Search results for: horizontal derivative
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1143

Search results for: horizontal derivative

843 Assessing the Legacy Effects of Wildfire on Eucalypt Canopy Structure of South Eastern Australia

Authors: Yogendra K. Karna, Lauren T. Bennett

Abstract:

Fire-tolerant eucalypt forests are one of the major forest ecosystems of south-eastern Australia and thought to be highly resistant to frequent high severity wildfires. However, the impact of different severity wildfires on the canopy structure of fire-tolerant forest type is under-studied, and there are significant knowledge gaps in relation to the assessment of tree and stand level canopy structural dynamics and recovery after fire. Assessment of canopy structure is a complex task involving accurate measurements of the horizontal and vertical arrangement of the canopy in space and time. This study examined the utility of multitemporal, small-footprint lidar data to describe the changes in the horizontal and vertical canopy structure of fire-tolerant eucalypt forests seven years after wildfire of different severities from the tree to stand level. Extensive ground measurements were carried out in four severity classes to describe and validate canopy cover and height metrics as they change after wildfire. Several metrics such as crown height and width, crown base height and clumpiness of crown were assessed at tree and stand level using several individual tree top detection and measurement algorithm. Persistent effects of high severity fire 8 years after both on tree crowns and stand canopy were observed. High severity fire increased the crown depth but decreased the crown projective cover leading to more open canopy.

Keywords: canopy gaps, canopy structure, crown architecture, crown projective cover, multi-temporal lidar, wildfire severity

Procedia PDF Downloads 158
842 Density functional (DFT), Study of the Structural and Phase Transition of ThC and ThN: LDA vs GGA Computational

Authors: Hamza Rekab Djabri, Salah Daoud

Abstract:

The present paper deals with the computational of structural and electronic properties of ThC and ThN compounds using density functional theory within generalized-gradient (GGA) apraximation and local density approximation (LDA). We employ the full potential linear muffin-tin orbitals (FP-LMTO) as implemented in the Lmtart code. We have used to examine structure parameter in eight different structures such as in NaCl (B1), CsCl (B2), ZB (B3), NiAs (B8), PbO (B10), Wurtzite (B4) , HCP (A3) βSn (A5) structures . The equilibrium lattice parameter, bulk modulus, and its pressure derivative were presented for all calculated phases. The calculated ground state properties are in good agreement with available experimental and theoretical results.

Keywords: DFT, GGA, LDA, properties structurales, ThC, ThN

Procedia PDF Downloads 82
841 Prediction of Pile-Raft Responses Induced by Adjacent Braced Excavation in Layered Soil

Authors: Linlong Mu, Maosong Huang

Abstract:

Considering excavations in urban areas, the soil deformation induced by the excavations usually causes damage to the surrounding structures. Displacement control becomes a critical indicator of foundation design in order to protect the surrounding structures. Evaluation, the damage potential of the surrounding structures induced by the excavations, usually depends on the finite element method (FEM) because of the complexity of the excavation and the variety of the surrounding structures. Besides, evaluation the influence of the excavation on surrounding structures is a three-dimensional problem. And it is now well recognized that small strain behaviour of the soil influences the responses of the excavation significantly. Three-dimensional FEM considering small strain behaviour of the soil is a very complex method, which is hard for engineers to use. Thus, it is important to obtain a simplified method for engineers to predict the influence of the excavations on the surrounding structures. Based on large-scale finite element calculation with small-strain based soil model coupling with inverse analysis, an empirical method is proposed to calculate the three-dimensional soil movement induced by braced excavation. The empirical method is able to capture the small-strain behaviour of the soil. And it is suitable to be used in layered soil. Then the free-field soil movement is applied to the pile to calculate the responses of the pile in both vertical and horizontal directions. The asymmetric solutions for problems in layered elastic half-space are employed to solve the interactions between soil points. Both vertical and horizontal pile responses are solved through finite difference method based on elastic theory. Interactions among the nodes along a single pile, pile-pile interactions, pile-soil-pile interaction action and soil-soil interactions are counted to improve the calculation accuracy of the method. For passive piles, the shadow effects are also calculated in the method. Finally, the restrictions of the raft on the piles and the soils are summarized as: (1) the summations of the internal forces between the elements of the raft and the elements of the foundation, including piles and soil surface elements, is equal to 0; (2) the deformations of pile heads or of the soil surface elements are the same as the deformations of the corresponding elements of the raft. Validations are carried out by comparing the results from the proposed method with the results from the model tests, FEM and other existing literatures. From the comparisons, it can be seen that the results from the proposed method fit with the results from other methods very well. The method proposed herein is suitable to predict the responses of the pile-raft foundation induced by braced excavation in layered soil in both vertical and horizontal directions when the deformation is small. However, more data is needed to verify the method before it can be used in practice.

Keywords: excavation, pile-raft foundation, passive piles, deformation control, soil movement

Procedia PDF Downloads 215
840 Design Challenges for Severely Skewed Steel Bridges

Authors: Muna Mitchell, Akshay Parchure, Krishna Singaraju

Abstract:

There is an increasing need for medium- to long-span steel bridges with complex geometry due to site restrictions in developed areas. One of the solutions to grade separations in congested areas is to use longer spans on skewed supports that avoid at-grade obstructions limiting impacts to the foundation. Where vertical clearances are also a constraint, continuous steel girders can be used to reduce superstructure depths. Combining continuous long steel spans on severe skews can resolve the constraints at a cost. The behavior of skewed girders is challenging to analyze and design with subsequent complexity during fabrication and construction. As a part of a corridor improvement project, Walter P Moore designed two 1700-foot side-by-side bridges carrying four lanes of traffic in each direction over a railroad track. The bridges consist of prestressed concrete girder approach spans and three-span continuous steel plate girder units. The roadway design added complex geometry to the bridge with horizontal and vertical curves combined with superelevation transitions within the plate girder units. The substructure at the steel units was skewed approximately 56 degrees to satisfy the existing railroad right-of-way requirements. A horizontal point of curvature (PC) near the end of the steel units required the use flared girders and chorded slab edges. Due to the flared girder geometry, the cross-frame spacing in each bay is unique. Staggered cross frames were provided based on AASHTO LRFD and NCHRP guidelines for high skew steel bridges. Skewed steel bridges develop significant forces in the cross frames and rotation in the girder websdue to differential displacements along the girders under dead and live loads. In addition, under thermal loads, skewed steel bridges expand and contract not along the alignment parallel to the girders but along the diagonal connecting the acute corners, resulting in horizontal displacement both along and perpendicular to the girders. AASHTO LRFD recommends a 95 degree Fahrenheit temperature differential for the design of joints and bearings. The live load and the thermal loads resulted in significant horizontal forces and rotations in the bearings that necessitated the use of HLMR bearings. A unique bearing layout was selected to minimize the effect of thermal forces. The span length, width, skew, and roadway geometry at the bridges also required modular bridge joint systems (MBJS) with inverted-T bent caps to accommodate movement in the steel units. 2D and 3D finite element analysis models were developed to accurately determine the forces and rotations in the girders, cross frames, and bearings and to estimate thermal displacements at the joints. This paper covers the decision-making process for developing the framing plan, bearing configurations, joint type, and analysis models involved in the design of the high-skew three-span continuous steel plate girder bridges.

Keywords: complex geometry, continuous steel plate girders, finite element structural analysis, high skew, HLMR bearings, modular joint

Procedia PDF Downloads 169
839 Integration of Gravity and Seismic Methods in the Geometric Characterization of a Dune Reservoir: Case of the Zouaraa Basin, NW Tunisia

Authors: Marwa Djebbi, Hakim Gabtni

Abstract:

Gravity is a continuously advancing method that has become a mature technology for geological studies. Increasingly, it has been used to complement and constrain traditional seismic data and even used as the only tool to get information of the sub-surface. In fact, in some regions the seismic data, if available, are of poor quality and hard to be interpreted. Such is the case for the current study area. The Nefza zone is part of the Tellian fold and thrust belt domain in the north west of Tunisia. It is essentially made of a pile of allochthonous units resulting from a major Neogene tectonic event. Its tectonic and stratigraphic developments have always been subject of controversies. Considering the geological and hydrogeological importance of this area, a detailed interdisciplinary study has been conducted integrating geology, seismic and gravity techniques. The interpretation of Gravity data allowed the delimitation of the dune reservoir and the identification of the regional lineaments contouring the area. It revealed the presence of three gravity lows that correspond to the dune of Zouara and Ouchtata separated along with a positive gravity axis espousing the Ain Allega_Aroub Er Roumane axe. The Bouguer gravity map illustrated the compartmentalization of the Zouara dune into two depressions separated by a NW-SE anomaly trend. This constitution was confirmed by the vertical derivative map which showed the individualization of two depressions with slightly different anomaly values. The horizontal gravity gradient magnitude was performed in order to determine the different geological features present in the studied area. The latest indicated the presence of NE-SW parallel folds according to the major Atlasic direction. Also, NW-SE and EW trends were identified. The maxima tracing confirmed this direction by the presence of NE-SW faults, mainly the Ghardimaou_Cap Serrat accident. The quality of the available seismic sections and the absence of borehole data in the region, except few hydraulic wells that been drilled and showing the heterogeneity of the substratum of the dune, required the process of gravity modeling of this challenging area that necessitates to be modeled for the geometrical characterization of the dune reservoir and determine the different stratigraphic series underneath these deposits. For more detailed and accurate results, the scale of study will be reduced in coming research. A more concise method will be elaborated; the 4D microgravity survey. This approach is considered as an expansion of gravity method and its fourth dimension is time. It will allow a continuous and repeated monitoring of fluid movement in the subsurface according to the micro gal (μgall) scale. The gravity effect is a result of a monthly variation of the dynamic groundwater level which correlates with rainfall during different periods.

Keywords: 3D gravity modeling, dune reservoir, heterogeneous substratum, seismic interpretation

Procedia PDF Downloads 282
838 A Generalisation of Pearson's Curve System and Explicit Representation of the Associated Density Function

Authors: S. B. Provost, Hossein Zareamoghaddam

Abstract:

A univariate density approximation technique whereby the derivative of the logarithm of a density function is assumed to be expressible as a rational function is introduced. This approach which extends Pearson’s curve system is solely based on the moments of a distribution up to a determinable order. Upon solving a system of linear equations, the coefficients of the polynomial ratio can readily be identified. An explicit solution to the integral representation of the resulting density approximant is then obtained. It will be explained that when utilised in conjunction with sample moments, this methodology lends itself to the modelling of ‘big data’. Applications to sets of univariate and bivariate observations will be presented.

Keywords: density estimation, log-density, moments, Pearson's curve system

Procedia PDF Downloads 262
837 Adequacy of Advanced Earthquake Intensity Measures for Estimation of Damage under Seismic Excitation with Arbitrary Orientation

Authors: Konstantinos G. Kostinakis, Manthos K. Papadopoulos, Asimina M. Athanatopoulou

Abstract:

An important area of research in seismic risk analysis is the evaluation of expected seismic damage of structures under a specific earthquake ground motion. Several conventional intensity measures of ground motion have been used to estimate their damage potential to structures. Yet, none of them was proved to be able to predict adequately the seismic damage of any structural system. Therefore, alternative advanced intensity measures which take into account not only ground motion characteristics but also structural information have been proposed. The adequacy of a number of advanced earthquake intensity measures in prediction of structural damage of 3D R/C buildings under seismic excitation which attacks the building with arbitrary incident angle is investigated in the present paper. To achieve this purpose, a symmetric in plan and an asymmetric 5-story R/C building are studied. The two buildings are subjected to 20 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along horizontal orthogonal axes forming 72 different angles with the structural axes. The response is computed by non-linear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures determined for incident angle 0° as well as their maximum values over all seismic incident angles are correlated with 9 structure-specific ground motion intensity measures. The research identified certain intensity measures which exhibited strong correlation with the seismic damage of the two buildings. However, their adequacy for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.

Keywords: damage indices, non-linear response, seismic excitation angle, structure-specific intensity measures

Procedia PDF Downloads 485
836 A Trapezoidal-Like Integrator for the Numerical Solution of One-Dimensional Time Dependent Schrödinger Equation

Authors: Johnson Oladele Fatokun, I. P. Akpan

Abstract:

In this paper, the one-dimensional time dependent Schrödinger equation is discretized by the method of lines using a second order finite difference approximation to replace the second order spatial derivative. The evolving system of stiff ordinary differential equation (ODE) in time is solved numerically by an L-stable trapezoidal-like integrator. Results show accuracy of relative maximum error of order 10-4 in the interval of consideration. The performance of the method as compared to an existing scheme is considered favorable.

Keywords: Schrodinger’s equation, partial differential equations, method of lines (MOL), stiff ODE, trapezoidal-like integrator

Procedia PDF Downloads 406
835 Influence of Magnetic Field on Microstructure and Properties of Copper-Silver Composites

Authors: Engang Wang

Abstract:

The Cu-alloy composites are a kind of high-strength and high-conductivity Cu-based alloys, which have excellent mechanical and electrical properties and is widely used in electronic, electrical, machinery industrial fields. However, the solidification microstructure of the composites, such as the primary or second dendrite arm spacing, have important rule to its tensile strength and conductivity, and that is affected by its fabricating method. In this paper, two kinds of directional solidification methods; the exothermic powder method (EP method) and liquid metal cooling method (LMC method), were used to fabricate the Cu-alloy composites with applied different magnetic fields to investigate their influence on the solidifying microstructure of Cu-alloy, and further the fabricated Cu-alloy composites was drawn to wires to investigate the influence of fabricating method and magnetic fields on the drawing microstructure of fiber-reinforced Cu-alloy composites and its properties. The experiment of Cu-Ag alloy under directional solidification and horizontal magnetic fields with different processing parameters show that: 1) For the Cu-Ag alloy with EP method, the dendrite is directionally developed in the cooling copper mould and the solidifying microstructure is effectively refined by applying horizontal magnetic fields. 2) For the Cu-Ag alloy with LMC method, the primary dendrite arm spacing is decreased and the content of Ag in the dendrite increases as increasing the drawing velocity of solidification. 3) The dendrite is refined and the content of Ag in the dendrite increases as increasing the magnetic flux intensity; meanwhile, the growth direction of dendrite is also affected by magnetic field. The research results of Cu-Ag alloy in situ composites by drawing deforming process show that the micro-hardness of alloy is higher by decreasing dendrite arm spacing. When the dendrite growth orientation is consistent with the axial of the samples. the conductivity of the composites increases with the second dendrite arm spacing increases. However, its conductivity reduces with the applied magnetic fields owing to disrupting the dendrite growth orientation.

Keywords: Cu-Ag composite, magnetic field, microstructure, solidification

Procedia PDF Downloads 202
834 Design and Analysis of Deep Excavations

Authors: Barham J. Nareeman, Ilham I. Mohammed

Abstract:

Excavations in urban developed area are generally supported by deep excavation walls such as; diaphragm wall, bored piles, soldier piles and sheet piles. In some cases, these walls may be braced by internal braces or tie back anchors. Tie back anchors are by far the predominant method for wall support, the large working space inside the excavation provided by a tieback anchor system has a significant construction advantage. This paper aims to analyze a deep excavation bracing system of contiguous pile wall braced by pre-stressed tie back anchors, which is a part of a huge residential building project, located in Turkey/Gaziantep province. The contiguous pile wall will be constructed with a length of 270 m that consists of 285 piles, each having a diameter of 80 cm, and a center to center spacing of 95 cm. The deformation analysis was carried out by a finite element analysis tool using PLAXIS. In the analysis, beam element method together with an elastic perfect plastic soil model and Soil Hardening Model was used to design the contiguous pile wall, the tieback anchor system, and the soil. The two soil clusters which are limestone and a filled soil were modelled with both Hardening soil and Mohr Coulomb models. According to the basic design, both soil clusters are modelled as drained condition. The simulation results show that the maximum horizontal movement of the walls and the maximum settlement of the ground are convenient with 300 individual case histories which are ranging between 1.2mm and 2.3mm for walls, and 15mm and 6.5mm for the settlements. It was concluded that tied-back contiguous pile wall can be satisfactorily modelled using Hardening soil model.

Keywords: deep excavation, finite element, pre-stressed tie back anchors, contiguous pile wall, PLAXIS, horizontal deflection, ground settlement

Procedia PDF Downloads 239
833 A Quadcopter Stability Analysis: A Case Study Using Simulation

Authors: C. S. Bianca Sabrina, N. Egidio Raimundo, L. Alexandre Baratella, C. H. João Paulo

Abstract:

This paper aims to present a study, with the theoretical concepts and applications of the Quadcopter, using the MATLAB simulator. In order to use this tool, the study of the stability of the drone through a Proportional - Integral - Derivative (PID) controller will be presented. After the stability study, some tests are done on the simulator and its results will be presented. From the mathematical model, it is possible to find the Newton-Euler angles, so that it is possible to stabilize the quadcopter in a certain position in the air, starting from the ground. In order to understand the impact of the controllers gain values on the stabilization of the Euler-Newton angles, three conditions will be tested with different controller gain values.

Keywords: controllers, drones, quadcopter, stability

Procedia PDF Downloads 182
832 A Constructed Wetland as a Reliable Method for Grey Wastewater Treatment in Rwanda

Authors: Hussein Bizimana, Osman Sönmez

Abstract:

Constructed wetlands are current the most widely recognized waste water treatment option, especially in developing countries where they have the potential for improving water quality and creating valuable wildlife habitat in ecosystem with treatment requirement relatively simple for operation and maintenance cost. Lack of grey waste water treatment facilities in Kigali İnstitute of Science and Technology in Rwanda, causes pollution in the surrounding localities of Rugunga sector, where already a problem of poor sanitation is found. In order to treat grey water produced at Kigali İnstitute of Science and Technology, with high BOD concentration, high nutrients concentration and high alkalinity; a Horizontal Sub-surface Flow pilot-scale constructed wetland was designed and can operate in Kigali İnstitute of Science and Technology. The study was carried out in a sedimentation tank of 5.5 m x 1.42 m x 1.2 m deep and a Horizontal Sub-surface constructed wetland of 4.5 m x 2.5 m x 1.42 m deep. The grey waste water flow rate of 2.5 m3/d flew through vegetated wetland and sandy pilot plant. The filter media consisted of 0.6 to 2 mm of coarse sand, 0.00003472 m/s of hydraulic conductivity and cattails (Typha latifolia spp) were used as plants species. The effluent flow rate of the plant is designed to be 1.5 m3/ day and the retention time will be 24 hrs. 72% to 79% of BOD, COD, and TSS removals are estimated to be achieved, while the nutrients (Nitrogen and Phosphate) removal is estimated to be in the range of 34% to 53%. Every effluent characteristic will meet exactly the Rwanda Utility Regulatory Agency guidelines primarily because the retention time allowed is enough to make the reduction of contaminants within effluent raw waste water. Treated water reuse system was developed where water will be used in the campus irrigation system again.

Keywords: constructed wetlands, hydraulic conductivity, grey waste water, cattails

Procedia PDF Downloads 587
831 An Optimal and Efficient Family of Fourth-Order Methods for Nonlinear Equations

Authors: Parshanth Maroju, Ramandeep Behl, Sandile S. Motsa

Abstract:

In this study, we proposed a simple and interesting family of fourth-order multi-point methods without memory for obtaining simple roots. This family requires only three functional evaluations (viz. two of functions f(xn), f(yn) and third one of its first-order derivative f'(xn)) per iteration. Moreover, the accuracy and validity of new schemes is tested by a number of numerical examples are also proposed to illustrate their accuracy by comparing them with the new existing optimal fourth-order methods available in the literature. It is found that they are very useful in high precision computations. Further, the dynamic study of these methods also supports the theoretical aspect.

Keywords: basins of attraction, nonlinear equations, simple roots, Newton's method

Procedia PDF Downloads 300
830 Descent Algorithms for Optimization Algorithms Using q-Derivative

Authors: Geetanjali Panda, Suvrakanti Chakraborty

Abstract:

In this paper, Newton-like descent methods are proposed for unconstrained optimization problems, which use q-derivatives of the gradient of an objective function. First, a local scheme is developed with alternative sufficient optimality condition, and then the method is extended to a global scheme. Moreover, a variant of practical Newton scheme is also developed introducing a real sequence. Global convergence of these schemes is proved under some mild conditions. Numerical experiments and graphical illustrations are provided. Finally, the performance profiles on a test set show that the proposed schemes are competitive to the existing first-order schemes for optimization problems.

Keywords: Descent algorithm, line search method, q calculus, Quasi Newton method

Procedia PDF Downloads 382
829 U Slot Loaded Wearable Textile Antenna

Authors: Varsha Kheradiya, Ganga Prasad Pandey

Abstract:

The use of wearable antennas is rising because wireless devices become small. The wearable antenna is part of clothes used in communication applications, including energy harvesting, medical application, navigation, and tracking. In current years, Antennas embroidered on clothes, conducting antennas based on fabric, polymer embedded antennas, and inkjet-printed antennas are all attractive ways. Also shows the analysis required for wearable antennas, such as wearable antennae interacting with the human body. The primary requirements for the antenna are small size, low profile minimizing radiation absorption by the human body, high efficiency, structural integrity to survive worst situations, and good gain. Therefore, research in energy harvesting, biomedicine, and military application design is increasingly favoring flexible wearable antennas. Textile materials that are effectively used for designing and developing wearable antennas for body area networks. The wireless body area network is primarily concerned with creating effective antenna systems. The antenna should reduce their size, be lightweight, and be adaptable when integrated into clothes. When antennas integrate into clothes, it provides a convenient alternative to those fabricated using rigid substrates. This paper presents a study of U slot loaded wearable textile antenna. U slot patch antenna design is illustrated for wideband from 1GHz to 6 GHz using textile material jeans as substrate and pure copper polyester taffeta fabric as conducting material. This antenna design exhibits dual band results for WLAN at 2.4 GHz and 3.6 GHz frequencies. Also, study U slot position horizontal and vertical shifting. Shifting the horizontal positive X-axis position of the U slot produces the third band at 5.8 GHz.

Keywords: microstrip patch antenna, textile material, U slot wearable antenna, wireless body area network

Procedia PDF Downloads 71
828 Effect of Baffles on the Cooling of Electronic Components

Authors: O. Bendermel, C. Seladji, M. Khaouani

Abstract:

In this work, we made a numerical study of the thermal and dynamic behaviour of air in a horizontal channel with electronic components. The influence to use baffles on the profiles of velocity and temperature is discussed. The finite volume method and the algorithm Simple are used for solving the equations of conservation of mass, momentum and energy. The results found show that baffles improve heat transfer between the cooling air and electronic components. The velocity will increase from 3 times per rapport of the initial velocity.

Keywords: electronic components, baffles, cooling, fluids engineering

Procedia PDF Downloads 279
827 Measurement of Intermediate Slip Rate of Sabzpushan Fault Zone in Southwestern Iran, Using Optically Stimulated Luminescence (OSL) Dating

Authors: Iman Nezamzadeh, Ali Faghih, Behnam Oveisi

Abstract:

In order to reduce earthquake hazards in urban areas, it is necessary to perform comprehensive studies to understand the dynamics of the active faults and identify potentially high risk areas. The fault slip-rates in Late Quaternary sediment are critical indicators of seismic hazard and also provide valuable data to recognize young crustal deformations. To measure slip-rates accurately, is needed to displacement of geomorphic markers and ages of quaternary sediment samples of alluvial deposit that deformed by movements on fault. In this study we produced information about Intermediate term slip rate of Sabzpushan Fault Zone (SPF) within the central part of the Zagros Mountains of Iran using OSL dating technique to make better analysis of seismic hazard and seismic risk reduction for Shiraz city. For this purpose identifiable geomorphic fluvial surfaces help us to provide a reference frame to determine differential or absolute horizontal and vertical deformation. Optically stimulated luminescence (OSL) is an alternative and independent method of determining the burial age of mineral grains in Quaternary sediments. Field observation and satellite imagery show geomorphic markers that deformed horizontally along the Sabzpoushan Fault. Here, drag folds is forming because of evaporites material of Miocen Formation. We estimate 2.8±0.5 mm/yr (mm/y) horizontal slip rate along the Sabzpushan fault zone, where ongoing deformation is involve with drug folding. The Soltan synclinal structure, close to the Sabzpushan fault, shows slight uplift rate due to active core-extrousion.

Keywords: slip rate, active tectonics, OSL, geomorphic markers, Sabzpushan Fault Zone, Zagros, Iran

Procedia PDF Downloads 335
826 Seismic Hazard Assessment of Tehran

Authors: Dorna Kargar, Mehrasa Masih

Abstract:

Due to its special geological and geographical conditions, Iran has always been exposed to various natural hazards. Earthquake is one of the natural hazards with random nature that can cause significant financial damages and casualties. This is a serious threat, especially in areas with active faults. Therefore, considering the population density in some parts of the country, locating and zoning high-risk areas are necessary and significant. In the present study, seismic hazard assessment via probabilistic and deterministic method for Tehran, the capital of Iran, which is located in Alborz-Azerbaijan province, has been done. The seismicity study covers a range of 200 km from the north of Tehran (X=35.74° and Y= 51.37° in LAT-LONG coordinate system) to identify the seismic sources and seismicity parameters of the study region. In order to identify the seismic sources, geological maps at the scale of 1: 250,000 are used. In this study, we used Kijko-Sellevoll's method (1992) to estimate seismicity parameters. The maximum likelihood estimation of earthquake hazard parameters (maximum regional magnitude Mmax, activity rate λ, and the Gutenberg-Richter parameter b) from incomplete data files is extended to the case of uncertain magnitude values. By the combination of seismicity and seismotectonic studies of the site, the acceleration with antiseptic probability may happen during the useful life of the structure is calculated with probabilistic and deterministic methods. Applying the results of performed seismicity and seismotectonic studies in the project and applying proper weights in used attenuation relationship, maximum horizontal and vertical acceleration for return periods of 50, 475, 950 and 2475 years are calculated. Horizontal peak ground acceleration on the seismic bedrock for 50, 475, 950 and 2475 return periods are 0.12g, 0.30g, 0.37g and 0.50, and Vertical peak ground acceleration on the seismic bedrock for 50, 475, 950 and 2475 return periods are 0.08g, 0.21g, 0.27g and 0.36g.

Keywords: peak ground acceleration, probabilistic and deterministic, seismic hazard assessment, seismicity parameters

Procedia PDF Downloads 51
825 An Iterative Family for Solution of System of Nonlinear Equations

Authors: Sonia Sonia

Abstract:

This paper presents a family of iterative scheme for solving nonlinear systems of equations which have wide application in sciences and engineering. The proposed iterative family is based upon some parameters which generates many different iterative schemes. This family is completely derivative free and uses first of divided difference operator. Moreover some numerical experiments are performed and compared with existing methods. Analysis of convergence shows that the presented family has fourth-order of convergence. The dynamical behaviour of proposed family and local convergence have also been discussed. The numerical performance and convergence region comparison demonstrates that proposed family is efficient.

Keywords: convergence, divided difference operator, nonlinear system, Newton's method

Procedia PDF Downloads 217
824 Full Potential Calculation of Structural and Electronic Properties of Perovskite BiAlO3 and BiGaO3

Authors: M. Harmel, H. Khachai

Abstract:

The first principles within the full potential linearized augmented plane wave (FP-LAPW) method were applied to study the structural and electronic properties of cubic perovskite-type compounds BiAlO3 and BiGaO3. The lattice constant, bulk modulus, its pressure derivative, band structure and density of states were obtained. The results show that BiGaO3 should exhibit higher hardness and stiffness than BiAlO3. The Al–O or Ga–O bonds are typically covalent with a strong hybridization as well as Bi–O ones that have a significant ionic character. Both materials are weakly ionic and exhibit wide and indirect band gaps, which are typical of insulators.

Keywords: DFT, Ab initio, electronic structure, Perovskite structure, ferroelectrics

Procedia PDF Downloads 384
823 Numerical Wave Solutions for Nonlinear Coupled Equations Using Sinc-Collocation Method

Authors: Kamel Al-Khaled

Abstract:

In this paper, numerical solutions for the nonlinear coupled Korteweg-de Vries, (abbreviated as KdV) equations are calculated by Sinc-collocation method. This approach is based on a global collocation method using Sinc basis functions. First, discretizing time derivative of the KdV equations by a classic finite difference formula, while the space derivatives are approximated by a $\theta-$weighted scheme. Sinc functions are used to solve these two equations. Soliton solutions are constructed to show the nature of the solution. The numerical results are shown to demonstrate the efficiency of the newly proposed method.

Keywords: Nonlinear coupled KdV equations, Soliton solutions, Sinc-collocation method, Sinc functions

Procedia PDF Downloads 510
822 Production and Characterization of Biochars from Torrefaction of Biomass

Authors: Serdar Yaman, Hanzade Haykiri-Acma

Abstract:

Biomass is a CO₂-neutral fuel that is renewable and sustainable along with having very huge global potential. Efficient use of biomass in power generation and production of biomass-based biofuels can mitigate the greenhouse gasses (GHG) and reduce dependency on fossil fuels. There are also other beneficial effects of biomass energy use such as employment creation and pollutant reduction. However, most of the biomass materials are not capable of competing with fossil fuels in terms of energy content. High moisture content and high volatile matter yields of biomass make it low calorific fuel, and it is very significant concern over fossil fuels. Besides, the density of biomass is generally low, and it brings difficulty in transportation and storage. These negative aspects of biomass can be overcome by thermal pretreatments that upgrade the fuel property of biomass. That is, torrefaction is such a thermal process in which biomass is heated up to 300ºC under non-oxidizing conditions to avoid burning of the material. The treated biomass is called as biochar that has considerably lower contents of moisture, volatile matter, and oxygen compared to the parent biomass. Accordingly, carbon content and the calorific value of biochar increase to the level which is comparable with that of coal. Moreover, hydrophilic nature of untreated biomass that leads decay in the structure is mostly eliminated, and the surface properties of biochar turn into hydrophobic character upon torrefaction. In order to investigate the effectiveness of torrefaction process on biomass properties, several biomass species such as olive milling residue (OMR), Rhododendron (small shrubby tree with bell-shaped flowers), and ash tree (timber tree) were chosen. The fuel properties of these biomasses were analyzed through proximate and ultimate analyses as well as higher heating value (HHV) determination. For this, samples were first chopped and ground to a particle size lower than 250 µm. Then, samples were subjected to torrefaction in a horizontal tube furnace by heating from ambient up to temperatures of 200, 250, and 300ºC at a heating rate of 10ºC/min. The biochars obtained from this process were also tested by the methods applied to the parent biomass species. Improvement in the fuel properties was interpreted. That is, increasing torrefaction temperature led to regular increases in the HHV in OMR, and the highest HHV (6065 kcal/kg) was gained at 300ºC. Whereas, torrefaction at 250ºC was seen optimum for Rhododendron and ash tree since torrefaction at 300ºC had a detrimental effect on HHV. On the other hand, the increase in carbon contents and reduction in oxygen contents were determined. Burning characteristics of the biochars were also studied using thermal analysis technique. For this purpose, TA Instruments SDT Q600 model thermal analyzer was used and the thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), and differential thermal analysis (DTA) curves were compared and interpreted. It was concluded that torrefaction is an efficient method to upgrade the fuel properties of biomass and the biochars from which have superior characteristics compared to the parent biomasses.

Keywords: biochar, biomass, fuel upgrade, torrefaction

Procedia PDF Downloads 360
821 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis

Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante

Abstract:

The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.

Keywords: dynamic analysis, long short-term memory, prediction, sepsis

Procedia PDF Downloads 105
820 Encephalon-An Implementation of a Handwritten Mathematical Expression Solver

Authors: Shreeyam, Ranjan Kumar Sah, Shivangi

Abstract:

Recognizing and solving handwritten mathematical expressions can be a challenging task, particularly when certain characters are segmented and classified. This project proposes a solution that uses Convolutional Neural Network (CNN) and image processing techniques to accurately solve various types of equations, including arithmetic, quadratic, and trigonometric equations, as well as logical operations like logical AND, OR, NOT, NAND, XOR, and NOR. The proposed solution also provides a graphical solution, allowing users to visualize equations and their solutions. In addition to equation solving, the platform, called CNNCalc, offers a comprehensive learning experience for students. It provides educational content, a quiz platform, and a coding platform for practicing programming skills in different languages like C, Python, and Java. This all-in-one solution makes the learning process engaging and enjoyable for students. The proposed methodology includes horizontal compact projection analysis and survey for segmentation and binarization, as well as connected component analysis and integrated connected component analysis for character classification. The compact projection algorithm compresses the horizontal projections to remove noise and obtain a clearer image, contributing to the accuracy of character segmentation. Experimental results demonstrate the effectiveness of the proposed solution in solving a wide range of mathematical equations. CNNCalc provides a powerful and user-friendly platform for solving equations, learning, and practicing programming skills. With its comprehensive features and accurate results, CNNCalc is poised to revolutionize the way students learn and solve mathematical equations. The platform utilizes a custom-designed Convolutional Neural Network (CNN) with image processing techniques to accurately recognize and classify symbols within handwritten equations. The compact projection algorithm effectively removes noise from horizontal projections, leading to clearer images and improved character segmentation. Experimental results demonstrate the accuracy and effectiveness of the proposed solution in solving a wide range of equations, including arithmetic, quadratic, trigonometric, and logical operations. CNNCalc features a user-friendly interface with a graphical representation of equations being solved, making it an interactive and engaging learning experience for users. The platform also includes tutorials, testing capabilities, and programming features in languages such as C, Python, and Java. Users can track their progress and work towards improving their skills. CNNCalc is poised to revolutionize the way students learn and solve mathematical equations with its comprehensive features and accurate results.

Keywords: AL, ML, hand written equation solver, maths, computer, CNNCalc, convolutional neural networks

Procedia PDF Downloads 98
819 A Dihydropyridine Derivative as a Highly Selective Fluorometric Probe for Quantification of Au3+ Residue in Gold Nanoparticle Solution

Authors: Waroton Paisuwan, Mongkol Sukwattanasinitt, Mamoru Tobisu, Anawat Ajavakom

Abstract:

Novel dihydroquinoline derivatives (DHP and DHP-OH) were synthesized in one pot via a tandem trimerization-cyclization of methylpropiolate. DHP and DHP-OH possess strong blue fluorescence with high quantum efficiencies over 0.70 in aqueous media. DHP-OH displays a remarkable fluorescence quenching selectively to the presence of Au3+ through the oxidation of dihydropyridine to pyridinium ion as confirmed by NMR and HRMS. DHP-OH was used to demonstrate the quantitative analysis of Au3+ in water samples with the limit of detection of 33 ppb and excellent recovery (>95%). This fluorescent probe was also applied for the determination of Au3+ residue in the gold nanoparticle solution and a paper-based sensing strip for the on-site detection of Au3+.

Keywords: Gold(III) ion detection, Fluorescent sensor, Fluorescence quenching, Dihydropyridine, Gold nanoparticles (AuNPs)

Procedia PDF Downloads 66
818 Synthesis and Pharmacological Evaluation of Substituted Pyrimidine Derivative Containing Thiol Group

Authors: Shradha S. Binani, Pravin S. Bodke, Ravi V. Joat

Abstract:

An efficient method has been described for the synthesis of 6-(substituted aryl)-4-(2'- hydroxy-5'-chlorophenyl)-1, 6-dihydropyrimidine-2-thiol, as a beneficial antibacterial and antifungal agents. The diketones of title compounds were synthesized in four steps and subsequently these diketones were further reacted with thiourea in the presence of DMF, which led to the formation of dihydropyrimidine derivatives 5 (a-f). Compounds 5 (a-f) were screened for their in vitro antibacterial and antifungal activity by agar well method. Compounds 5b, 5c, 5e, and 5f were exhibited significant antimicrobial potential against tested strains at 50ug/ml and 100ug/ml concentrations. Six novel dihydropyrimidine analogues have been synthesized, characterized and found to be promising antibacterial and antifungal agents.

Keywords: diketones, dihyropyrimidine, antimicrobial activity, thiol group

Procedia PDF Downloads 421
817 Reduced Differential Transform Methods for Solving the Fractional Diffusion Equations

Authors: Yildiray Keskin, Omer Acan, Murat Akkus

Abstract:

In this paper, the solution of fractional diffusion equations is presented by means of the reduced differential transform method. Fractional partial differential equations have special importance in engineering and sciences. Application of reduced differential transform method to this problem shows the rapid convergence of the sequence constructed by this method to the exact solution. The numerical results show that the approach is easy to implement and accurate when applied to fractional diffusion equations. The method introduces a promising tool for solving many fractional partial differential equations.

Keywords: fractional diffusion equations, Caputo fractional derivative, reduced differential transform method, partial

Procedia PDF Downloads 504
816 CPW-Fed Broadband Circularly Polarized Planar Antenna with Improved Ground

Authors: Gnanadeep Gudapati, V. Annie Grace

Abstract:

A broadband circular polarization (CP) feature is designed for a CPW-fed planar printed monopole antenna. A rectangle patch and an improved ground plane make up the antenna. The antenna's impedance bandwidth can be increased by adding a vertical stub and a horizontal slit in the ground plane. The measured results show that the proposed antenna has a wide 10-dB return loss bandwidth of 70.2% (4.35GHz, 3.7-8.1GHz) centered at 4.2 GHz.

Keywords: CPW-fed, circular polarised, FR4 epoxy, slit and stub

Procedia PDF Downloads 132
815 Tuning of Fixed Wing Micro Aerial Vehicles Using Tethered Setup

Authors: Shoeb Ahmed Adeel, Vivek Paul, K. Prajwal, Michael Fenelon

Abstract:

Techniques have been used to tether and stabilize a multi-rotor MAV but carrying out the same process to a fixed wing MAV is a novel method which can be utilized in order to reduce damage occurring to the fixed wing MAVs while conducting flight test trials and PID tuning. A few sensors and on board controller is required to carry out this experiment in horizontal and vertical plane of the vehicle. Here we will be discussing issues such as sensitivity of the air vehicle, endurance and external load of the string acting on the vehicle.

Keywords: MAV, PID tuning, tethered flight, UAV

Procedia PDF Downloads 621
814 Hypergeometric Solutions to Linear Nonhomogeneous Fractional Equations with Spherical Bessel Functions of the First Kind

Authors: Pablo Martin, Jorge Olivares, Fernando Maass

Abstract:

The use of fractional derivatives to different problems in Engineering and Physics has been increasing in the last decade. For this reason, we have here considered partial derivatives when the integral is a spherical Bessel function of the first kind in both regular and modified ones simple initial conditions have been also considered. In this way, the solution has been found as a combination of hypergeometric functions. The case of a general rational value for α of the fractional derivative α has been solved in a general way for alpha between zero and two. The modified spherical Bessel functions of the first kind have been also considered and how to go from the regular case to the modified one will be also shown.

Keywords: caputo fractional derivatives, hypergeometric functions, linear differential equations, spherical Bessel functions

Procedia PDF Downloads 308