Search results for: football analytics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 499

Search results for: football analytics

199 The Role of Satisfaction on Performance among Afe Babalola University Team Sports

Authors: B. O. Diyaolu

Abstract:

Viability and competency during competition is the dream of every team sports so as to have a good result. But it seems factors abound which deter the performance of even a good sports team. Different individuals with different state of mind all come together to perform in team sports with different degree of satisfaction. This study investigated the role of satisfaction on performance among Afe Babalola University team sports. Descriptive survey research design was used and the population consists of all male and female athletes in the team sports that participated in the last 2019 Ekiti State Higher Institution games (ESHIGA). Total enumeration technique was used for the three team sports; football (44), basketball (24) and volleyball (24). A total of 92 participants were involved in the research. The instrument used for the study was a modified Athlete Satisfaction Scale (ASS). The questionnaire was divided into two sections. The Cronbach’s Alpha reliability coefficient of 0.71 was obtained. The hypotheses were tested at 0.05 significant levels. The completed questionnaire was collated, coded, and analyzed using descriptive statistics of frequency counts and percentage and inferential statistics of chi-square (X2). Findings of this study revealed that satisfaction significantly influences team sports performance among Athletes of Afe Babalola University. The responsibility of satisfying athlete lies on the coaches, fans, sports administrators as well as organizers of such event, as it is not only financial reward that gives satisfaction. The performance of a team sports is quiet important and its being determined by the degree of satisfaction of each individual that make up the team. All effort must be made to satisfy athlete in order to guarantee optimum performance.

Keywords: athlete satisfaction, optimum achievement, optimum performance, sports performance and team sports

Procedia PDF Downloads 149
198 Knowledge Reactor: A Contextual Computing Work in Progress for Eldercare

Authors: Scott N. Gerard, Aliza Heching, Susann M. Keohane, Samuel S. Adams

Abstract:

The world-wide population of people over 60 years of age is growing rapidly. The explosion is placing increasingly onerous demands on individual families, multiple industries and entire countries. Current, human-intensive approaches to eldercare are not sustainable, but IoT and AI technologies can help. The Knowledge Reactor (KR) is a contextual, data fusion engine built to address this and other similar problems. It fuses and centralizes IoT and System of Record/Engagement data into a reactive knowledge graph. Cognitive applications and services are constructed with its multiagent architecture. The KR can scale-up and scaledown, because it exploits container-based, horizontally scalable services for graph store (JanusGraph) and pub-sub (Kafka) technologies. While the KR can be applied to many domains that require IoT and AI technologies, this paper describes how the KR specifically supports the challenging domain of cognitive eldercare. Rule- and machine learning-based analytics infer activities of daily living from IoT sensor readings. KR scalability, adaptability, flexibility and usability are demonstrated.

Keywords: ambient sensing, AI, artificial intelligence, eldercare, IoT, internet of things, knowledge graph

Procedia PDF Downloads 175
197 Experimental Study on the Effectiveness of Functional Training for Female College Students' Physical Fitness and Sport Skills

Authors: Yangming Zhu, Mingming Guo, Xiaozan Wang

Abstract:

Introduction: The purpose of this study is to integrate functional training into physical education to test the effectiveness of functional training in improving the physical fitness (PF) and sport skills (SS) of female college students. Methods: A total of 54 female college students from East China Normal University were selected for this study (27 in the experimental group and 27 in the control group), and 13 weeks of the experimental intervention was conducted during the semester. During the experimental period, the experimental group was functionally trained for 1 hour per week. The control group performed one-hour weekly sports (such as basketball, football, etc.) as usual. Before and after the experiment, the national students' physical fitness test was used to test the PF of the experimental group and the control group, and the SS of the experimental group and the control group were tested before and after the intervention. Then using SPSS and Excel to organize and analyze the data. Results: The independent sample T-test showed that there was no significant difference in the PF and SS between the experimental group and the control group before the experiment (T PF=71.86, p PF> 0.05, Tₛₛ=82.41,pₛₛ > 0.05); After the experiment, the PF of the experimental group was significantly higher than that of the control group (T Improve=71.86, p Improve < 0.05); after the experiment, the SS of the experimental group was significantly higher than that of the control group (Tₛₛ = 1.31, pₛₛ <0.01) Conclusions: Integrating functional training into physical education can improve the PF of female college students. At the same time, the integration of functional training into physical education can also effectively improve the SS of female college students. Therefore, it is suggested that functional training be integrated into the daily physical education of female college students so as to improve their PF and SS.

Keywords: functional training, physical fitness, sport skills, female college students

Procedia PDF Downloads 131
196 Cloud Computing in Data Mining: A Technical Survey

Authors: Ghaemi Reza, Abdollahi Hamid, Dashti Elham

Abstract:

Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Due to immense number of users seeking data on daily basis, there is a serious security concerns to cloud providers as well as data providers who put their data on the cloud computing environment. Big data analytics use compute intensive data mining algorithms (Hidden markov, MapReduce parallel programming, Mahot Project, Hadoop distributed file system, K-Means and KMediod, Apriori) that require efficient high performance processors to produce timely results. Data mining algorithms to solve or optimize the model parameters. The challenges that operation has to encounter is the successful transactions to be established with the existing virtual machine environment and the databases to be kept under the control. Several factors have led to the distributed data mining from normal or centralized mining. The approach is as a SaaS which uses multi-agent systems for implementing the different tasks of system. There are still some problems of data mining based on cloud computing, including design and selection of data mining algorithms.

Keywords: cloud computing, data mining, computing models, cloud services

Procedia PDF Downloads 479
195 The Influence of Brands in E-Sports Spectators

Authors: Rene Kasper, Hyago Ribeiro, Marcelo Curth

Abstract:

Electronic sports, or just e-sports, boast an exponential growth in the interest of the public and large investors. The e-sports teams are equal to classic sports teams, like football, since in their structure they have, besides the athletes, administrators, coaches and even doctors. The concept of team games arises with a very strong social interaction, as it is perceived that users interact with real peers rather than competing with intelligent software. In this sense, electronic games are established as a sociocultural phenomenon and as multidimensional media. Thus, the research aims to identify the profile of users and the importance of brands in the Brazilian electronic sports scene, as well as the relationship of consumers (called fans) with the products and services that occupy the media spaces of the transmissions of sports championships. The research used descriptive quantitative methodology, applied in different e-sports communities, with 160 respondents. The data collection instrument was a survey containing seven questions, which addressed the profile of the participants and their perception on the proposed theme in research. Regarding the profile, the age ranged from 17 to 31 years, of which 93.3% were male and 6.7% female. It was found that 93.3% of the participants had contact with the Brazilian electronic sports scene for at least 2 years, of which 26.7% played between 6 and 12 hours a week and 46.7% played more than 12 hours a week. In addition, it was noticed that income was not a deciding factor to enjoy electronic sports games, because the percentage distribution of participants ranged from 1 to 3 minimum wages (33.3%) and greater than 6 salaries (46.7 %). Regarding the brands, 85.6% emphasized that brands should support the scenario through sponsorship and publicity and 28.6% are attracted to consume brands that advertise in e-sports championships.

Keywords: brands, consumer behavior, e-sports, virtual games

Procedia PDF Downloads 275
194 Predictive Modelling Approach to Identify Spare Parts Inventory Obsolescence

Authors: Madhu Babu Cherukuri, Tamoghna Ghosh

Abstract:

Factory supply chain management spends billions of dollars every year to procure and manage equipment spare parts. Due to technology -and processes changes some of these spares become obsolete/dead inventory. Factories have huge dead inventory worth millions of dollars accumulating over time. This is due to lack of a scientific methodology to identify them and send the inventory back to the suppliers on a timely basis. The standard approach followed across industries to deal with this is: if a part is not used for a set pre-defined period of time it is declared dead. This leads to accumulation of dead parts over time and these parts cannot be sold back to the suppliers as it is too late as per contract agreement. Our main idea is the time period for identifying a part as dead cannot be a fixed pre-defined duration across all parts. Rather, it should depend on various properties of the part like historical consumption pattern, type of part, how many machines it is being used in, whether it- is a preventive maintenance part etc. We have designed a predictive algorithm which predicts part obsolescence well in advance with reasonable accuracy and which can help save millions.

Keywords: obsolete inventory, machine learning, big data, supply chain analytics, dead inventory

Procedia PDF Downloads 319
193 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm

Procedia PDF Downloads 142
192 Examining the Impact of Intelligence Quotients on Balance and Coordination in Adolescents with Intellectual Disability

Authors: Bilge B. Calik, Ummuhan B. Aslan, Suat Erel, Sehmus Aslan

Abstract:

Objective: Intellectual disability (ID) is characterized by limitations in both intellectual functioning and adaptive behavior, which covers many everyday social and practical skills. The aim of this study was to evaluate the balance and coordination performance determined between mild and moderate ID adolescents who regularly play sport. Methods: The study comprised a total of 179 participants, of which 135 were male adolescents with mild and moderate-level ID who regularly play sports (16.52 ± 2.17 years) and 44 age-matched male adolescents with typical development without ID who do not do any sports (16.52 ± 0.99 years). The participants with ID were students of Special Education Schools for the mentally disabled and had been diagnosed with ID at a Ministry of Health Hospital. The adolescents with mild and moderate ID had been playing football in their school teams at least 2 days a week, for at least one year. Balance and coordination of adolescents were assessed by Bilateral coordination and balance subtests of Short Form Bruininks-Oseretsky Test of Motor Proficiency (BOT-2 SF). Results: As a result of the evaluations comparing coordination and balance scores significant differences were determined between all three groups in favor of the peers without ID (p<0.05). Conclusions: It was observed that balance and coordination levels of adolescents with mild ID were better than those of adolescents with moderate-level ID but lower than those of peers without ID. These results indicate a relationship between IQ level and motor performance. Further comparative studies are needed on individuals with ID who play and do not play sports in order to examine the impact of participation in sports on the motor skills of individuals with ID.

Keywords: balance, coordination, intellectual disability, motor skills, sport

Procedia PDF Downloads 331
191 Emotion Oriented Students' Opinioned Topic Detection for Course Reviews in Massive Open Online Course

Authors: Zhi Liu, Xian Peng, Monika Domanska, Lingyun Kang, Sannyuya Liu

Abstract:

Massive Open education has become increasingly popular among worldwide learners. An increasing number of course reviews are being generated in Massive Open Online Course (MOOC) platform, which offers an interactive feedback channel for learners to express opinions and feelings in learning. These reviews typically contain subjective emotion and topic information towards the courses. However, it is time-consuming to artificially detect these opinions. In this paper, we propose an emotion-oriented topic detection model to automatically detect the students’ opinioned aspects in course reviews. The known overall emotion orientation and emotional words in each review are used to guide the joint probabilistic modeling of emotion and aspects in reviews. Through the experiment on real-life review data, it is verified that the distribution of course-emotion-aspect can be calculated to capture the most significant opinioned topics in each course unit. This proposed technique helps in conducting intelligent learning analytics for teachers to improve pedagogies and for developers to promote user experiences.

Keywords: Massive Open Online Course (MOOC), course reviews, topic model, emotion recognition, topical aspects

Procedia PDF Downloads 262
190 Transnational Migration of Sports Workers from Africa to Foreign Countries: The Impact of their Assistance to the Domestic Community Through their Socioeconomic Choices of Action

Authors: Ernest Yeboah Acheampong, Malek Bouhaouala, Michel Raspaud

Abstract:

Studies on African sport workers’ migration have given less attention to examining the extent to which the individual (sports workers) contributes to a socio-economic development of their domestic communities. The decision to support or not to support can also have a debilitating effect on the domestic communities. This article therefore, analyses the choices of action of these actors with an exact focus on footballers to the domestic community. This exploratory survey focuses on 13 UEFA countries leagues of footballers from 43 African countries, including seventeen interviews and four autobiographies of the players. Max Weber theory of individual subjectivity can underpin their decisions making processes to either offer assistance or not to their locales. This study revealed some players closed relationships, particularly those raised in the typical locales as they often provide support via projects like building hospitals, schools, sporting facilities, health centres, and scholarship schemes among others. While others shown commitment and readiness to offer assistance, touch livelihood, and promote social development based on their lived experiences abroad. With many lamenting against lack of support from local and national authorities as disincentive to do more yet committed to the cause of the society. This article can conclude that football athletes logics of action depend on the individual values and conceptions from evidence of their socio-economic projects, as well as social embeddedness in the locality

Keywords: choices of action, domestic development, footballers, transnational migration

Procedia PDF Downloads 340
189 Reasons for Adhesion of Membership: A Case Study of Brazilian Soccer Team

Authors: Alexandre Olkoski, Marcelo Curth

Abstract:

Football in Brazil is considered a passion, being the most popular sport in the country, both by the consumer public and by the means of communication that divulge it individually, when compared with other sports modalities. In the last two decades, the soccer teams have given greater importance to the management, since they understood that the same should be managed as a company, but with peculiarities related to the business. In this sense, Brazilian soccer clubs started to make bigger investments for the adhesion of fans in their social frames, allowing a greater need of understanding about the profile of this group of fans/clients. Thus, this work aims to understand the reasons that cause the fans to join the club and identify variables present in the process of intention to join the club. For that, a qualitative exploratory research was conducted, in which thirty-one membership of a soccer club from southern Brazil were interviewed. Based on the interviews, five categories were classified as emotional aspects (passion and love), cognitive aspects (easy access to the stadium and promotional values in tickets), external influences (family and friends), situational aspects (club moment) and aspects related to the event (engagement by modality). As results found in the analysis, it can be highlighted that the motivation of the majority of the respondents to become a member of the analyzed club, is related to the emotional aspects, such as passion and love. Thus, it is perceived that sport, in the case of soccer, generates in the involved ones (fans and leaders) different manifestations, suggesting that the management of this type of business has great complexity and should not be observed only by the spectrum of the club like a business.

Keywords: consumer behavior, marketing, membership, soccer

Procedia PDF Downloads 333
188 Evaluating a Holistic Fitness Program Used by High Performance Athletes and Mass Participants

Authors: Peter Smolianov, Jed Smith, Lisa Chen, Steven Dion, Christopher Schoen, Jaclyn Norberg

Abstract:

This study evaluated the effectiveness of an experimental training program used to improve performance and health of competitive athletes and recreational sport participants. This holistic program integrated and advanced Eastern and Western methods of prolonging elite sports participation and enjoying lifelong fitness, particularly from China, India, Russia, and the United States. The program included outdoor, gym, and water training approaches focused on strengthening while stretching/decompressing and on full body activation-all in order to improve performance as well as treat and prevent common disorders and pains. The study observed and surveyed over 100 users of the program including recreational fitness and sports enthusiasts as well as elite athletes who competed for national teams of different countries and for Division I teams of National Collegiate Athletic Association in the United States. Different types of sport were studied, including territorial games (e.g., American football, basketball, volleyball), endurance/cyclical (athletics/track and field, swimming), and artistic (e.g., gymnastics and synchronized swimming). Results of the study showed positive effects on the participants’ performance and health, particularly for those who used the program for more than two years and especially in reducing spinal disorders and in enabling to perform new training tasks which previously caused back pain.

Keywords: lifelong fitness, injury prevention, prolonging sport participation, improving performance and health

Procedia PDF Downloads 155
187 Employing a Knime-based and Open-source Tools to Identify AMI and VER Metabolites from UPLC-MS Data

Authors: Nouf Alourfi

Abstract:

This study examines the metabolism of amitriptyline (AMI) and verapamil (VER) using a KNIME-based method. KNIME improved workflow is an open-source data-analytics platform that integrates a number of open-source metabolomics tools such as CFMID and MetFrag to provide standard data visualisations, predict candidate metabolites, assess them against experimental data, and produce reports on identified metabolites. The use of this workflow is demonstrated by employing three types of liver microsomes (human, rat, and Guinea pig) to study the in vitro metabolism of the two drugs (AMI and VER). This workflow is used to create and treat UPLC-MS (Orbitrap) data. The formulas and structures of these drugs' metabolites can be assigned automatically. The key metabolic routes for amitriptyline are hydroxylation, N-dealkylation, N-oxidation, and conjugation, while N-demethylation, O-demethylation and N-dealkylation, and conjugation are the primary metabolic routes for verapamil. The identified metabolites are compatible to the published, clarifying the solidity of the workflow technique and the usage of computational tools like KNIME in supporting the integration and interoperability of emerging novel software packages in the metabolomics area.

Keywords: KNIME, CFMID, MetFrag, Data Analysis, Metabolomics

Procedia PDF Downloads 119
186 Evaluation of Virtual Reality for the Rehabilitation of Athlete Lower Limb Musculoskeletal Injury: A Method for Obtaining Practitioner’s Viewpoints through Observation and Interview

Authors: Hannah K. M. Tang, Muhammad Ateeq, Mark J. Lake, Badr Abdullah, Frederic A. Bezombes

Abstract:

Based on a theoretical assessment of current literature, virtual reality (VR) could help to treat sporting injuries in a number of ways. However, it is important to obtain rehabilitation specialists’ perspectives in order to design, develop and validate suitable content for a VR application focused on treatment. Subsequently, a one-day observation and interview study focused on the use of VR for the treatment of lower limb musculoskeletal conditions in athletes was conducted at St George’s Park England National Football Centre with rehabilitation specialists. The current paper established the methods suitable for obtaining practitioner’s viewpoints through observation and interview in this context. Particular detail was provided regarding the method of qualitatively processing interview results using the qualitative data analysis software tool NVivo, in order to produce a narrative of overarching themes. The observations and overarching themes identified could be used as a framework and success criteria of a VR application developed in future research. In conclusion, this work explained the methods deemed suitable for obtaining practitioner’s viewpoints through observation and interview. This was required in order to highlight characteristics and features of a VR application designed to treat lower limb musculoskeletal injury of athletes and could be built upon to direct future work.

Keywords: athletes, lower-limb musculoskeletal injury, rehabilitation, return-to-sport, virtual reality

Procedia PDF Downloads 257
185 Evaluation of Social Media Customer Engagement: A Content Analysis of Automobile Brand Pages

Authors: Adithya Jaikumar, Sudarsan Jayasingh

Abstract:

The dramatic technology led changes that continue to take place at the market place has led to the emergence and implication of online brand pages on social media networks. The Facebook brand page has become extremely popular among different brands. The primary aim of this study was to identify the impact of post formats and content type on customer engagement in Facebook brand pages. Methodology used for this study was to analyze and categorize 9037 content messages posted by 20 automobile brands in India during April 2014 to March 2015 and the customer activity it generated in return. The data was obtained from Fanpage karma- an online tool used for social media analytics. The statistical technique used to analyze the count data was negative binomial regression. The study indicates that there is a statistically significant relationship between the type of post and the customer engagement. The study shows that photos are the most posted format and highest engagement is found to be related to videos. The finding also reveals that social events and entertainment related content increases engagement with the message.

Keywords: content analysis, customer engagement, digital engagement, facebook brand pages, social media

Procedia PDF Downloads 322
184 A quantitative Analysis of Impact of Potential Variables on the Energy Performance of Old and New Buildings in China

Authors: Yao Meng, Mahroo Eftekhari, Dennis Loveday

Abstract:

Currently, there are two types of heating systems in Chinese residential buildings, with respect to the controllability of the heating system, one is an old heating system without any possibility of controlling room temperature and another is a new heating system that provides temperature control of individual rooms. This paper is aiming to evaluate the impact of potential variables on the energy performance of old and new buildings respectively in China, and to explore how the use of individual room temperature control would change occupants’ heating behaviour and thermal comfort in Chinese residential buildings and its impact on the building energy performance. In the study, two types of residential buildings have been chosen, the new building install personal control on the heating system, together with ‘pay for what you use’ tariffs. The old building comprised uncontrolled heating with payment based on floor area. The studies were carried out in each building, with a longitudinal monitoring of indoor air temperature, outdoor air temperature, window position. The occupants’ behaviour and thermal sensation were evaluated by questionnaires. Finally, use the simulated analytic method to identify the impact of influence variables on energy use for both types of buildings.

Keywords: residential buildings, China, design parameters, energy efficiency, simulation analytics method

Procedia PDF Downloads 551
183 Measuring Audit Quality Using Text Analysis: An Empirical Study of Indian Companies

Authors: Leesa Mohanty, Ashok Banerjee

Abstract:

Better audit quality signifies the financial statements of the auditee firm reflect true and fair view of their actual state of affairs, which reduces information asymmetry between management and shareholders, as a result, helps protect interests of shareholders. This study examines the impact of joint audit on audit quality. It is motivated by the ongoing debate where The Institute of Chartered Accountants of India (ICAI), the regulatory body governing auditors, has advocated the finance ministry and the Reserve Bank of India (RBI) for the mandatory use of joint audit in private banks to enhance the quality of audit. Earlier, the Government of India had rejected the plea by ICAI for mandatory joint audits in large companies stating it is not a viable option for promoting domestic firms. We introduce a new measure of audit quality. Drawing from the domain of text analytics, we use relevant phrases in audit reports to gauge audit quality and demonstrate that joint audit improves audit quality. We also, for robustness, use prevalent proxy for audit quality (Big N Auditor, ratio of audit fees to total fees) and find negative effect of joint audit on audit quality. We, therefore highlight that different proxy for audit quality show opposite effect of joint audit.

Keywords: audit fees, audit quality, Big N. Auditor, joint audit

Procedia PDF Downloads 357
182 Training AI to Be Empathetic and Determining the Psychotype of a Person During a Conversation with a Chatbot

Authors: Aliya Grig, Konstantin Sokolov, Igor Shatalin

Abstract:

The report describes the methodology for collecting data and building an ML model for determining the personality psychotype using profiling and personality traits methods based on several short messages of a user communicating on an arbitrary topic with a chitchat bot. In the course of the experiments, the minimum amount of text was revealed to confidently determine aspects of personality. Model accuracy - 85%. Users' language of communication is English. AI for a personalized communication with a user based on his mood, personality, and current emotional state. Features investigated during the research: personalized communication; providing empathy; adaptation to a user; predictive analytics. In the report, we describe the processes that captures both structured and unstructured data pertaining to a user in large quantities and diverse forms. This data is then effectively processed through ML tools to construct a knowledge graph and draw inferences regarding users of text messages in a comprehensive manner. Specifically, the system analyzes users' behavioral patterns and predicts future scenarios based on this analysis. As a result of the experiments, we provide for further research on training AI models to be empathetic, creating personalized communication for a user

Keywords: AI, empathetic, chatbot, AI models

Procedia PDF Downloads 93
181 Using Scrum in an Online Smart Classroom Environment: A Case Study

Authors: Ye Wei, Sitalakshmi Venkatraman, Fahri Benli, Fiona Wahr

Abstract:

The present digital world poses many challenges to various stakeholders in the education sector. In particular, lecturers of higher education (HE) are faced with the problem of ensuring that students are able to achieve the required learning outcomes despite rapid changes taking place worldwide. Different strategies are adopted to retain student engagement and commitment in classrooms to address the differences in learning habits, preferences, and styles of the digital generation of students recently. Further, the onset of the coronavirus disease (COVID-19) pandemic has resulted in online teaching being mandatory. These changes have compounded the problems in the learning engagement and short attention span of HE students. New agile methodologies that have been successfully employed to manage projects in different fields are gaining prominence in the education domain. In this paper, we present the application of Scrum as an agile methodology to enhance student learning and engagement in an online smart classroom environment. We demonstrate the use of our proposed approach using a case study to teach key topics in information technology that require students to gain technical and business-related data analytics skills.

Keywords: agile methodology, Scrum, online learning, smart classroom environment, student engagement, active learning

Procedia PDF Downloads 163
180 Dynamic Software Product Lines for Customer Centric Context Aware Business Process Management

Authors: Bochra Khiari, Lamia Labed

Abstract:

In the new digital marketplace, organizations are striving for a proactive position by leveraging the great potential of disruptive technologies to seize the full opportunity of the digital revolution in order to reshape their customer value propositions. New technologies such as big data analytics, which provide prediction of future events based on real-time information, are being integrated into BPM which urges the need for additional core values like capabilities for dynamic adaptation, autonomic behavior, runtime reconfiguration and post-deployment activities to manage unforeseen scenarios at runtime in a situated and changeable context. Dynamic Software Product Lines (DSPL) is an emerging paradigm that supports these runtime variability mechanisms. However, few works exploiting DSPLs principles and techniques in the BPM domain have been proposed so far. In this paper, we propose a conceptual approach DynPL4CBPM, which integrates DSPLs concepts along with the entire related dynamic properties, to the whole BPM lifecycle in order to dynamically adapt business processes according to different context conditions in an individual environment.

Keywords: adaptive processes, context aware business process management, customer centric business process management, dynamic software product lines

Procedia PDF Downloads 161
179 Framework to Quantify Customer Experience

Authors: Anant Sharma, Ashwin Rajan

Abstract:

Customer experience is measured today based on defining a set of metrics and KPIs, setting up thresholds and defining triggers across those thresholds. While this is an effective way of measuring against a Key Performance Indicator ( referred to as KPI in the rest of the paper ), this approach cannot capture the various nuances that make up the overall customer experience. Customers consume a product or service at various levels, which is not reflected in metrics like Customer Satisfaction or Net Promoter Score, but also across other measurements like recurring revenue, frequency of service usage, e-learning and depth of usage. Here we explore an alternative method of measuring customer experience by flipping the traditional views. Rather than rolling customers up to a metric, we roll up metrics to hierarchies and then measure customer experience. This method allows any team to quantify customer experience across multiple touchpoints in a customer’s journey. We make use of various data sources which contain information for metrics like CXSAT, NPS, Renewals, and depths of service usage collected across a customer lifecycle. This data can be mined systematically to get linkages between different data points like geographies, business groups, products and time. Additional views can be generated by blending synthetic contexts into the data to show trends and top/bottom types of reports. We have created a framework that allows us to measure customer experience using the above logic.

Keywords: analytics, customers experience, BI, business operations, KPIs, metrics

Procedia PDF Downloads 75
178 Eco-Drive Predictive Analytics

Authors: Sharif Muddsair, Eisels Martin, Giesbrecht Eugenie

Abstract:

With development of society increase the demand for the movement of people also increases gradually. The various modes of the transport in different extent which expat impacts, which depends on mainly technical-operating conditions. The up-to-date telematics systems provide the transport industry a revolutionary. Appropriate use of these systems can help to substantially improve the efficiency. Vehicle monitoring and fleet tracking are among services used for improving efficiency and effectiveness of utility vehicle. There are many telematics systems which may contribute to eco-driving. Generally, they can be grouped according to their role in driving cycle. • Before driving - eco-route selection, • While driving – Advanced driver assistance, • After driving – remote analysis. Our point of interest is regulated in third point [after driving – remote analysis]. TS [Telematics-system] make it possible to record driving patterns in real time and analysis the data later on, So that driver- classification-specific hints [fast driver, slow driver, aggressive driver…)] are given to imitate eco-friendly driving style. Together with growing number of vehicle and development of information technology, telematics become an ‘active’ research subject in IT and the car industry. Telematics has gone a long way from providing navigation solution/assisting the driver to become an integral part of the vehicle. Today’s telematics ensure safety, comfort and become convenience of the driver.

Keywords: internet of things, iot, connected vehicle, cv, ts, telematics services, ml, machine learning

Procedia PDF Downloads 306
177 Automatic Adjustment of Thresholds via Closed-Loop Feedback Mechanism for Solder Paste Inspection

Authors: Chia-Chen Wei, Pack Hsieh, Jeffrey Chen

Abstract:

Surface Mount Technology (SMT) is widely used in the area of the electronic assembly in which the electronic components are mounted to the surface of the printed circuit board (PCB). Most of the defects in the SMT process are mainly related to the quality of solder paste printing. These defects lead to considerable manufacturing costs in the electronics assembly industry. Therefore, the solder paste inspection (SPI) machine for controlling and monitoring the amount of solder paste printing has become an important part of the production process. So far, the setting of the SPI threshold is based on statistical analysis and experts’ experiences to determine the appropriate threshold settings. Because the production data are not normal distribution and there are various variations in the production processes, defects related to solder paste printing still occur. In order to solve this problem, this paper proposes an online machine learning algorithm, called the automatic threshold adjustment (ATA) algorithm, and closed-loop architecture in the SMT process to determine the best threshold settings. Simulation experiments prove that our proposed threshold settings improve the accuracy from 99.85% to 100%.

Keywords: big data analytics, Industry 4.0, SPI threshold setting, surface mount technology

Procedia PDF Downloads 116
176 Analyzing Migration Patterns Using Public Disorder Event Data

Authors: Marie E. Docken

Abstract:

At some point in the lifecycle of a country, patterns of political and social unrest of varying degrees are observed. Events involving public disorder or civil disobedience may produce effects that range a wide spectrum of varying outcomes, depending on the level of unrest. Many previous studies, primarily theoretical in nature, have attempted to measure public disorder in answering why or how it occurs in society by examining causal factors or underlying issues in the social or political position of a population. The main objective in doing so is to understand how these activities evolve or seek some predictive capability for the events. In contrast, this research involves the fusion of analytics and social studies to provide more knowledge of the public disorder and civil disobedience intensity in populations. With a greater understanding of the magnitude of these events, it is believed that we may learn how they relate to extreme actions such as mass migration or violence. Upon establishing a model for measuring civil unrest based upon empirical data, a case study on various Latin American countries is performed. Interpretations of historical events are combined with analytical results to provide insights regarding the magnitude and effect of social and political activism.

Keywords: public disorder, civil disobedience, Latin America, metrics, data analysis

Procedia PDF Downloads 146
175 Effect of Social Media on Online Buyer Behavior

Authors: Zebider Asire Munyelet, Yibeltal Chanie Manie

Abstract:

In the modern digital landscape, the increase of social media platforms has become identical to the evolution of online consumer behavior. This study investigates the complicated relationship between social media and the purchasing decisions of online buyers. Through an extensive review of existing literature and empirical research, the aim is to comprehensively analyze the multidimensional impact that social media exerts on the various stages of the online buyer's journey. The investigation encompasses the exploration of how social media platforms serve as influential channels for information dissemination, product discovery, and consumer engagement. Additionally, the study investigates the psychological aspects underlying the role of social media in shaping buyer preferences, perceptions, and trust in online transactions. The methodologies employed include both quantitative and qualitative analyses, incorporating surveys, interviews, and data analytics to derive meaningful insights. Statistical models are applied to distinguish patterns in online buyer behavior concerning product awareness, brand loyalty, and decision-making processes. The expected outcomes of this research contribute not only to the academic understanding of the dynamic interplay between social media and online buyer behavior but also offer practical implications for marketers, e-commerce platforms, and policymakers.

Keywords: social platforms, buyer behavior, consumer behavior, digital era

Procedia PDF Downloads 77
174 BIM Data and Digital Twin Framework: Preserving the Past and Predicting the Future

Authors: Mazharuddin Syed Ahmed

Abstract:

This research presents a framework used to develop The Ara Polytechnic College of Architecture Studies building “Kahukura” which is Green Building certified. This framework integrates the development of a smart building digital twin by utilizing Building Information Modelling (BIM) and its BIM maturity levels, including Levels of Development (LOD), eight dimensions of BIM, Heritage-BIM (H-BIM) and Facility Management BIM (FM BIM). The research also outlines a structured approach to building performance analysis and integration with the circular economy, encapsulated within a five-level digital twin framework. Starting with Level 1, the Descriptive Twin provides a live, editable visual replica of the built asset, allowing for specific data inclusion and extraction. Advancing to Level 2, the Informative Twin integrates operational and sensory data, enhancing data verification and system integration. At Level 3, the Predictive Twin utilizes operational data to generate insights and proactive management suggestions. Progressing to Level 4, the Comprehensive Twin simulates future scenarios, enabling robust “what-if” analyses. Finally, Level 5, the Autonomous Twin, represents the pinnacle of digital twin evolution, capable of learning and autonomously acting on behalf of users.

Keywords: building information modelling, circular economy integration, digital twin, predictive analytics

Procedia PDF Downloads 43
173 Factors of Social Media Platforms on Consumer Behavior

Authors: Zebider Asire Munyelet, Yibeltal Chanie Manie

Abstract:

In the modern digital landscape, the increase of social media platforms has become identical to the evolution of online consumer behavior. This study investigates the complicated relationship between social media and the purchasing decisions of online buyers. Through an extensive review of existing literature and empirical research, the aim is to comprehensively analyze the multidimensional impact that social media exerts on the various stages of the online buyer's journey. The investigation encompasses the exploration of how social media platforms serve as influential channels for information dissemination, product discovery, and consumer engagement. Additionally, the study investigates into the psychological aspects underlying the role of social media in shaping buyer preferences, perceptions, and trust in online transactions. The methodologies employed include both quantitative and qualitative analyses, incorporating surveys, interviews, and data analytics to derive meaningful insights. Statistical models are applied to distinguish patterns in online buyer behavior concerning product awareness, brand loyalty, and decision-making processes. The expected outcomes of this research contribute not only to the academic understanding of the dynamic interplay between social media and online buyer behavior but also offer practical implications for marketers, e-commerce platforms, and policymakers.

Keywords: consumer Behavior, social media, online purchasing, online transaction

Procedia PDF Downloads 77
172 Predictive Analytics of Student Performance Determinants

Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi

Abstract:

Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.

Keywords: student performance, supervised machine learning, classification, cross-validation, prediction

Procedia PDF Downloads 126
171 Government Big Data Ecosystem: A Systematic Literature Review

Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis

Abstract:

Data that is high in volume, velocity, veracity and comes from a variety of sources is usually generated in all sectors including the government sector. Globally public administrations are pursuing (big) data as new technology and trying to adopt a data-centric architecture for hosting and sharing data. Properly executed, big data and data analytics in the government (big) data ecosystem can be led to data-driven government and have a direct impact on the way policymakers work and citizens interact with governments. In this research paper, we conduct a systematic literature review. The main aims of this paper are to highlight essential aspects of the government (big) data ecosystem and to explore the most critical socio-technical factors that contribute to the successful implementation of government (big) data ecosystem. The essential aspects of government (big) data ecosystem include definition, data types, data lifecycle models, and actors and their roles. We also discuss the potential impact of (big) data in public administration and gaps in the government data ecosystems literature. As this is a new topic, we did not find specific articles on government (big) data ecosystem and therefore focused our research on various relevant areas like humanitarian data, open government data, scientific research data, industry data, etc.

Keywords: applications of big data, big data, big data types. big data ecosystem, critical success factors, data-driven government, egovernment, gaps in data ecosystems, government (big) data, literature review, public administration, systematic review

Procedia PDF Downloads 229
170 Attributes That Influence Respondents When Choosing a Mate in Internet Dating Sites: An Innovative Matching Algorithm

Authors: Moti Zwilling, Srečko Natek

Abstract:

This paper aims to present an innovative predictive analytics analysis in order to find the best combination between two consumers who strive to find their partner or in internet sites. The methodology shown in this paper is based on analysis of consumer preferences and involves data mining and machine learning search techniques. The study is composed of two parts: The first part examines by means of descriptive statistics the correlations between a set of parameters that are taken between man and women where they intent to meet each other through the social media, usually the internet. In this part several hypotheses were examined and statistical analysis were taken place. Results show that there is a strong correlation between the affiliated attributes of man and woman as long as concerned to how they present themselves in a social media such as "Facebook". One interesting issue is the strong desire to develop a serious relationship between most of the respondents. In the second part, the authors used common data mining algorithms to search and classify the most important and effective attributes that affect the response rate of the other side. Results exhibit that personal presentation and education background are found as most affective to achieve a positive attitude to one's profile from the other mate.

Keywords: dating sites, social networks, machine learning, decision trees, data mining

Procedia PDF Downloads 293