Search results for: integration features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6311

Search results for: integration features

6011 Healthy and Smart Building Projects

Authors: Ali A. Karakhan

Abstract:

Stakeholders in the architecture, engineering, and construction (AEC) industry have been always searching for strategies to develop, design, and construct healthy and smart building projects. Healthy and smart building projects require that the building process including design and construction be altered and carefully implemented in order to bring about sustainable outcomes throughout the facility lifecycle. Healthy and smart building projects are expected to positively influence organizational success and facility performance across the project lifecycle leading to superior outcomes in terms of people, economy, and the environment. The present study aims to identify potential strategies that AEC organizations can implement to achieve healthy and smart building projects. Drivers and barriers for healthy and smart building features are also examined. The study findings indicate that there are three strategies to advance the development of healthy and smart building projects: (1) the incorporation of high-quality products and low chemical-emitting materials, (2) the integration of innovative designs, methods, and practices, and (3) the adoption of smart technology throughout the facility lifecycle. Satisfying external demands, achievement of a third-party certification, obtaining financial incentives, and a desire to fulfill professional duty are identified as the key drivers for developing healthy and smart building features; whereas, lack of knowledge and training, time/cost constrains, preference for/adherence to customary practices, and unclear business case for why healthy buildings are advantageous are recognized as the primary barriers toward a wider diffusion of healthy and smart building projects. The present study grounded in previous engineering, medical, and public health research provides valuable technical and practical recommendations for facility owners and industry professionals interested in pursuing sustainable, yet healthy and smart building projects.

Keywords: healthy buildings, smart construction, innovative designs, sustainable projects

Procedia PDF Downloads 159
6010 Assessing the Impact of Construction Projects on Disabled Accessibility and Inclusion

Authors: Yasser Aboel-Magd

Abstract:

This research addresses the critical issue of accessibility for individuals with special needs and the broader implications of disability on one's ability to lead an independent and integrated life within society. It highlights the consequences of injury, illness, or disability not only on the physical level but also on psychological, social, educational, economic, and functional aspects of life. The study emphasizes the importance of inclusive design in urban spaces, reflecting on how a society's treatment of individuals with disabilities serves as a measure of its progress. The research delves into the challenges faced by people with special needs in the Kingdom, where, despite advancements in various sectors, there is a noticeable lack of accommodating public opportunities for this significant demographic. It argues for the necessity of a Saudi building code that considers the needs of a diverse population during the design phase. The paper discusses the role of urban space as a fundamental element in urban formation and its impact on the societal integration of individuals with special needs. The study explores a variety of inclusive design principles, ranging from physical features like ramps and tactile paving to digital and cognitive accessibility measures such as screen readers, closed captions, plain language, and visual aids. It also considers the impact of wayfinding and appropriate lighting design on the orientation and assistance of individuals within urban spaces at the lowest cost. The researchers connect inclusive design with sustainable practices, advocating for environments that are not only environmentally friendly but also adaptable and lasting. The paper concludes with the assertion that the integration of accessibility, universal design, and sustainability signifies a society's commitment to inclusivity and the empowerment of all individuals, paving the way for a future where everyone can participate fully and independently in society.

Keywords: accessibility, inclusive design, Saudi building code, disability inclusion, socioeconomic progress

Procedia PDF Downloads 96
6009 Analyses of the Constitutional Identity in Hungary: A Case Study on the Concept of Constitutionalism and Legal Continuity in New Fundamental Law of Hungary

Authors: Zsuzsanna Fejes

Abstract:

The aim of this paper is to provide an overview of the legal history of constitutionalism in Hungary, in focus of the democratic transitions in 1989-1990, describing the historical and political background of the changes and presenting the main and most important features of the new democracy, and institutional and legal orders. In Hungary the evolved political, economic and moral crisis prior to the constitutional years 2010-11 had been such a constitutional moment, which led to an opportune and unavoidable change at the same time. The Hungarian constitutional power intended to adopt a new constitution, which was competent to create a common constitutional identity and to express a national unity. The Hungarian Parliament on 18th April 2011 passed the New Fundamental Law. The new Fundamental Law rich in national values meant a new challenge for the academics, lawyers, and political scientists. Not only the classical political science, but also the constitutional law and theory have to struggle with the interpretation of the new declarations about national constitutional values in the Fundamental Law. The main features and structure of the new Fundamental Law will be analysed, and given a detailed interpretation of the Preamble as a declaration of constitutional values. During the examination of the Preamble shall be cleared up the components of Hungarian statehood and national unity, individual and common human rights, the practical and theoretical demand on national sovereignty, and the content and possibilities for the interpretation of the achievements of the historical Constitution. These scopes of problems will be presented during the examination of the text of National Avowal, as a preamble of the Fundamental Law. It is examined whether the Fundamental Law itself could be suitable and sufficient means to citizens of Hungary to express the ideas therein as their own, it will be analysed how could the national and European common traditions, values and principles stated in the Fundamental Law mean maintenance in Hungary’s participation in the European integration.

Keywords: common constitutional values, constitutionalism, national identity, national sovereignty, national unity, statehood

Procedia PDF Downloads 294
6008 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods

Authors: Mohammad Arabi

Abstract:

The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.

Keywords: electric motor, fault detection, frequency features, temporal features

Procedia PDF Downloads 46
6007 Using Combination of Sets of Features of Molecules for Aqueous Solubility Prediction: A Random Forest Model

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems.

Keywords: solubility, random forest, molecular descriptors, maccs keys

Procedia PDF Downloads 46
6006 The Effects of Integrating Knowledge Management and e-Learning: Productive Work and Learning Coverage

Authors: Ashraf Ibrahim Awad

Abstract:

It is important to formulate suitable learning environments ca-pable to be customized according to value perceptions of the university. In this paper, light is shed on the concepts of integration between knowledge management (KM), and e-learning (EL) in the higher education sector of the economy in Abu Dhabi Emirate, United Arab Emirates (UAE). A discussion on and how KM and EL can be integrated and leveraged for effective education and training is presented. The results are derived from the literature and interviews with 16 of the academics in eight universities in the Emirate. The conclusion is that KM and EL have much to offer each other, but this is not yet reflected at the implementation level, and their boundaries are not always clear. Interviews have shown that both concepts perceived to be closely related and, responsibilities for these initiatives are practiced by different departments or units.

Keywords: knowledge management, e-learning, learning integration, universities, UAE

Procedia PDF Downloads 507
6005 A Comprehensive Study and Evaluation on Image Fashion Features Extraction

Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen

Abstract:

Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.

Keywords: convolutional neural network, feature representation, image processing, machine modelling

Procedia PDF Downloads 139
6004 Cluster-Based Exploration of System Readiness Levels: Mathematical Properties of Interfaces

Authors: Justin Fu, Thomas Mazzuchi, Shahram Sarkani

Abstract:

A key factor in technological immaturity in defense weapons acquisition is lack of understanding critical integrations at the subsystem and component level. To address this shortfall, recent research in integration readiness level (IRL) combines with technology readiness level (TRL) to form a system readiness level (SRL). SRL can be enriched with more robust quantitative methods to provide the program manager a useful tool prior to committing to major weapons acquisition programs. This research harnesses previous mathematical models based on graph theory, Petri nets, and tropical algebra and proposes a modification of the desirable SRL mathematical properties such that a tightly integrated (multitude of interfaces) subsystem can display a lower SRL than an inherently less coupled subsystem. The synthesis of these methods informs an improved decision tool for the program manager to commit to expensive technology development. This research ties the separately developed manufacturing readiness level (MRL) into the network representation of the system and addresses shortfalls in previous frameworks, including the lack of integration weighting and the over-importance of a single extremely immature component. Tropical algebra (based on the minimum of a set of TRLs or IRLs) allows one low IRL or TRL value to diminish the SRL of the entire system, which may not be reflective of actuality if that component is not critical or tightly coupled. Integration connections can be weighted according to importance and readiness levels are modified to be a cardinal scale (based on an analytic hierarchy process). Integration arcs’ importance are dependent on the connected nodes and the additional integrations arcs connected to those nodes. Lack of integration is not represented by zero, but by a perfect integration maturity value. Naturally, the importance (or weight) of such an arc would be zero. To further explore the impact of grouping subsystems, a multi-objective genetic algorithm is then used to find various clusters or communities that can be optimized for the most representative subsystem SRL. This novel calculation is then benchmarked through simulation and using past defense acquisition program data, focusing on the newly introduced Middle Tier of Acquisition (rapidly field prototypes). The model remains a relatively simple, accessible tool, but at higher fidelity and validated with past data for the program manager to decide major defense acquisition program milestones.

Keywords: readiness, maturity, system, integration

Procedia PDF Downloads 92
6003 Integration of Acoustic Solutions for Classrooms

Authors: Eyibo Ebengeobong Eddie, Halil Zafer Alibaba

Abstract:

The neglect of classroom acoustics is dominant in most educational facilities, meanwhile, hearing and listening is the learning process in this kind of facilities. A classroom should therefore be an environment that encourages listening, without an obstacles to understanding what is being taught. Although different studies have shown teachers to complain that noise is the everyday factor that causes stress in classroom, the capacity of individuals to understand speech is further affected by Echoes, Reverberation, and room modes. It is therefore necessary for classrooms to have an ideal acoustics to aid the intelligibility of students in the learning process. The influence of these acoustical parameters on learning and teaching in schools needs to be further researched upon to enhance the teaching and learning capacity of both teacher and student. For this reason, there is a strong need to provide and collect data to analyse and define the suitable quality of classrooms needed for a learning environment. Research has shown that acoustical problems are still experienced in both newer and older schools. However, recently, principle of acoustics has been analysed and room acoustics can now be measured with various technologies and sound systems to improve and solve the problem of acoustics in classrooms. These acoustic solutions, materials, construction methods and integration processes would be discussed in this paper.

Keywords: classroom, acoustics, materials, integration, speech intelligibility

Procedia PDF Downloads 417
6002 Automatic Multi-Label Image Annotation System Guided by Firefly Algorithm and Bayesian Method

Authors: Saad M. Darwish, Mohamed A. El-Iskandarani, Guitar M. Shawkat

Abstract:

Nowadays, the amount of available multimedia data is continuously on the rise. The need to find a required image for an ordinary user is a challenging task. Content based image retrieval (CBIR) computes relevance based on the visual similarity of low-level image features such as color, textures, etc. However, there is a gap between low-level visual features and semantic meanings required by applications. The typical method of bridging the semantic gap is through the automatic image annotation (AIA) that extracts semantic features using machine learning techniques. In this paper, a multi-label image annotation system guided by Firefly and Bayesian method is proposed. Firstly, images are segmented using the maximum variance intra cluster and Firefly algorithm, which is a swarm-based approach with high convergence speed, less computation rate and search for the optimal multiple threshold. Feature extraction techniques based on color features and region properties are applied to obtain the representative features. After that, the images are annotated using translation model based on the Net Bayes system, which is efficient for multi-label learning with high precision and less complexity. Experiments are performed using Corel Database. The results show that the proposed system is better than traditional ones for automatic image annotation and retrieval.

Keywords: feature extraction, feature selection, image annotation, classification

Procedia PDF Downloads 586
6001 Sustainable Design Features Implementing Public Rental Housing for Remodeling

Authors: So-Young Lee, Myoung-Won Oh, Soon-Cheol Eom, Yeon-Won Suh

Abstract:

Buildings produce more than one thirds of the total energy consumption and CO₂ emissions. Korean government agency pronounced and initiated Zero Energy Buildings policy for construction as of 2025. The net zero energy design features include passive (daylight, layout, materials, insulation, finishes, etc.) and active (renewable energy sources) elements. The Zero Energy House recently built in Nowon-gu, Korea is provided for 121 households as a public rental housing complex. However most of public rental housing did not include sustainable features which can reduce housing maintaining cost significantly including energy cost. It is necessary to implement net zero design features to the obsolete public rental housing during the remodeling procedure since it can reduce housing cost in long term. The purpose of this study is to investigate sustainable design elements implemented in Net Zero Energy House in Korea and passive and active housing design features in order to apply the sustainable features to the case public rental apartment for remodeling. Housing complex cases in this study are Nowan zero Energy house, Gangnam Bogemjari House, and public rental housings built in more than 20 years in Seoul areas. As results, energy consumption in public rental housing built in 5-years can be improved by exterior surfaces. Energy optimizing in case housing built in more than 20 years can be enhanced by renovated materials, insulation, replacement of windows, exterior finishes, lightings, gardening, water, renewable energy installation, Green IT except for sunlight and layout of buildings. Further life costing analysis is needed for energy optimizing for case housing alternatives.

Keywords: affordable housing, remodeling, sustainable design, zero-energy house

Procedia PDF Downloads 190
6000 Navigating the Integration of AI in High School Assessment: Strategic Implementation and Ethical Practice

Authors: Loren Clarke, Katie Reed

Abstract:

The integration of artificial intelligence (AI) in high school education assessment offers transformative potential, providing more personalized, timely, and accurate evaluations of student performance. However, the successful adoption of AI-driven assessment systems requires robust change management strategies to navigate the complexities and resistance that often accompany such technological shifts. This presentation explores effective methods for implementing AI in high school assessment, emphasizing the need for strategic planning and stakeholder engagement. Focusing on a case study of a Victorian high school, it will examine the practical steps taken to integrate AI into teaching and learning. This school has developed innovative processes to support academic integrity and foster authentic cogeneration with AI, ensuring that the technology is used ethically and effectively. By creating comprehensive professional development programs for teachers and maintaining transparent communication with students and parents, the school has successfully aligned AI technologies with their existing curricula and assessment frameworks. The session will highlight how AI has enhanced both formative and summative assessments, providing real-time feedback that supports differentiated instruction and fosters a more personalized learning experience. Participants will learn about best practices for managing the integration of AI in high school settings while maintaining a focus on equity and student-centered learning. This presentation aims to equip high school educators with the insights and tools needed to effectively manage the integration of AI in assessment, ultimately improving educational outcomes and preparing students for future success. Methodologies: The research is a case study of a Victorian high school to examine AI integration in assessments, focusing on practical implementation steps, ethical practices, and change management strategies to enhance personalized learning and assessment. Outcomes: This research explores AI integration in high school assessments, focusing on personalized evaluations, ethical use, and change management. A Victorian school case study highlights best practices to enhance assessments and improve student outcomes. Main Contributions: This research contributes by outlining effective AI integration in assessments, showcasing a Victorian school's implementation, and providing best practices for ethical use, change management, and enhancing personalized learning outcomes.

Keywords: artificial intelligence, assessment, curriculum design, teaching and learning, ai in education

Procedia PDF Downloads 21
5999 New Vision of 'Social Europe': Renationalising the Integration Process in the Internal Market of the European Union

Authors: Robert Grzeszczak, Magdalena Gniadzik

Abstract:

The article deals with one of the most significant issues concerning the functioning of the internal market of the European Union – the free movement of workers and free movement of persons. The purpose is to identify the political and legal effects of the “renationalisation process” on the EU and its Member States. The concept of renationalisation is expressed through Member States’ aim to verify the relationship with the EU. The tendency is more visible in the public opinion of several MS’s of the ‘EU core’ and may be confirmed by the changes applied by the regulatory body. The thesis for the article is the return of renationalisation tendencies in the area of the Single Market, which is supported by, among others, an open criticism of the foundations of EU integration or considerations on withdrawal from the EU by some MS. This analysis will focus primarily on the effects that renationalisation may have on the free movement of persons. The free movement of persons is one of the key issues for the development of the European integration. It is still subject to theoretical reflections, new doubts and practical issues. The latest developments in politics, law and jurisprudence demonstrate the need to reflect on the attempts to redefine certain principles regarding migrant EU workers and their protection against nationality-based discrimination.

Keywords: European Union, Singel Market, free movement of persons, posting of workers

Procedia PDF Downloads 229
5998 Least-Square Support Vector Machine for Characterization of Clusters of Microcalcifications

Authors: Baljit Singh Khehra, Amar Partap Singh Pharwaha

Abstract:

Clusters of Microcalcifications (MCCs) are most frequent symptoms of Ductal Carcinoma in Situ (DCIS) recognized by mammography. Least-Square Support Vector Machine (LS-SVM) is a variant of the standard SVM. In the paper, LS-SVM is proposed as a classifier for classifying MCCs as benign or malignant based on relevant extracted features from enhanced mammogram. To establish the credibility of LS-SVM classifier for classifying MCCs, a comparative evaluation of the relative performance of LS-SVM classifier for different kernel functions is made. For comparative evaluation, confusion matrix and ROC analysis are used. Experiments are performed on data extracted from mammogram images of DDSM database. A total of 380 suspicious areas are collected, which contain 235 malignant and 145 benign samples, from mammogram images of DDSM database. A set of 50 features is calculated for each suspicious area. After this, an optimal subset of 23 most suitable features is selected from 50 features by Particle Swarm Optimization (PSO). The results of proposed study are quite promising.

Keywords: clusters of microcalcifications, ductal carcinoma in situ, least-square support vector machine, particle swarm optimization

Procedia PDF Downloads 353
5997 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System

Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas

Abstract:

This paper presents a comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in the speaker-dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signals to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients give best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose, the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfies the real-time requirements and is suitable for applications in embedded systems.

Keywords: isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW

Procedia PDF Downloads 495
5996 Serious Gaming for Behaviour Change: A Review

Authors: Ramy Hammady, Sylvester Arnab

Abstract:

Significant attention has been directed to adopt game interventions practically to change certain behaviours in many disciplines such as health, education, psychology through many years. That’s due to the intrinsic motivation that games can cause and the substantial impact the games can leave on the player. Many review papers were induced to highlight and measure the effectiveness of the game’s interventions on changing behaviours; however, most of these studies neglected the game design process itself and the game features and elements that can stimuli changing behaviours. Therefore, this paper aims to identify the most game design mechanics and features that are the most influencing on changing behaviour during or after games interventions. This paper also sheds light on the theories of changing behaviours that clearly can led the game design process. This study gives directions to game designers to spot the most influential game features and mechanics for changing behaviour games in order to exploit it on the same manner.

Keywords: behaviour change, game design, serious gaming, gamification, review

Procedia PDF Downloads 210
5995 On the Fractional Integration of Generalized Mittag-Leffler Type Functions

Authors: Christian Lavault

Abstract:

In this paper, the generalized fractional integral operators of two generalized Mittag-Leffler type functions are investigated. The special cases of interest involve the generalized M-series and K-function, both introduced by Sharma. The two pairs of theorems established herein generalize recent results about left- and right-sided generalized fractional integration operators applied here to the M-series and the K-function. The note also results in important applications in physics and mathematical engineering.

Keywords: Fox–Wright Psi function, generalized hypergeometric function, generalized Riemann– Liouville and Erdélyi–Kober fractional integral operators, Saigo's generalized fractional calculus, Sharma's M-series and K-function

Procedia PDF Downloads 440
5994 Towards a Successful Implementation of ICT in Education : Analyzing Teacher Practices and Perceptions

Authors: Azzeddine Atibi, Lamalif latifa, Khadija El Kababi, Salim Ahmed, Mohamed Radid

Abstract:

This study analyzes the integration of Information and Communication Technologies (ICT) in modern education, where these tools have become essential. Due to the rapid emergence of new technologies and their increasing adoption in education, it is important to understand how teachers use and perceive these tools. The study pursues three objectives : examining current teacher practices regarding ICT, evaluating their impact on student skills and engagement, and making recommendations for better integration of ICT in education. The study's methodology is based on a quantitative approach, using a questionnaire administered to a sample of 104 teachers. This questionnaire, rigorously validated to ensure its reliability, gathers representative data on perceptions and challenges related to the use of ICT. The results show widespread adoption of ICT by teachers, with the majority reporting an improvement in student skills due to these technologies. However, opinions diverge on their impact on student engagement : some teachers note an increase in engagement, while others remain skeptical. Persistent challenges include insufficient technological infrastructure and the need for ongoing training. The recommendations highlight the importance of improving infrastructures and supporting the professional development of teachers to optimize the integration of ICT.

Keywords: ICT, education, teaching practices, teacher perceptions, continuing education

Procedia PDF Downloads 33
5993 Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout

Authors: Mona Heydari, Ehsan Motamedian, Seyed Abbas Shojaosadati

Abstract:

Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain.

Keywords: metabolic network, gene knockout, flux balance analysis, microarray data, integration

Procedia PDF Downloads 579
5992 Drawing, Design and Building Information Modelling (BIM): Embedding Advanced Digital Tools in the Academy Programs for Building Engineers and Architects

Authors: Vittorio Caffi, Maria Pignataro, Antonio Cosimo Devito, Marco Pesenti

Abstract:

This paper deals with the integration of advanced digital design and modelling tools and methodologies, known as Building Information Modelling, into the traditional Academy educational programs for building engineers and architects. Nowadays, the challenge the Academy has to face is to present the new tools and their features to the pupils, making sure they acquire the proper skills in order to leverage the potential they offer also for the other courses embedded in the educational curriculum. The syllabus here presented refers to the “Drawing for building engineering”, “2D and 3D laboratory” and “3D modelling” curricula of the MSc in Building Engineering of the Politecnico di Milano. Such topics, included since the first year in the MSc program, are fundamental to give the students the instruments to master the complexity of an architectural or building engineering project with digital tools, so as to represent it in its various forms.

Keywords: BIM, BIM curricula, computational design, digital modelling

Procedia PDF Downloads 668
5991 Gait Biometric for Person Re-Identification

Authors: Lavanya Srinivasan

Abstract:

Biometric identification is to identify unique features in a person like fingerprints, iris, ear, and voice recognition that need the subject's permission and physical contact. Gait biometric is used to identify the unique gait of the person by extracting moving features. The main advantage of gait biometric to identify the gait of a person at a distance, without any physical contact. In this work, the gait biometric is used for person re-identification. The person walking naturally compared with the same person walking with bag, coat, and case recorded using longwave infrared, short wave infrared, medium wave infrared, and visible cameras. The videos are recorded in rural and in urban environments. The pre-processing technique includes human identified using YOLO, background subtraction, silhouettes extraction, and synthesis Gait Entropy Image by averaging the silhouettes. The moving features are extracted from the Gait Entropy Energy Image. The extracted features are dimensionality reduced by the principal component analysis and recognised using different classifiers. The comparative results with the different classifier show that linear discriminant analysis outperforms other classifiers with 95.8% for visible in the rural dataset and 94.8% for longwave infrared in the urban dataset.

Keywords: biometric, gait, silhouettes, YOLO

Procedia PDF Downloads 172
5990 Hybrid Treatment Method for Decolorization of Mixed Dyes: Rhodamine-B, Brilliant Green and Congo Red

Authors: D. Naresh Yadav, K. Anand Kishore, Bhaskar Bethi, Shirish H. Sonawane, D. Bhagawan

Abstract:

The untreated industrial wastewater discharged into the environment causes the contamination of soil, water and air. Advanced treatment methods for enhanced wastewater treatment are attracting substantial interest among the currently employed unit processes in wastewater treatment. The textile industry is one of the predominant in wastewater production at current industrialized situation. The refused dyes at textile industry need to be treated in proper manner before its discharge into water bodies. In the present investigation, hybrid treatment process has been developed for the treatment of synthetic mixed dye wastewater. Photocatalysis and ceramic nanoporous membrane are mainly used for process integration to minimize the fouling and increase the flux. Commercial semiconducting powders (TiO2 and ZnO) has used as a nano photocatalyst for the degradation of mixed dye in the hybrid system. Commercial ceramic nanoporous tubular membranes have been used for the rejection of dye and suspended catalysts. Photocatalysis with catalyst has shown the average of 34% of decolorization (RB-32%, BG-34% and CR-36%), whereas ceramic nanofiltration has shown the 56% (RB-54%, BG-56% and CR-58%) of decolorization. Integration of photocatalysis and ceramic nanofiltration has shown 96% (RB-94%, BG-96% and CR-98%) of dye decolorization over 90 min of operation.

Keywords: photocatalysis, ceramic nanoporous membrane, wastewater treatment, advanced oxidation process, process integration

Procedia PDF Downloads 264
5989 A Spectral Decomposition Method for Ordinary Differential Equation Systems with Constant or Linear Right Hand Sides

Authors: R. B. Ogunrinde, C. C. Jibunoh

Abstract:

In this paper, a spectral decomposition method is developed for the direct integration of stiff and nonstiff homogeneous linear (ODE) systems with linear, constant, or zero right hand sides (RHSs). The method does not require iteration but obtains solutions at any random points of t, by direct evaluation, in the interval of integration. All the numerical solutions obtained for the class of systems coincide with the exact theoretical solutions. In particular, solutions of homogeneous linear systems, i.e. with zero RHS, conform to the exact analytical solutions of the systems in terms of t.

Keywords: spectral decomposition, linear RHS, homogeneous linear systems, eigenvalues of the Jacobian

Procedia PDF Downloads 330
5988 Psychological Capital as Pathways to Social Well-Being Among International Faculty in UAE: A Mediated-Moderated Study

Authors: Ejoke U. P., Smitha Dev., Madwuke Ann, DuPlessis E. D.

Abstract:

The study examines the relationship between psychological capital (PsyCap) and social well-being among international faculty members in the United Arab Emirates (UAE). The UAE has become a significant destination for global academic talent, yet challenges related to social integration, acceptance, and overall well-being persist among its international faculty. The study focuses on the predictive role of PsyCap, encompassing hope, efficacy, resilience, and optimism, in determining various dimensions of social well-being, including social integration, acceptance, contribution, actualization, and coherence. Additionally, the research investigates the potential moderating or mediating effects of institutional support and Faculty Job-Status position on the relationship between PsyCap and social well-being. Through structural equation modeling, we found that institutional support mediated the positive relationship between PsyCap and SWB and the permanent Faculty job-status position type strengthens the relationship between PsyCap and SWB. Our findings uncover the pathways through which PsyCap influences the social well-being outcomes of international faculty in the UAE. The findings will contribute to the development of tailored interventions and support systems aimed at enhancing the integration experiences and overall well-being of international faculty within the UAE academic community. Thus, fostering a more inclusive and thriving academic environment in the UAE.

Keywords: faculty job-status, institutional-faculty, psychological capital, social well-being, UAE

Procedia PDF Downloads 53
5987 Analysis of Matching Pursuit Features of EEG Signal for Mental Tasks Classification

Authors: Zin Mar Lwin

Abstract:

Brain Computer Interface (BCI) Systems have developed for people who suffer from severe motor disabilities and challenging to communicate with their environment. BCI allows them for communication by a non-muscular way. For communication between human and computer, BCI uses a type of signal called Electroencephalogram (EEG) signal which is recorded from the human„s brain by means of an electrode. The electroencephalogram (EEG) signal is an important information source for knowing brain processes for the non-invasive BCI. Translating human‟s thought, it needs to classify acquired EEG signal accurately. This paper proposed a typical EEG signal classification system which experiments the Dataset from “Purdue University.” Independent Component Analysis (ICA) method via EEGLab Tools for removing artifacts which are caused by eye blinks. For features extraction, the Time and Frequency features of non-stationary EEG signals are extracted by Matching Pursuit (MP) algorithm. The classification of one of five mental tasks is performed by Multi_Class Support Vector Machine (SVM). For SVMs, the comparisons have been carried out for both 1-against-1 and 1-against-all methods.

Keywords: BCI, EEG, ICA, SVM

Procedia PDF Downloads 277
5986 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features

Authors: Bushra Zafar, Usman Qamar

Abstract:

Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.

Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection

Procedia PDF Downloads 316
5985 Passive Solar Techniques to Improve Thermal Comfort and Reduce Energy Consumption of Domestic Use

Authors: Naci Kalkan, Ihsan Dagtekin

Abstract:

Passive design responds to improve indoor thermal comfort and minimize the energy consumption. The present research analyzed the how efficiently passive solar technologies generate heating and cooling and provide the system integration for domestic applications. In addition to this, the aim of this study is to increase the efficiency of solar systems system with integration some innovation and optimization. As a result, outputs of the project might start a new sector to provide environmentally friendly and cheap cooling for domestic use.

Keywords: passive solar systems, heating, cooling, thermal comfort, ventilation systems

Procedia PDF Downloads 299
5984 JavaScript Object Notation Data against eXtensible Markup Language Data in Software Applications a Software Testing Approach

Authors: Theertha Chandroth

Abstract:

This paper presents a comparative study on how to check JSON (JavaScript Object Notation) data against XML (eXtensible Markup Language) data from a software testing point of view. JSON and XML are widely used data interchange formats, each with its unique syntax and structure. The objective is to explore various techniques and methodologies for validating comparison and integration between JSON data to XML and vice versa. By understanding the process of checking JSON data against XML data, testers, developers and data practitioners can ensure accurate data representation, seamless data interchange, and effective data validation.

Keywords: XML, JSON, data comparison, integration testing, Python, SQL

Procedia PDF Downloads 140
5983 Design and Integration of a Renewable Energy Based Polygeneration System with Desalination for an Industrial Plant

Authors: Lucero Luciano, Cesar Celis, Jose Ramos

Abstract:

Polygeneration improves energy efficiency and reduce both energy consumption and pollutant emissions compared to conventional generation technologies. A polygeneration system is a variation of a cogeneration one, in which more than two outputs, i.e., heat, power, cooling, water, energy or fuels, are accounted for. In particular, polygeneration systems integrating solar energy and water desalination represent promising technologies for energy production and water supply. They are therefore interesting options for coastal regions with a high solar potential, such as those located in southern Peru and northern Chile. Notice that most of the Peruvian and Chilean mining industry operations intensive in electricity and water consumption are located in these particular regions. Accordingly, this work focus on the design and integration of a polygeneration system producing industrial heating, cooling, electrical power and water for an industrial plant. The design procedure followed in this work involves integer linear programming modeling (MILP), operational planning and dynamic operating conditions. The technical and economic feasibility of integrating renewable energy technologies (photovoltaic and solar thermal, PV+CPS), thermal energy store, power and thermal exchange, absorption chillers, cogeneration heat engines and desalination technologies is particularly assessed. The polygeneration system integration carried out seek to minimize the system total annual cost subject to CO2 emissions restrictions. Particular economic aspects accounted for include investment, maintenance and operating costs.

Keywords: desalination, design and integration, polygeneration systems, renewable energy

Procedia PDF Downloads 125
5982 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification

Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh

Abstract:

The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.

Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine

Procedia PDF Downloads 638