Search results for: kinematic parameters
8596 Optimal Design of Submersible Permanent Magnet Linear Synchronous Motor Based Design of Experiment and Genetic Algorithm
Authors: Xiao Zhang, Wensheng Xiao, Junguo Cui, Hongmin Wang
Abstract:
Submersible permanent magnet linear synchronous motors (SPMLSMs) are electromagnetic devices, which can directly drive plunger pump to obtain the crude oil. Those motors have been gradually applied in oil fields due to high thrust force density and high efficiency. Since the force performance closely depends on the concrete structural parameters, the seven different structural parameters are investigated in detail. This paper presents an optimum design of an SPMLSM to minimize the detent force and maximize the thrust by using design of experiment (DOE) and genetic algorithm (GA). The three significant structural parameters (air-gap length, slot width, pole-arc coefficient) are separately screened using 27 1/16 fractional factorial design (FFD) to investigate the significant effect of seven parameters used in this research on the force performance. Response surface methodology (RSM) is well adapted to make analytical model of thrust and detent force with constraints of corresponding significant parameters and enable objective function to be easily created, respectively. GA is performed as a searching tool to search for the Pareto-optimal solutions. By finite element analysis, the proposed PMLSM shows merits in improving thrust and reducing the detent force dramatically.Keywords: optimization, force performance, design of experiment (DOE), genetic algorithm (GA)
Procedia PDF Downloads 2908595 Identification of the Orthotropic Parameters of Cortical Bone under Nanoindentation
Authors: D. Remache, M. Semaan, C. Baron, M. Pithioux, P. Chabrand, J. M. Rossi, J. L. Milan
Abstract:
A good understanding of the mechanical properties of the bone implies a better understanding of its various diseases, such as osteoporosis. Berkovich nanoindentation tests were performed on the human cortical bone to extract its orthotropic parameters. The nanoindentation experiments were then simulated by the finite element method. Different configurations of interactions between the tip indenter and the bone were simulated. The orthotropic parameters of the material were identified by the inverse method for each configuration. The friction effect on the bone mechanical properties was then discussed. It was found that the inverse method using the finite element method is a very efficient method to predict the mechanical behavior of the bone.Keywords: mechanical behavior of bone, nanoindentation, finite element analysis, inverse optimization approaches
Procedia PDF Downloads 3888594 Job Satisfaction among Public and Private Universities in Egypt Related to Organizational and Personal Aspects
Authors: Reem Alkadeem
Abstract:
This study aims at evaluating the overall satisfaction of faculty members and relating it to organizational and personal aspects in Egyptian public and private universities. These aspects are identified through an extensive study of all factors that might affect job satisfaction. The most influencing parameters selected are academics’ demographics, human resource management, organizational profile, workload, teamwork skills, recognition, autonomy, teaching activity, research activity, and motivation. A questionnaire of 94 questions was used to assess job satisfaction and the previously mentioned parameters. It was distributed among seven hundred members of different universities in Egypt. Two hundred and twenty-seven faculty members responded. This sample was gathered from twelve universities and The Supreme Council of Universities. The ANOVA showed a significant relationship (p < 0.05) between eight of the selected parameters and job satisfaction. These parameters are age, rank, human resource management, profile of organizational characteristics, workload, recognition, teaching activity, and motivation.Keywords: job satisfaction, higher education, organizational profile, Egyptian universities
Procedia PDF Downloads 4848593 A Solution for Production Facility Assignment: An Automotive Subcontract Case
Authors: Cihan Çetinkaya, Eren Özceylan, Kerem Elibal
Abstract:
This paper presents a solution method for selection of production facility. The motivation has been taken from a real life case, an automotive subcontractor which has two production facilities at different cities and parts. The problem is to decide which part(s) should be produced at which facility. To the best of our knowledge, until this study, there was no scientific approach about this problem at the firm and decisions were being given intuitively. In this study, some logistic cost parameters have been defined and with these parameters a mathematical model has been constructed. Defined and collected cost parameters are handling cost of parts, shipment cost of parts and shipment cost of welding fixtures. Constructed multi-objective mathematical model aims to minimize these costs while aims to balance the workload between two locations. Results showed that defined model can give optimum solutions in reasonable computing times. Also, this result gave encouragement to develop the model with addition of new logistic cost parameters.Keywords: automotive subcontract, facility assignment, logistic costs, multi-objective models
Procedia PDF Downloads 3668592 Dynamic Relaxation and Isogeometric Analysis for Finite Deformation Elastic Sheets with Combined Bending and Stretching
Authors: Nikhil Padhye, Ellen Kintz, Dan Dorci
Abstract:
Recent years have seen a rising interest in study and applications of materially uniform thin-structures (plates/shells) subject to finite-bending and stretching deformations. We introduce a well-posed 2D-model involving finite-bending and stretching of thin-structures to approximate the three-dimensional equilibria. Key features of this approach include: Non-Uniform Rational B-Spline (NURBS)-based spatial discretization for finite elements, method of dynamic relaxation to predict stable equilibria, and no a priori kinematic assumption on the deformation fields. The approach is validated against the benchmark problems,and the use of NURBS for spatial discretization facilitates exact spatial representation and computation of curvatures (due to C1-continuity of interpolated displacements) for this higher-order accuracy 2D-model.Keywords: Isogeometric Analysis, Plates/Shells , Finite Element Methods, Dynamic Relaxation
Procedia PDF Downloads 1688591 Study on the Effect of Vitamin D on the Biochemical Parameters in Cyprinus carpio
Authors: Mojdeh Chelemal Dezfoul Nejad, Ali Mohammadzadeh Shobeagar, Mehrzad Mesbah
Abstract:
This study was conducted in order to characterize the different levels of dietary vitamin D on some of biochemical parameters of Cyprinus carpio. For this purpose, 180 pieces of Cyprinus carpio with an average weight of 20-25 grams were divided into four treatments and each treatment was divided into three replications and treatments were fed at three different doses (1000 IU, 3000 IU, 5000 IU) of vitamin D for 60 days. The fish were fed 3% of their wet b.wt. per day for a 60 days period. Blood samples were obtained from six fish of each tank at the end of experiment. Based on the results significant difference was observed on the mean amount of total protein, urea, glucose and cholesterol between treatments (p < 0.05). But, there was no significant difference in the mean amount of triglyceride and albumin with the different diets designed for this experiment (p > 0.05).Keywords: Cyprinus carpio, vitamin D, biochemical parameters, glucose
Procedia PDF Downloads 3498590 Parametric Optimization of Electric Discharge Machining Process Using Taguchi's Method and Grey Relation Analysis
Authors: Pushpendra S. Bharti
Abstract:
Process yield of electric discharge machining (EDM) is directly related to optimal combination(s) of process parameters. Optimization of process parameters of EDM is a multi-objective optimization problem owing to the contradictory behavior of performance measures. This paper employs Grey Relation Analysis (GRA) method as a multi-objective optimization technique for the optimal selection of process parameters combination. In GRA, multi-response optimization is converted into optimization of a single response grey relation grade which ultimately gives the optimal combination of process parameters. Experiments were carried out on die-sinking EDM by taking D2 steel as work piece and copper as electrode material. Taguchi's orthogonal array L36 was used for the design of experiments. On the experimental values, GRA was employed for the parametric optimization. A significant improvement has been observed and reported in the process yield by taking the parametric combination(s) obtained through GRA.Keywords: electric discharge machining, grey relation analysis, material removal rate, optimization
Procedia PDF Downloads 4098589 Study on the Effects of Different Levels of Dietary Vitamin C on Some of Biochemical Parameters of Serum in Barbuas
Authors: M. Chelemal Dezfoul Nejad, M. Moradi, M. Mesbah, M. Javaheri
Abstract:
This study was conducted in order to characterize the different levels of dietary vitamin C on some of biochemical parameters of Barbus grypus. For this purpose 300 Barbus grypus were divided into 15 groups. Five levels of vitamin C (0, 200, 400, 800, 1600 mg kg-1 diet) and their combination were used to prepare five experimental diets. The fish were fed 3% of their wet b.wt. per day for a 60 days period. Blood samples were obtained from six fish of each tank at the end of experiment. The results reveal that fish fed diets containing 1600 mg kg-1 vitamin C had a significant decrease in the mean amount of cholesterol, glucose and triglyceride (p<0.05). Also, there was no significant difference in the mean amount of total protein, albumin, BuN, phosphorus, sodium and potassium between the fish fed with the different diets designed for this experiment (p>0.05).Keywords: Barbus grypus, vitamin C, biochemical parameters, diet
Procedia PDF Downloads 4538588 Optimization of Proton Exchange Membrane Fuel Cell Parameters Based on Modified Particle Swarm Algorithms
Authors: M. Dezvarei, S. Morovati
Abstract:
In recent years, increasing usage of electrical energy provides a widespread field for investigating new methods to produce clean electricity with high reliability and cost management. Fuel cells are new clean generations to make electricity and thermal energy together with high performance and no environmental pollution. According to the expansion of fuel cell usage in different industrial networks, the identification and optimization of its parameters is really significant. This paper presents optimization of a proton exchange membrane fuel cell (PEMFC) parameters based on modified particle swarm optimization with real valued mutation (RVM) and clonal algorithms. Mathematical equations of this type of fuel cell are presented as the main model structure in the optimization process. Optimized parameters based on clonal and RVM algorithms are compared with the desired values in the presence and absence of measurement noise. This paper shows that these methods can improve the performance of traditional optimization methods. Simulation results are employed to analyze and compare the performance of these methodologies in order to optimize the proton exchange membrane fuel cell parameters.Keywords: clonal algorithm, proton exchange membrane fuel cell (PEMFC), particle swarm optimization (PSO), real-valued mutation (RVM)
Procedia PDF Downloads 3518587 Seismic Base Shear Force Depending on Building Fundamental Period and Site Conditions: Deterministic Formulation and Probabilistic Analysis
Authors: S. Dorbani, M. Badaoui, D. Benouar
Abstract:
The aim of this paper is to investigate the effect of the building fundamental period of reinforced concrete buildings of (6, 9, and 12-storey), with different floor plans: Symmetric, mono-symmetric, and unsymmetric. These structures are erected at different epicentral distances. Using the Boumerdes, Algeria (2003) earthquake data, we focused primarily on the establishment of the deterministic formulation linking the base shear force to two parameters: The first one is the fundamental period that represents the numerical fingerprint of the structure, and the second one is the epicentral distance used to represent the impact of the earthquake on this force. In a second step, with a view to highlight the effect of uncertainty in these parameters on the analyzed response, these parameters are modeled as random variables with a log-normal distribution. The variability of the coefficients of variation of the chosen uncertain parameters, on the statistics on the seismic base shear force, showed that the effect of uncertainty on fundamental period on this force statistics is low compared to the epicentral distance uncertainty influence.Keywords: base shear force, fundamental period, epicentral distance, uncertainty, lognormal variables, statistics
Procedia PDF Downloads 3208586 Investigation of Airship Motion Sensitivity to Geometric Parameters
Authors: Han Ding, Wang Xiaoliang, Duan Dengping
Abstract:
During the process of airship design, the layout and the geometric shape of the hull and fins are crucial to the motion characteristics of the airship. In this paper, we obtained the quantification motion sensitivity of the airship to geometric parameters through turning circles and horizontal/vertical zigzag maneuvers by the parameterization of airship shape and building the dynamic model using Lagrangian approach and MATLAB Simulink program. In the dynamics simulation program, the affection of geometric parameters to the mass, center of gravity, moments of inertia, product of inertia, added mass and the aerodynamic forces and moments have been considered.Keywords: airship, Lagrangian approach, turning circles, horizontal/vertical zigzag maneuvers
Procedia PDF Downloads 4258585 Kinetic Modeling Study and Scale-Up of Niogas Generation Using Garden Grass and Cattle Dung as Feedstock
Authors: Tumisang Seodigeng, Hilary Rutto
Abstract:
In this study we investigate the use of a laboratory batch digester to derive kinetic parameters for anaerobic digestion of garden grass and cattle dung. Laboratory experimental data from a 5 liter batch digester operating at mesophilic temperature of 32 C is used to derive parameters for Michaelis-Menten kinetic model. These fitted kinetics are further used to predict the scale-up parameters of a batch digester using DynoChem modeling and scale-up software. The scale-up model results are compared with performance data from 20 liter, 50 liter, and 200 liter batch digesters. Michaelis-Menten kinetic model shows to be a very good and easy to use model for kinetic parameter fitting on DynoChem and can accurately predict scale-up performance of 20 liter and 50 liter batch reactor based on parameters fitted on a 5 liter batch reactor.Keywords: Biogas, kinetics, DynoChem Scale-up, Michaelis-Menten
Procedia PDF Downloads 4978584 Modelling and Optimization of Laser Cutting Operations
Authors: Hany Mohamed Abdu, Mohamed Hassan Gadallah, El-Giushi Mokhtar, Yehia Mahmoud Ismail
Abstract:
Laser beam cutting is one nontraditional machining process. This paper optimizes the parameters of Laser beam cutting machining parameters of Stainless steel (316L) by considering the effect of input parameters viz. power, oxygen pressure, frequency and cutting speed. Statistical design of experiments are carried in three different levels and process responses such as 'Average kerf taper (Ta)' and 'Surface Roughness (Ra)' are measured accordingly. A quadratic mathematical model (RSM) for each of the responses is developed as a function of the process parameters. Responses predicted by the models (as per Taguchi’s L27 OA) are employed to search for an optimal parametric combination to achieve desired yield of the process. RSM models are developed for mean responses, S/N ratio, and standard deviation of responses. Optimization models are formulated as single objective problem subject to process constraints. Models are formulated based on Analysis of Variance (ANOVA) using MATLAB environment. Optimum solutions are compared with Taguchi Methodology results.Keywords: optimization, laser cutting, robust design, kerf width, Taguchi method, RSM and DOE
Procedia PDF Downloads 6208583 Dynamic Response Analysis of Structure with Random Parameters
Authors: Ahmed Guerine, Ali El Hafidi, Bruno Martin, Philippe Leclaire
Abstract:
In this paper, we propose a method for the dynamic response of multi-storey structures with uncertain-but-bounded parameters. The effectiveness of the proposed method is demonstrated by a numerical example of three-storey structures. This equation is integrated numerically using Newmark’s method. The numerical results are obtained by the proposed method. The simulation accounting the interval analysis method results are compared with a probabilistic approach results. The interval analysis method provides a mean curve that is between an upper and lower bound obtained from the probabilistic approach.Keywords: multi-storey structure, dynamic response, interval analysis method, random parameters
Procedia PDF Downloads 1908582 Autonomous Flight Performance Improvement of Load-Carrying Unmanned Aerial Vehicles by Active Morphing
Authors: Tugrul Oktay, Mehmet Konar, Mohamed Abdallah Mohamed, Murat Aydin, Firat Sal, Murat Onay, Mustafa Soylak
Abstract:
In this paper, it is aimed to improve autonomous flight performance of a load-carrying (payload: 3 kg and total: 6kg) unmanned aerial vehicle (UAV) through active wing and horizontal tail active morphing and also integrated autopilot system parameters (i.e. P, I, D gains) and UAV parameters (i.e. extension ratios of wing and horizontal tail during flight) design. For this purpose, a loadcarrying UAV (i.e. ZANKA-II) is manufactured in Erciyes University, College of Aviation, Model Aircraft Laboratory is benefited. Optimum values of UAV parameters and autopilot parameters are obtained using a stochastic optimization method. Using this approach autonomous flight performance of UAV is substantially improved and also in some adverse weather conditions an opportunity for safe flight is satisfied. Active morphing and integrated design approach gives confidence, high performance and easy-utility request of UAV users.Keywords: unmanned aerial vehicles, morphing, autopilots, autonomous performance
Procedia PDF Downloads 6738581 Effect of SPS Parameters on the Densification of ZrB2-Based Composites
Authors: Z. Balak, M. Zakeri, M.R.Rahimipur, M. Azizieh
Abstract:
Spark Plasma Sintering is a new technique which was used for ultra high temperature ceramics such as ZrB2-based composites in recent years. Taguchi design was applied to explore effective parameters for achieving the highest hardness. Nine factors including SiC, Cf, MoSi2, HfB2 and ZrC content, milling time of Cf and SPS parameters such as temperature, time and pressure in four levels were considered through the Taguchi technique. In this study, only the effect of SPS conditions on densification and hardness were investigated. ZrB2-based composites were prepared by SPS in different temperatures (1600°C,1700°C, 1800°C, 1900°C), times (4min, 8 min, 12 min, 16min) and pressures (10MPa, 20MPa, 30MPa and 40MPa). The effect of SPS parameters on the densification and hardness were investigated. It was found, by increasing the temperature and time, from level 1 to 4, densification improved continuously. Also, the results shows hardness increases continuously by increasing temperature and time. Finally, it is concluded that temperature and time have more significant effect on densification and harness rather than pressure.Keywords: spark plasma sintering (SPS), ultra high temperature ceramics (UHTCs), densification, hardness
Procedia PDF Downloads 4068580 A Study of Parameters That Have an Influence on Fabric Prints in Judging the Attractiveness of a Female Body Shape
Authors: Man N. M. Cheung
Abstract:
In judging the attractiveness of female body shape, visual sense is one of the important means. The ratio and proportion of body shape influence the perception of female physical attractiveness. This study aims to examine visual perception of digital textile prints on a virtual 3D model in judging the attractiveness of the body shape. Also, investigate the influences when using different shape parameters and their relationships. Participants were asked to conduct a set of questionnaires with images to rank the attractiveness of the female body shape. Results showed that morphing the fabric prints with a certain ratio and combination of shape parameters - waist and hip, can enhance the attractiveness of the female body shape.Keywords: digital printing, 3D body modeling, fashion print design, body shape attractiveness
Procedia PDF Downloads 1788579 CAD Tool for Parametric Design modification of Yacht Hull Surface Models
Authors: Shahroz Khan, Erkan Gunpinar, Kemal Mart
Abstract:
Recently parametric design techniques became a vital concept in the field of Computer Aided Design (CAD), which helps to provide sophisticated platform to the designer in order to automate the design process in efficient time. In these techniques, design process starts by parameterizing the important features of design models (typically the key dimensions), with the implementation of design constraints. The design constraints help to retain the overall shape of the model while modifying its parameters. However, the process of initializing an appropriate number of design parameters and constraints is the crucial part of parametric design techniques, especially for complex surface models such as yacht hull. This paper introduces a method to create complex surface models in favor of parametric design techniques, a method to define the right number of parameters and respective design constraints, and a system to implement design parameters in contract to design constraints schema. For this, in our proposed approach the design process starts by dividing the yacht hull into three sections. Each section consists of different shape lines, which form the overall shape of yacht hull. The shape lines are created using Cubic Bezier Curves, which allow larger design flexibility. Design parameters and constraints are defined on the shape lines in 3D design space to facilitate the designers for better and individual handling of parameters. Afterwards, shape modifiers are developed, which allow the modification of each parameter while satisfying the respective set of criteria and design constraints. Such as, geometric continuities should be maintained between the shape lines of the three sections, fairness of the hull surfaces should be preserved after modification and while design modification, effect of a single parameter should be negligible on other parameters. The constraints are defined individually on shape lines of each section and mutually between the shape lines of two connecting sections. In order to validate and visualize design results of our shape modifiers, a real time graphic interface is created.Keywords: design parameter, design constraints, shape modifies, yacht hull
Procedia PDF Downloads 3018578 Influence of Selected Finishing Technologies on the Roughness Parameters of Stainless Steel Manufactured by Selective Laser Melting Method
Authors: J. Hajnys, M. Pagac, J. Petru, P. Stefek, J. Mesicek, J. Kratochvil
Abstract:
The new progressive method of 3D metal printing SLM (Selective Laser Melting) is increasingly expanded into the normal operation. As a result, greater demands are placed on the surface quality of the parts produced in this way. The article deals with research of selected finishing methods (tumbling, face milling, sandblasting, shot peening and brushing) and their impact on the final surface roughness. The 20 x 20 x 7 mm produced specimens using SLM additive technology on the Renishaw AM400 were subjected to testing of these finishing methods by adjusting various parameters. Surface parameters of roughness Sa, Sz were chosen as the evaluation criteria and profile parameters Ra, Rz were used as additional measurements. Optical measurement of surface roughness was performed on Alicona Infinite Focus 5. An experiment conducted to optimize the surface roughness revealed, as expected, that the best roughness parameters were achieved through a face milling operation. Tumbling is particularly suitable for 3D printing components, as tumbling media are able to reach even complex shapes and, after changing to polishing bodies, achieve a high surface gloss. Surface quality after tumbling depends on the process time. Other methods with satisfactory results are shot peening and tumbling, which should be the focus of further research.Keywords: additive manufacturing, selective laser melting, SLM, surface roughness, stainless steel
Procedia PDF Downloads 1318577 A Simple Approach to Reliability Assessment of Structures via Anomaly Detection
Authors: Rims Janeliukstis, Deniss Mironovs, Andrejs Kovalovs
Abstract:
Operational Modal Analysis (OMA) is widely applied as a method for Structural Health Monitoring for structural damage identification and assessment by tracking the changes of the identified modal parameters over time. Unfortunately, modal parameters also depend on such external factors as temperature and loads. Any structural condition assessment using modal parameters should be done taking into consideration those external factors, otherwise there is a high chance of false positives. A method of structural reliability assessment based on anomaly detection technique called Machalanobis Squared Distance (MSD) is proposed. It requires a set of reference conditions to learn healthy state of a structure, which all future parameters are compared to. In this study, structural modal parameters (natural frequency and mode shape), as well as ambient temperature and loads acting on the structure are used as features. Numerical tests were performed on a finite element model of a carbon fibre reinforced polymer composite beam with delamination damage at various locations and of various severities. The advantages of the demonstrated approach include relatively few computational steps, ability to distinguish between healthy and damaged conditions and discriminate between different damage severities. It is anticipated to be promising in reliability assessment of massively produced structural parts.Keywords: operational modal analysis, reliability assessment, anomaly detection, damage, mahalanobis squared distance
Procedia PDF Downloads 1148576 Influence of Magnetic Bio-Stimulation Effects on Pre-Sown Hybrid Sunflower Seeds Germination, Growth, and on the Percentage of Antioxidant Activities
Authors: Nighat Zia-ud-Den, Shazia Anwer Bukhari
Abstract:
In the present study, sunflower seeds were exposed to magnetic bio-stimulation at different milli Tesla, and their effects were studied. The present study addressed to establish the effectiveness of magnetic bio-stimulation on seed germination, growth, and other dynamics of crop growth. The changes in physiological characters, i.e. the growth parameters of seedlings (biomass, root and shoot length, fresh and dry weight of root shoot leaf and fruit, leaf area, the height of plants, number of leaves, and number of fruits per plant) and antioxidant activities were measured. The parameters related to germination and growth were measured under controlled conditions while they changed significantly compared with that of the control. These changes suggested that magnetic seed stimulator enhanced the inner energy of seeds, which contributed to the acceleration of the growth and development of seedlings. Moreover, pretreatment with a magnetic field was found to be a positive impact on sunflower seeds germination, growth, and other biochemical parameters.Keywords: sunflower seeds, physical priming method, biochemical parameters, antioxidant activities
Procedia PDF Downloads 1648575 A Systematic Approach for Identifying Turning Center Capabilities with Vertical Machining Center in Milling Operation
Authors: Joseph Chen, N. Hundal
Abstract:
Conventional machining is a form of subtractive manufacturing, in which a collection of material-working processes utilizing power-driven machine tools are used to remove undesired material to achieve a desired geometry. This paper presents an approach for comparison between turning center and vertical machining center by optimization of cutting parameters at cylindrical workpieces leading to minimum surface roughness by using taguchi methodology. Aluminum alloy was taken to conduct experiments due to its unique high strength-weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. During testing, the effects of the cutting parameters on the surface roughness were investigated. Additionally, by using taguchi methodology for each of the cutting parameters (spindle speed, depth of cut, insert diameter, and feed rate) minimum surface roughness for the process of turn-milling was determined according to the cutting parameters. A confirmation experiment demonstrates the effectiveness of taguchi method.Keywords: surface roughness, Taguchi parameter design, turning center, turn-milling operations, vertical machining center
Procedia PDF Downloads 3288574 Ultraviolet Visible Spectroscopy Analysis on Transformer Oil by Correlating It with Various Oil Parameters
Authors: Rajnish Shrivastava, Y. R. Sood, Priti Pundir, Rahul Srivastava
Abstract:
Power transformer is one of the most important devices that are used in power station. Due to several fault impending upon it or due to ageing, etc its life gets lowered. So, it becomes necessary to have diagnosis of oil for fault analysis. Due to the chemical, electrical, thermal and mechanical stress the insulating material in the power transformer degraded. It is important to regularly assess the condition of oil and the remaining life of the power transformer. In this paper UV-VIS absorption graph area is correlated with moisture content, Flash point, IFT and Density of Transformer oil. Since UV-VIS absorption graph area varies accordingly with the variation in different transformer parameters. So by obtaining the correlation among different oil parameters for oil with respect to UV-VIS absorption area, decay contents of transformer oil can be predictedKeywords: breakdown voltage (BDV), interfacial Tension (IFT), moisture content, ultra violet-visible rays spectroscopy (UV-VIS)
Procedia PDF Downloads 6428573 Exploring the Influence of High-Frequency Acoustic Parameters on Wave Behavior in Porous Bilayer Materials: An Equivalent Fluid Theory Approach
Authors: Mustapha Sadouk
Abstract:
This study investigates the sensitivity of high-frequency acoustic parameters in a rigid air-saturated porous bilayer material within the framework of the equivalent fluid theory, a specific case of the Biot model. The study specifically focuses on the sensitivity analysis in the frequency domain. The interaction between the fluid and solid phases of the porous medium incorporates visco-inertial and thermal exchange, characterized by two functions: the dynamic tortuosity α(ω) proposed by Johnson et al. and the dynamic compressibility β(ω) proposed by Allard, refined by Sadouki for the low-frequency domain of ultrasound. The parameters under investigation encompass porosity, tortuosity, viscous characteristic length, thermal characteristic length, as well as viscous and thermal shape factors. A +30% variation in these parameters is considered to assess their impact on the transmitted wave amplitudes. By employing this larger variation, a more comprehensive understanding of the sensitivity of these parameters is obtained. The outcomes of this study contribute to a better comprehension of the high-frequency wave behavior in porous bilayer materials, providing valuable insights for the design and optimization of such materials across various applications.Keywords: bilayer materials, ultrasound, sensitivity analysis, equivalent fluid theory, dynamic tortuosity., porous material
Procedia PDF Downloads 868572 Vibration of Nonhomogeneous Timoshenko Nanobeam Resting on Winkler-Pasternak Foundation
Authors: Somnath Karmakar, S. Chakraverty
Abstract:
This work investigates the vibration of nonhomogeneous Timoshenko nanobeam resting on the Winkler-Pasternak foundation. Eringen’s nonlocal theory has been used to investigate small-scale effects. The Differential Quadrature method is used to obtain the frequency parameters with various classical boundary conditions. The nonhomogeneous beam model has been considered, where Young’s modulus and density of the beam material vary linearly and quadratically. Convergence of frequency parameters is also discussed. The influence of mechanical properties and scaling parameters on vibration frequencies are investigated for different boundary conditions.Keywords: Timoshenko beam, Eringen's nonlocal theory, differential quadrature method, nonhomogeneous nanobeam
Procedia PDF Downloads 1158571 Stimuli Responsives of Crosslinked Poly on 2-HydroxyEthyl MethAcrylate – Optimization of Parameters by Experimental Design
Authors: Tewfik Bouchaour, Salah Hamri, Yasmina Houda Bendahma, Ulrich Maschke
Abstract:
Stimuli-responsive materials based on UV crosslinked acrylic polymer networks are fabricated. A various kinds of polymeric systems, hydrophilic polymers based on 2-Hydroxyethyl methacrylate have been widely studied because of their ability to simulate biological tissues, which leads to many applications. The acrylic polymer network PHEMA developed by UV photopolymerization has been used for dye retention. For these so-called smart materials, the properties change in response to an external stimulus. In this contribution, we report the influence of some parameters (initial composition, temperature, and nature of components) in the properties of final materials. Optimization of different parameters is examined by experimental design.Keywords: UV photo-polymerization, PHEMA, external stimulus, optimization
Procedia PDF Downloads 2558570 Motor Speech Profile of Marathi Speaking Adults and Children
Authors: Anindita Banik, Anjali Kant, Aninda Duti Banik, Arun Banik
Abstract:
Speech is a complex, dynamic unique motor activity through which we express thoughts and emotions and respond to and control our environment. The aim was based to compare select Motor Speech parameters and their sub parameters across typical Marathi speaking adults and children. The subjects included a total of 300 divided into Group I, II, III including males and females. Subjects included were reported of no significant medical history and had a rating of 0-1 on GRBAS scale. The recordings were obtained utilizing three stimuli for the acoustic analysis of Diadochokinetic rate (DDK), Second Formant Transition, Voice and Tremor and its sub parameters. And these aforementioned parameters were acoustically analyzed in Motor Speech Profile software in VisiPitch IV. The statistical analyses were done by applying descriptive statistics and Two- Way ANOVA.The results obtained showed statistically significant difference across age groups and gender for the aforementioned parameters and its sub parameters.In DDK, for avp (ms) there was a significant difference only across age groups. However, for avr (/s) there was a significant difference across age groups and gender. It was observed that there was an increase in rate with an increase in age groups. The second formant transition sub parameter F2 magn (Hz) also showed a statistically significant difference across both age groups and gender. There was an increase in mean value with an increase in age. Females had a higher mean when compared to males. For F2 rate (/s) a statistically significant difference was observed across age groups. There was an increase in mean value with increase in age. It was observed for Voice and Tremor MFTR (%) that a statistically significant difference was present across age groups and gender. Also for RATR (Hz) there was statistically significant difference across both age groups and gender. In other words, the values of MFTR and RATR increased with an increase in age. Thus, this study highlights the variation of the motor speech parameters amongst the typical population which would be beneficial for comparison with the individuals with motor speech disorders for assessment and management.Keywords: adult, children, diadochokinetic rate, second formant transition, tremor, voice
Procedia PDF Downloads 3088569 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning
Authors: Madhawa Basnayaka, Jouni Paltakari
Abstract:
Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.Keywords: artificial intelligence, chipless RFID, deep learning, machine learning
Procedia PDF Downloads 508568 Pharmacokinetic Study of Clarithromycin in Human Female of Pakistani Population
Authors: Atifa Mushtaq, Tanweer Khaliq, Hafiz Alam Sher, Asia Farid, Anila Kanwal, Maliha Sarfraz
Abstract:
The study was designed to assess the various pharmacokinetic parameters of a commercially available clarithromycin Tablet (Klaricid® 250 mg Abbot, Pakistan) in plasma sample of healthy adult female volunteers by applying a rapid, sensitive and accurate HPLC-UV analytical method. The human plasma samples were evaluated by using an isocratic High Performance Liquid Chromatography (HPLC) system of Sykam consisted of a pump with a column C18 column (250×4.6mn, 5µm) UV-detector. The mobile phase comprises of potassium dihydrogen phosphate (50 mM, pH 6.8, contained 0.7% triethylamine), methanol and acetonitrile (30:25:45, v/v/v) was delivered with injection volume of 20µL at flow rate of 1 mL/min. The detection was performed at λmax 275 nm. By applying this method, important pharmacokinetic parameters Cmax, Tmax, Area under curve (AUC), half-life (t1/2), , Volume of distribution (Vd) and Clearance (Cl) were measured. The parameters of pharmacokinetics of clarithromycin were calculated by software (APO) pharmacological analysis. Maximum plasma concentrations Cmax 2.78 ±0.33 µg/ml, time to reach maximum concentration tmax 2.82 ± 0.11 h and Area under curve AUC was 20.14 h.µg/ml. The mean ± SD values obtained for the pharmacokinetic parameters showed a significant difference in pharmacokinetic parameters observed in previous literature which emphasizes the need for dose adjustment of clarithromycin in Pakistani population.Keywords: Pharmacokinetc, Clarothromycin, HPLC, Pakistan
Procedia PDF Downloads 1088567 Performance Evaluation of Karanja Oil Based Biodiesel Engine Using Modified Genetic Algorithm
Authors: G. Bhushan, S. Dhingra, K. K. Dubey
Abstract:
This paper presents the evaluation of performance (BSFC and BTE), combustion (Pmax) and emission (CO, NOx, HC and smoke opacity) parameters of karanja biodiesel in a single cylinder, four stroke, direct injection diesel engine by considering significant engine input parameters (blending ratio, compression ratio and load torque). Multi-objective optimization of performance, combustion and emission parameters is also carried out in a karanja biodiesel engine using hybrid RSM-NSGA-II technique. The pareto optimum solutions are predicted by running the hybrid RSM-NSGA-II technique. Each pareto optimal solution is having its own importance. Confirmation tests are also conducted at randomly selected few pareto solutions to check the authenticity of the results.Keywords: genetic algorithm, rsm, biodiesel, karanja
Procedia PDF Downloads 306