deposition (PLD) on Si (111) substrate. The thin films structures were determined by X-ray diffraction (XRD). The morphology properties were determined from atomic force microscopy (AFM), which shows that the roughness increases when TiO2 is doped with Fe. Results show TiO2 doped with Fe metal thin films deposited on Si (111) substrate has maximum sensitivity to ethanol vapor at 10 mbar oxygen pressure than at 0.01 and 0.1 mbar with optimum operation temperature of 250°C.

Keywords: pulsed laser deposition (PLD), TiO2 doped thin films, nanostructure, gas sensor

Procedia PDF Downloads 367
4168 Coding Structures for Seated Row Simulation of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform

Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho

Abstract:

Simulation for seated row exercise was a continued task to assist NASA in analyzing a one-dimensional vibration isolation and stabilization system for astronaut’s exercise platform. Feedback delay and signal noise were added to the model as previously done in simulation for squat exercise. Simulation runs for this study were conducted in two software simulation tools, Trick and MBDyn, software simulation environments developed at the NASA Johnson Space Center. The exciter force in the simulation was calculated from the motion capture of an exerciser during a seated row exercise. The simulation runs include passive control, active control using a Proportional, Integral, Derivative (PID) controller, and active control using a Piecewise Linear Integral Derivative (PWLID) controller. Output parameters include displacements of the exercise platform, the exerciser, and the counterweight; transmitted force to the wall of spacecraft; and actuator force to the platform. The simulation results showed excellent force reduction in the actively controlled system compared to the passive controlled system, which showed less force reduction.

Keywords: control, counterweight, isolation, vibration.

Procedia PDF Downloads 126
4167 Posterior Thigh Compartment Syndrome Associated with Hamstring Avulsion and Antiplatelet Therapy

Authors: Andrea Gatti, Federica Coppotelli, Ma Primavera, Laura Palmieri, Umberto Tarantino

Abstract:

Aim of study: Scientific literature is scarce of studies and reviews valuing the pros and cons of the paratricipital approach for the treatment of humeral shaft fractures; the lateral paratricipital approach is a valid alternative to the classical posterior approach to the humeral shaft as it preserves both the triceps muscle and the elbow extensor mechanisms; based on our experience, this retrospective analysis aims at analyzing outcome, risks and benefits of the lateral paratricipital approach for humeral shaft fractures. Methods: Our study includes 14 patients treated between 2018 and 2019 for unilateral humeral shaft fractures: 13 with a B1 or B2 and a patient with a C fracture type (according to the AO/ATO Classification); 6 of our patients identified as male while 8 as female; age average was 57.8 years old (range 21-73 years old). A lateral paratricipital approach was performed on all 14 patients, sparing the triceps muscle by avoiding the olecranon osteotomy and by assessing the integrity and the preservation of the radial nerve; the humeral shaft fracture osteosynthesis was performed by means of plates and screws. After surgery all patients have started elbow functional rehabilitation with acceptable pain management. Post-operative follow-up has been carried out by assessing radiographs, MEPS (Mayo Elbow Performance Score) and DASH (Disability of Arm Shoulder and Hand) functional assessment and ROM of the affected joint. Results: All 14 patients had an optimal post-operative follow-up with an adequate osteosynthesis and functional rehabilitations by entirely preserving the operated elbow joint; the mean elbow ROM was 0-118.6 degree (range of 0-130) while the average MEPS score was 86 (range75-100) and 79.9 for the DASH (range 21.7-86.1). Just 2 patients suffered of temporary radial nerve apraxia, healed in the subsequent follow-ups. CONCLUSION: The lateral paratricipital approach preserve both the integrity of the triceps muscle and the elbow biomechanism but we do strongly recommend additional studies to be carried out to highlight differences between it and the classical posterior approach in treating humeral shaft fractures.

Keywords: paratricepital approach, humerus shaft fracture, posterior approach humeral shaft, paratricipital postero-lateral approach

Procedia PDF Downloads 115
4166 Effect of Passive Pectoralis Minor Stretching on Scapular Kinematics in Scapular Dyskinesia

Authors: Seema Saini, Nidhi Chandra, Tushar Palekar

Abstract:

Objective: To determine the effect of Passive pectoralis minor muscle stretching on scapular kinematics in individuals with scapular dyskinesia. Design: A randomized controlled study was conducted in Pune. The sample size was 30 subjects, which were randomly allocated to either Group A, the experimental group in which passive pectoralis minor stretch was given, or Group B, the control group, in which conventional exercises were given for 3 days a week over 4 weeks. Pre and Post treatment readings of the outcome measures, pectoralis minor length, scapular upward rotation, and lateral scapular slide test were recorded. Results: The results obtained prove a significant difference between pre and post mean values of pectoralis minor length in group A (pre 21.91, post 22.87) and in group B (pre 23.55 post 23.99); scapular upward rotation in group A (pre 49.95, post 50.61) and group B (pre 52.64, post 53.51); lateral scapular slide test at 0° abduction in group A (pre 6.613, post 6.14) and group B (pre 6.84, post 6.22); lateral scapular slide test at 45° abduction in group A (pre 7.14 and post 7.12) and group B (pre 8.18, post 7.53). With an inter-group analysis, it was found that mean of pectoralis minor length, scapular upward rotation, and LSST at 0° abduction in group A was significant than group B (p<0.05). Conclusion: Passive pectoralis minor stretching along with conventional strengthening exercises was shown to be more effective in improving scapular kinematics among patients with scapular dyskinesia.

Keywords: scapulohumeral rhythm, scapular upward rotation, rounded shoulders, scapular strengthening

Procedia PDF Downloads 148
4165 Behavior of the Foundation of Bridge Reinforced by Rigid and Flexible Inclusions

Authors: T. Karech A. Noui, T. Bouzid

Abstract:

This article presents a comparative study by numerical analysis of the behavior of reinforcements of clayey soils by flexible columns (stone columns) and rigid columns (piles). The numerical simulation was carried out in 3D for an assembly of foundation, columns and a pile of a bridge. Particular attention has been paid to take into account the installation of the columns. Indeed, in practice, due to the compaction of the column, the soil around it sustains a lateral expansion and the horizontal stresses are increased. This lateral expansion of the column can be simulated numerically. This work represents a comparative study of the interaction between the soil on one side, and the two types of reinforcement on the other side, and their influence on the behavior of the soil and of the pile of a bridge.

Keywords: piles, stone columns, interaction, foundation, settlement, consolidation

Procedia PDF Downloads 261
4164 Machinability Analysis in Drilling Flax Fiber-Reinforced Polylactic Acid Bio-Composite Laminates

Authors: Amirhossein Lotfi, Huaizhong Li, Dzung Viet Dao

Abstract:

Interest in natural fiber-reinforced composites (NFRC) is progressively growing both in terms of academia research and industrial applications thanks to their abundant advantages such as low cost, biodegradability, eco-friendly nature and relatively good mechanical properties. However, their widespread use is still presumed as challenging because of the specificity of their non-homogeneous structure, limited knowledge on their machinability characteristics and parameter settings, to avoid defects associated with the machining process. The present work is aimed to investigate the effect of the cutting tool geometry and material on the drilling-induced delamination, thrust force and hole quality produced when drilling a fully biodegradable flax/poly (lactic acid) composite laminate. Three drills with different geometries and material were used at different drilling conditions to evaluate the machinability of the fabricated composites. The experimental results indicated that the choice of cutting tool, in terms of material and geometry, has a noticeable influence on the cutting thrust force and subsequently drilling-induced damages. The lower value of thrust force and better hole quality was observed using high-speed steel (HSS) drill, whereas Carbide drill (with point angle of 130o) resulted in the highest value of thrust force. Carbide drill presented higher wear resistance and stability in variation of thrust force with a number of holes drilled, while HSS drill showed the lower value of thrust force during the drilling process. Finally, within the selected cutting range, the delamination damage increased noticeably with feed rate and moderately with spindle speed.

Keywords: natural fiber reinforced composites, delamination, thrust force, machinability

Procedia PDF Downloads 122
4163 Sound Exposure Effects towards Ross Broilers Growth Rate

Authors: Rashidah Ghazali, Herlina Abdul Rahim, Mashitah Shikh Maidin, Shafishuhaza Sahlan, Noramli Abdul Razak

Abstract:

Sound exposure effects have been investigated by broadcasting a group of broilers with sound of Quran verses (Group B) whereas the other group is the control broilers (Group C). The growth rate comparisons in terms of weight and raw meat texture measured by shear force have been investigated. Twenty-seven broilers were randomly selected from each group on Day 24 and weight measurement was carried out every week till the harvest day (Day 39). Group B showed a higher mean weight on Day 24 (1.441±0.013 kg) than Group C. Significant difference in the weight on Day 39 existed for Group B compared to Group C (p< 0.05). However, there was no significant (p> 0.05) difference of shear force in the same muscles (breast and drumstick raw meat) of both groups but the shear force of the breast meat for Group B and C broilers was lower (p < 0.05) than that of their drumstick meat. Thus, broadcasting the sound of Quran verses in the coop can be applied to improve the growth rate of broilers for producing better quality poultry.

Keywords: broilers, sound, shear force, weight

Procedia PDF Downloads 405
4162 Characterization of a LiFeOP₄ Battery Cell with Mechanical Responses

Authors: Ki-Yong Oh, Eunji Kwak, Due Su Son, Siheon Jung

Abstract:

A pouch type of 10 Ah LiFePO₄ battery cell is characterized with two mechanical responses: swelling and bulk force. Both responses vary upon the state of charge significantly, whereas voltage shows flat responses, suggesting that mechanical responses can become a sensitive gauge to characterize microstructure transformation of a battery cell. The derivative of swelling s with respect to capacity Q, (ds/dQ) and the derivative of force F with respect to capacity Q, (dF/dQ) more clearly identify phase transitions of cathode and anode electrodes in the overall charge process than the derivative of voltage V with respect to capacity Q, (dV/dQ). Especially, the force versus swelling curves over the state of charge clearly elucidates three different stiffness over the state of charge oriented from phase transitions: the α-phase, the β-phase, and the metastable solid-solution phase. The observation from mechanical responses suggests that macro-scale mechanical responses of a battery cell are directly correlated to microscopic transformation of a battery cell.

Keywords: force response, LiFePO₄ battery, strain response, stress response, swelling response

Procedia PDF Downloads 158
4161 Seam Slippage of Light Woven Fabrics with Regards to Sewing Parameters

Authors: Mona Shawky, Khaled M. Elsheikh, Heba M. Darwish, Eman Abd El Elsamea

Abstract:

Seams are the basic component in the structure of any apparel. The seam quality of the garment is a term that indicates both the aesthetic and functional performance of the garment. Seam slippage is one of the important properties that determine garment performance. Lightweight fabrics are preferred for their aesthetic properties. Since seam slippage is one of the most occurable faults for woven garments, in this study, a design of experiment of the following sewing parameters (three levels of needle size, three levels of stitch density, three levels of the seam allowance, two levels of sewing thread count, and two fabric types) was used to obtain the effect of the interaction between different sewing parameters on-seam slippage force. Two lightweight polyester woven fabrics with different constructions were used with lock stitch 301 to perform this study. Regression equations which can predict seam slippage force in both warp and weft directions were concluded. It was found that fabric type has a significant positive effect on seam slippage force in the warp direction, while it has a significant negative effect on seam slippage force on weft direction. Also, the interaction between needle size and stitch density has a significant positive effect on seam slippage force on warp direction, while the interaction between stitch density and seam allowance has a negative effect on seam slippage force in the weft direction.

Keywords: needle size, regression equation, seam allowance, seam slippage, stitch density

Procedia PDF Downloads 154
4160 Structural Analysis of Phase Transformation and Particle Formation in Metastable Metallic Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition

Authors: Pouyan Motamedi, Ken Bosnick, Ken Cadien, James Hogan

Abstract:

Growth of conformal ultrathin metal films has attracted a considerable amount of attention recently. Plasma-enhanced atomic layer deposition (PEALD) is a method capable of growing conformal thin films at low temperatures, with an exemplary control over thickness. The authors have recently reported on growth of metastable epitaxial nickel thin films via PEALD, along with a comprehensive characterization of the films and a study on the relationship between the growth parameters and the film characteristics. The goal of the current study is to use the mentioned films as a case study to investigate the temperature-activated phase transformation and agglomeration in ultrathin metallic films. For this purpose, metastable hexagonal nickel thin films were annealed using a controlled heating/cooling apparatus. The transformations in the crystal structure were observed via in-situ synchrotron x-ray diffraction. The samples were annealed to various temperatures in the range of 400-1100° C. The onset and progression of particle formation were studied in-situ via laser measurements. In addition, a four-point probe measurement tool was used to record the changes in the resistivity of the films, which is affected by phase transformation, as well as roughening and agglomeration. Thin films annealed at various temperature steps were then studied via atomic force microscopy, scanning electron microscopy and high-resolution transmission electron microscopy, in order to get a better understanding of the correlated mechanisms, through which phase transformation and particle formation occur. The results indicate that the onset of hcp-to-bcc transformation is at 400°C, while particle formations commences at 590° C. If the annealed films are quenched after transformation, but prior to agglomeration, they show a noticeable drop in resistivity. This can be attributed to the fact that the hcp films are grown epitaxially, and are under severe tensile strain, and annealing leads to relaxation of the mismatch strain. In general, the results shed light on the nature of structural transformation in nickel thin films, as well as metallic thin films, in general.

Keywords: atomic layer deposition, metastable, nickel, phase transformation, thin film

Procedia PDF Downloads 318