Search results for: character recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2406

Search results for: character recognition

2106 Cross Attention Fusion for Dual-Stream Speech Emotion Recognition

Authors: Shaode Yu, Jiajian Meng, Bing Zhu, Hang Yu, Qiurui Sun

Abstract:

Speech emotion recognition (SER) is for recognizing human subjective emotions through audio data in-depth analysis. From speech audios, how to comprehensively extract emotional information and how to effectively fuse extracted features remain challenging. This paper presents a dual-stream SER framework that embraces both full training and transfer learning of different networks for thorough feature encoding. Besides, a plug-and-play cross-attention fusion (CAF) module is implemented for the valid integration of the dual-stream encoder output. The effectiveness of the proposed CAF module is compared to the other three fusion modules (feature summation, feature concatenation, and feature-wise linear modulation) on two databases (RAVDESS and IEMO-CAP) using different dual-stream encoders (full training network, DPCNN or TextRCNN; transfer learning network, HuBERT or Wav2Vec2). Experimental results suggest that the CAF module can effectively reconcile conflicts between features from different encoders and outperform the other three feature fusion modules on the SER task. In the future, the plug-and-play CAF module can be extended for multi-branch feature fusion, and the dual-stream SER framework can be widened for multi-stream data representation to improve the recognition performance and generalization capacity.

Keywords: speech emotion recognition, cross-attention fusion, dual-stream, pre-trained

Procedia PDF Downloads 75
2105 Character Bioacoustics White-Rumped Shama Copsychus malabaricus as a Cage-Bird

Authors: Novia Liza Rahmawaty, Wilson Novarino, Muhammad Nazri Janra

Abstract:

Indonesian people love to keep songbird in cage to be competed, such as White-rumped Shama (Copsychus malabaricus). Each individual White-rumped Shama will be pitted their song and try to imitate the rhythm of the enemy with its songs. This study was conducted to see the natural song characters of White-rumped Shama and song character from birds that had been trained and comparison in three different places in West Sumatra. Individuals were recorded totaling 30 individuals in three areas in West Sumatra namely Padang, Solok and Pariaman and sound recordings of White-rumped Shama in nature were taken in HBW and Xenocanto website. Research has done conducted from June to October 2016 at place group practice of birdsongs and recorded at 16:00 to 18:00 pm. These voices were analyzed by Avisoft SAS-Lab Lite inform of oscillogram and sonogram. Measured parameters included: the length of voice, repertoire size, number of syllable type, syllable repertoire, and song repertoire. The results showed that repertoire composition of White-rumped Shama in nature less than the sound which was trained and has repeat songs composed by the same type of repertoire composition. Comparison of song character White-rumped Shama in three different places in West Sumatra, those birds in Solok had the best quality of voice or song than Padang and Pariaman. It showed by higher repertoire composition in Solok.

Keywords: repertoire composition, song characters, songbird, white-rumped shama

Procedia PDF Downloads 327
2104 Algorithm for Path Recognition in-between Tree Rows for Agricultural Wheeled-Mobile Robots

Authors: Anderson Rocha, Pedro Miguel de Figueiredo Dinis Oliveira Gaspar

Abstract:

Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments.

Keywords: agricultural mobile robot, image processing, path recognition, hough transform

Procedia PDF Downloads 146
2103 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator

Procedia PDF Downloads 250
2102 'Value-Based Re-Framing' in Identity-Based Conflicts: A Skill for Mediators in Multi-Cultural Societies

Authors: Hami-Ziniman Revital, Ashwall Rachelly

Abstract:

The conflict resolution realm has developed tremendously during the last half-decade. Three main approaches should be mentioned: an Alternative Dispute Resolution (ADR) suggesting processes such as Arbitration or Interests-based Negotiation was developed as an answer to obligations and rights-based conflicts. The Pragmatic mediation approach focuses on the gap between interests and needs of disputants. The Transformative mediation approach focusses on relations and suits identity-based conflicts. In the current study, we examine the conflictual relations between religious and non-religious Jews in Israel and the impact of three transformative mechanisms: Inter-group recognition, In-group empowerment and Value-based reframing on the relations between the participants. The research was conducted during four facilitated joint mediation classes. A unique finding was found. Using both transformative mechanisms and the Contact Hypothesis criteria, we identify transformation in participants’ relations and a considerable change from anger, alienation, and suspiciousness to an increased understanding, affection and interpersonal concern towards the out-group members. Intergroup Recognition, In-group empowerment, and Values-based reframing were the skills discovered as the main enablers of the change in the relations and the research participants’ fostered mutual recognition of the out-group values and identity-based issues. We conclude this transformation was possible due to a constant intergroup contact, based on the Contact Hypothesis criteria. In addition, as Interests-based mediation uses “Reframing” as a skill to acknowledge both mutual and opposite needs of the disputants, we suggest the use of “Value-based Reframing” in intergroup identity-based conflicts, as a skill contributes to the empowerment and the recognition of both mutual and different out-group values. We offer to implement those insights and skills to assist conflict resolution facilitators in various intergroup identity-based conflicts resolution efforts and to establish further research and knowledge.

Keywords: empowerment, identity-based conflict, intergroup recognition, intergroup relations, mediation skills, multi-cultural society, reframing, value-based recognition

Procedia PDF Downloads 342
2101 Facial Recognition Technology in Institutions of Higher Learning: Exploring the Use in Kenya

Authors: Samuel Mwangi, Josephine K. Mule

Abstract:

Access control as a security technique regulates who or what can access resources. It is a fundamental concept in security that minimizes risks to the institutions that use access control. Regulating access to institutions of higher learning is key to ensure only authorized personnel and students are allowed into the institutions. The use of biometrics has been criticized due to the setup and maintenance costs, hygiene concerns, and trepidations regarding data privacy, among other apprehensions. Facial recognition is arguably a fast and accurate way of validating identity in order to guard protected areas. It guarantees that only authorized individuals gain access to secure locations while requiring far less personal information whilst providing an additional layer of security beyond keys, fobs, or identity cards. This exploratory study sought to investigate the use of facial recognition in controlling access in institutions of higher learning in Kenya. The sample population was drawn from both private and public higher learning institutions. The data is based on responses from staff and students. Questionnaires were used for data collection and follow up interviews conducted to understand responses from the questionnaires. 80% of the sampled population indicated that there were many security breaches by unauthorized people, with some resulting in terror attacks. These security breaches were attributed to stolen identity cases, where staff or student identity cards were stolen and used by criminals to access the institutions. These unauthorized accesses have resulted in losses to the institutions, including reputational damages. The findings indicate that security breaches are a major problem in institutions of higher learning in Kenya. Consequently, access control would be beneficial if employed to curb security breaches. We suggest the use of facial recognition technology, given its uniqueness in identifying users and its non-repudiation capabilities.

Keywords: facial recognition, access control, technology, learning

Procedia PDF Downloads 125
2100 ISME: Integrated Style Motion Editor for 3D Humanoid Character

Authors: Ismahafezi Ismail, Mohd Shahrizal Sunar

Abstract:

The motion of a realistic 3D humanoid character is very important especially for the industries developing computer animations and games. However, this type of motion is seen with a very complex dimensional data as well as body position, orientation, and joint rotation. Integrated Style Motion Editor (ISME), on the other hand, is a method used to alter the 3D humanoid motion capture data utilised in computer animation and games development. Therefore, this study was carried out with the purpose of demonstrating a method that is able to manipulate and deform different motion styles by integrating Key Pose Deformation Technique and Trajectory Control Technique. This motion editing method allows the user to generate new motions from the original motion capture data using a simple interface control. Unlike the previous method, our method produces a realistic humanoid motion style in real time.

Keywords: computer animation, humanoid motion, motion capture, motion editing

Procedia PDF Downloads 382
2099 The Features of Formation of Russian Agriculture’s Sectoral Structure

Authors: Natalya G. Filimonova, Mariya G. Ozerova, Irina N. Ermakova

Abstract:

The long-term strategy of the economic development of Russia up to 2030 is based on the concept of sustainable growth. The determining factor of such development is complex changes in the economic system which may be achieved by making progressive changes in its structure. The structural changes determine the character and the direction of economic development, as well as they include all elements of this system without exception, and their regulated character ensures the most rapid aim achievement. This article has discussed the industrial structure of the agriculture in Russia. With the use of the system of indexes, the article has determined the directions, intensity, and speed of structural shifts. The influence of structural changes on agricultural production development has been found out. It is noticed that the changes in the industrial structure are synchronized with the changes in the organisation and economic structure. Efficiency assessment of structural changes allowed to trace the efficiency of structural changes and elaborate the main directions for agricultural policy improvement.

Keywords: Russian agricultural sectors, sectoral structure, organizational and economic structure, structural changes

Procedia PDF Downloads 170
2098 Integrated Coastal Management for the Sustainable Development of Coastal Cities: The Case of El-Mina, Tripoli, Lebanon

Authors: G. Ghamrawi, Y. Abunnasr, M. Fawaz, S. Yazigi

Abstract:

Coastal cities are constantly exposed to environmental degradation and economic regression fueled by rapid and uncontrolled urban growth as well as continuous resource depletion. This is the case of the City of Mina in Tripoli (Lebanon), where lack of awareness to preserve social, ecological, and historical assets, coupled with the increasing development pressures, are threatening the socioeconomic status of the city residents, the quality of life and accessibility to the coast. To address these challenges, a holistic coastal urban design and planning approach was developed to analyze the environmental, political, legal, and socioeconomic context of the city. This approach aims to investigate the potential of balancing urban development with the protection and enhancement of cultural, ecological, and environmental assets under an integrated coastal zone management approach (ICZM). The analysis of Mina's different sectors adopted several tools that include direct field observation, interviews with stakeholders, analysis of available data, historical maps, and previously proposed projects. The findings from the analysis were mapped and graphically represented, allowing the recognition of character zones that become the design intervention units. Consequently, the thesis proposes an urban, city-scale intervention that identifies 6 different character zones (the historical fishing port, Abdul Wahab island, the abandoned Port Said, Hammam el Makloub, the sand beach, and the new developable area) and proposes context-specific design interventions that capitalize on the main characteristics of each zone. Moreover, the intervention builds on the institutional framework of ICZM as well as other studies previously conducted for the coast and adopts nature-based solutions with hybrid systems for providing better environmental design solutions for developing the coast. This enables the realization of an all-inclusive, well-connected shoreline with easy and free access towards the sea; a developed shoreline with an active local economy, and an improved urban environment.

Keywords: blue green infrastructure, coastal cities, hybrid solutions, integrated coastal zone management, sustainable development, urban planning

Procedia PDF Downloads 155
2097 Face Recognition Using Eigen Faces Algorithm

Authors: Shweta Pinjarkar, Shrutika Yawale, Mayuri Patil, Reshma Adagale

Abstract:

Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this, demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application. Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this , demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application.

Keywords: face detection, face recognition, eigen faces, algorithm

Procedia PDF Downloads 361
2096 An Exploratory Research of Human Character Analysis Based on Smart Watch Data: Distinguish the Drinking State from Normal State

Authors: Lu Zhao, Yanrong Kang, Lili Guo, Yuan Long, Guidong Xing

Abstract:

Smart watches, as a handy device with rich functionality, has become one of the most popular wearable devices all over the world. Among the various function, the most basic is health monitoring. The monitoring data can be provided as an effective evidence or a clue for the detection of crime cases. For instance, the step counting data can help to determine whether the watch wearer was quiet or moving during the given time period. There is, however, still quite few research on the analysis of human character based on these data. The purpose of this research is to analyze the health monitoring data to distinguish the drinking state from normal state. The analysis result may play a role in cases involving drinking, such as drunk driving. The experiment mainly focused on finding the figures of smart watch health monitoring data that change with drinking and figuring up the change scope. The chosen subjects are mostly in their 20s, each of whom had been wearing the same smart watch for a week. Each subject drank for several times during the week, and noted down the begin and end time point of the drinking. The researcher, then, extracted and analyzed the health monitoring data from the watch. According to the descriptive statistics analysis, it can be found that the heart rate change when drinking. The average heart rate is about 10% higher than normal, the coefficient of variation is less than about 30% of the normal state. Though more research is needed to be carried out, this experiment and analysis provide a thought of the application of the data from smart watches.

Keywords: character analysis, descriptive statistics analysis, drink state, heart rate, smart watch

Procedia PDF Downloads 167
2095 Automated Weight Painting: Using Deep Neural Networks to Adjust 3D Mesh Skeletal Weights

Authors: John Gibbs, Benjamin Flanders, Dylan Pozorski, Weixuan Liu

Abstract:

Weight Painting–adjusting the influence a skeletal joint has on a given vertex in a character mesh–is an arduous and time con- suming part of the 3D animation pipeline. This process generally requires a trained technical animator and many hours of work to complete. Our skiNNer plug-in, which works within Autodesk’s Maya 3D animation software, uses Machine Learning and data pro- cessing techniques to create a deep neural network model that can accomplish the weight painting task in seconds rather than hours for bipedal quasi-humanoid character meshes. In order to create a properly trained network, a number of challenges were overcome, including curating an appropriately large data library, managing an arbitrary 3D mesh size, handling arbitrary skeletal architectures, accounting for extreme numeric values (most data points are near 0 or 1 for weight maps), and constructing an appropriate neural network model that can properly capture the high frequency alter- ation between high weight values (near 1.0) and low weight values (near 0.0). The arrived at neural network model is a cross between a traditional CNN, deep residual network, and fully dense network. The resultant network captures the unusually hard-edged features of a weight map matrix, and produces excellent results on many bipedal models.

Keywords: 3d animation, animation, character, rigging, skinning, weight painting, machine learning, artificial intelligence, neural network, deep neural network

Procedia PDF Downloads 271
2094 Burnout Recognition for Call Center Agents by Using Skin Color Detection with Hand Poses

Authors: El Sayed A. Sharara, A. Tsuji, K. Terada

Abstract:

Call centers have been expanding and they have influence on activation in various markets increasingly. A call center’s work is known as one of the most demanding and stressful jobs. In this paper, we propose the fatigue detection system in order to detect burnout of call center agents in the case of a neck pain and upper back pain. Our proposed system is based on the computer vision technique combined skin color detection with the Viola-Jones object detector. To recognize the gesture of hand poses caused by stress sign, the YCbCr color space is used to detect the skin color region including face and hand poses around the area related to neck ache and upper back pain. A cascade of clarifiers by Viola-Jones is used for face recognition to extract from the skin color region. The detection of hand poses is given by the evaluation of neck pain and upper back pain by using skin color detection and face recognition method. The system performance is evaluated using two groups of dataset created in the laboratory to simulate call center environment. Our call center agent burnout detection system has been implemented by using a web camera and has been processed by MATLAB. From the experimental results, our system achieved 96.3% for upper back pain detection and 94.2% for neck pain detection.

Keywords: call center agents, fatigue, skin color detection, face recognition

Procedia PDF Downloads 293
2093 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI

Authors: James Rigor Camacho, Wansu Lim

Abstract:

Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.

Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors

Procedia PDF Downloads 105
2092 Freedom of Information and Freedom of Expression

Authors: Amin Pashaye Amiri

Abstract:

Freedom of information, according to which the public has a right to have access to government-held information, is largely considered as a tool for improving transparency and accountability in governments, and as a requirement of self-governance and good governance. So far, more than ninety countries have recognized citizens’ right to have access to public information. This recognition often took place through the adoption of an act referred to as “freedom of information act”, “access to public records act”, and so on. A freedom of information act typically imposes a positive obligation on a government to initially and regularly release certain public information, and also obliges it to provide individuals with information they request. Such an act usually allows governmental bodies to withhold information only when it falls within a limited number of exemptions enumerated in the act such as exemptions for protecting privacy of individuals and protecting national security. Some steps have been taken at the national and international level towards the recognition of freedom of information as a human right. Freedom of information was recognized in a few countries as a part of freedom of expression, and therefore, as a human right. Freedom of information was also recognized by some international bodies as a human right. The Inter-American Court of Human Rights ruled in 2006 that Article 13 of the American Convention on Human Rights, which concerns the human right to freedom of expression, protects the right of all people to request access to government information. The European Court of Human Rights has recently taken a considerable step towards recognizing freedom of information as a human right. However, in spite of the measures that have been taken, public access to government information is not yet widely accepted as an international human right. The paper will consider the degree to which freedom of information has been recognized as a human right, and study the possibility of widespread recognition of such a human right in the future. It will also examine the possible benefits of such recognition for the development of the human right to free expression.

Keywords: freedom of information, freedom of expression, human rights, government information

Procedia PDF Downloads 547
2091 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances

Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim

Abstract:

This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.

Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering

Procedia PDF Downloads 186
2090 Combined Automatic Speech Recognition and Machine Translation in Business Correspondence Domain for English-Croatian

Authors: Sanja Seljan, Ivan Dunđer

Abstract:

The paper presents combined automatic speech recognition (ASR) for English and machine translation (MT) for English and Croatian in the domain of business correspondence. The first part presents results of training the ASR commercial system on two English data sets, enriched by error analysis. The second part presents results of machine translation performed by online tool Google Translate for English and Croatian and Croatian-English language pairs. Human evaluation in terms of usability is conducted and internal consistency calculated by Cronbach's alpha coefficient, enriched by error analysis. Automatic evaluation is performed by WER (Word Error Rate) and PER (Position-independent word Error Rate) metrics, followed by investigation of Pearson’s correlation with human evaluation.

Keywords: automatic machine translation, integrated language technologies, quality evaluation, speech recognition

Procedia PDF Downloads 484
2089 Multimodal Deep Learning for Human Activity Recognition

Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja

Abstract:

In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.

Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness

Procedia PDF Downloads 101
2088 An Evaluation of the Auxiliary Instructional App Amid Learning Chinese Characters for Children with Specific Learning Disorders

Authors: Chieh-Ning Lan, Tzu-Shin Lin, Kun-Hao Lin

Abstract:

Chinese handwriting skill is one of the basic skills of school-age children in Taiwan, which helps them to learn most academic subjects. Differ from the alphabetic language system, Chinese written language is a logographic script with a complicated 2-dimensional character structure as a morpheme. Visuospatial ability places a great role in Chinese handwriting to maintain good proportion and alignment of these interwoven strokes. In Taiwan, school-age students faced the challenge to recognize and write down Chinese characters, especially in children with written expression difficulties (CWWDs). In this study, we developed an instructional app to help CWWDs practice Chinese handwriting skills, and we aimed to apply the mobile assisted language learning (MALL) system in clinical writing strategies. To understand the feasibility and satisfaction of this auxiliary instructional writing app, we investigated the perceive and value both from school-age students and the clinic therapists, who were the target users and the experts. A group of 8 elementary school children, as well as 8 clinic therapists, were recruited. The school-age students were asked to go through a paper-based instruction and were asked to score the visual expression based on their graphic preference; the clinic therapists were asked to watch an introductive video of this instructional app and complete the online formative questionnaire. In the results of our study, from the perspective of user interface design, school-age students were more attracted to cartoon-liked pictures rather than line drawings or vivid photos. Moreover, compared to text, pictures which have higher semantic transparency were more commonly chosen by children. In terms of the quantitative survey from clinic therapists, they were highly satisfied with this auxiliary instructional writing app, including the concepts such as visual design, teaching contents, and positive reinforcement system. Furthermore, the qualitative results also suggested comprehensive positive feedbacks on the teaching contents and the feasibility of integrating the app into clinical treatments. Interestingly, we found that clinic therapists showed high agreement in approving CWWDs’ writing ability with using orthographic knowledge; however, in the qualitative section, clinic therapists pointed out that CWWDs usually have relative insufficient background knowledge in Chinese character orthographic rules, which because it is not a key-point in conventional handwriting instruction. Also, previous studies indicated that conventional Chinese reading and writing instructions were lacked of utilizing visual-spatial arrangement strategies. Based on the sharing experiences from all participants, we concluded several interesting topics that are worth to dedicate to in the future. In this undergoing app system, improvement and revision will be applied into the system design, and will establish a better and more useful instructional system for CWWDs within their treatments; enlightened by the opinions related to learning content, the importance of orthographic knowledge in Chinese character recognition should be well discussed and involved in CWWDs’ intervention in the future.

Keywords: auxiliary instructional app, children with writing difficulties, Chinese handwriting, orthographic knowledge

Procedia PDF Downloads 173
2087 The Processing of Implicit Stereotypes in Everyday Scene Perception

Authors: Magali Mari, Fabrice Clement

Abstract:

The present study investigated the influence of implicit stereotypes on adults’ visual information processing, using an eye-tracking device. Implicit stereotyping is an automatic and implicit process; it happens relatively quickly, outside of awareness. In the presence of a member of a social group, a set of expectations about the characteristics of this social group appears automatically in people’s minds. The study aimed to shed light on the cognitive processes involved in stereotyping and to further investigate the use of eye movements to measure implicit stereotypes. With an eye-tracking device, the eye movements of participants were analyzed, while they viewed everyday scenes depicting women and men in congruent or incongruent gender role activities (e.g., a woman ironing or a man ironing). The settings of these scenes had to be analyzed to infer the character’s role. Also, participants completed an implicit association test that combined the concept of gender with attributes of occupation (home/work), while measuring reaction times to assess participants’ implicit stereotypes about gender. The results showed that implicit stereotypes do influence people’s visual attention; within a fraction of a second, the number of returns, between stereotypical and counter-stereotypical scenes, differed significantly, meaning that participants interpreted the scene itself as a whole before identifying the character. They predicted that, in such a situation, the character was supposed to be a woman or a man. Also, the study showed that eye movements could be used as a fast and reliable supplement for traditional implicit association tests to measure implicit stereotypes. Altogether, this research provides further understanding of implicit stereotypes processing as well as a natural method to study implicit stereotypes.

Keywords: eye-tracking, implicit stereotypes, social cognition, visual attention

Procedia PDF Downloads 159
2086 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism

Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li

Abstract:

Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.

Keywords: keypoint detection, feature fusion, attention, semantic segmentation

Procedia PDF Downloads 119
2085 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition

Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade

Abstract:

The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.

Keywords: automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection

Procedia PDF Downloads 169
2084 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area

Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya

Abstract:

In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.

Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area

Procedia PDF Downloads 270
2083 The Wear Recognition on Guide Surface Based on the Feature of Radar Graph

Authors: Youhang Zhou, Weimin Zeng, Qi Xie

Abstract:

Abstract: In order to solve the wear recognition problem of the machine tool guide surface, a new machine tool guide surface recognition method based on the radar-graph barycentre feature is presented in this paper. Firstly, the gray mean value, skewness, projection variance, flat degrees and kurtosis features of the guide surface image data are defined as primary characteristics. Secondly, data Visualization technology based on radar graph is used. The visual barycentre graphical feature is demonstrated based on the radar plot of multi-dimensional data. Thirdly, a classifier based on the support vector machine technology is used, the radar-graph barycentre feature and wear original feature are put into the classifier separately for classification and comparative analysis of classification and experiment results. The calculation and experimental results show that the method based on the radar-graph barycentre feature can detect the guide surface effectively.

Keywords: guide surface, wear defects, feature extraction, data visualization

Procedia PDF Downloads 519
2082 Enriching Post-Colonial Discourse: An Appraisal of Doms Pagliawan’s Fire Extinguisher

Authors: Robertgie L. Pianar

Abstract:

Post-colonial theory, post-colonialism, or Poco is a recently established literary theory. Consequently, not many literary works, local and international, have been subjected to its criticism. To help intellectualize local literary texts, in particular, through post-colonial discourse, this qualitative inquiry unfolded. Textual analysis was employed to describe, analyse, and interpret Doms Pagliawan’s Fire Extinguisher, a regional work of literature, grounded on the postcolonial concepts of Edward Said’s Otherness, Homi Bhabha’s Unhomeliness or Paralysis, and Frantz Fanon’s Cultural Resistance. The in-depth reading affirmed that the story contains those postcolonial attributes, revealing the following; (A) the presence of the colonizer, who successfully established colonial control over the colonized, the other, was found; (B) through power superimposition, the colonized character was silenced or paralyzed; and, (C) forms of cultural resistance from the colonized character were shown but no matter how its character avoids ‘postcolonial acts’, the struggle just intensifies, hence inevitable. Pagliawan’s Fire Extinguisher is thus a post-colonial text realizer between two differing cultures, the colonizer and the other. Results of this study may substantiate classroom discussions, both undergraduate and graduate classes, specifically in Philippine and World literature, 21st Century literature, readings in New English literatures, and literary theory and criticism courses, scaffolding learners’ grasp of post-colonialism as a major literary theory drawing classic exemplifications from this regional work.

Keywords: cultural resistance, otherness, post-colonialism, textual analysis, unhomeliness/paralysis

Procedia PDF Downloads 261
2081 Host-Assisted Delivery of a Model Drug to Genomic DNA: Key Information From Ultrafast Spectroscopy and in Silico Study

Authors: Ria Ghosh, Soumendra Singh, Dipanjan Mukherjee, Susmita Mondal, Monojit Das, Uttam Pal, Aniruddha Adhikari, Aman Bhushan, Surajit Bose, Siddharth Sankar Bhattacharyya, Debasish Pal, Tanusri Saha-Dasgupta, Maitree Bhattacharyya, Debasis Bhattacharyya, Asim Kumar Mallick, Ranjan Das, Samir Kumar Pal

Abstract:

Drug delivery to a target without adverse effects is one of the major criteria for clinical use. Herein, we have made an attempt to explore the delivery efficacy of SDS surfactant in a monomer and micellar stage during the delivery of the model drug, Toluidine Blue (TB) from the micellar cavity to DNA. Molecular recognition of pre-micellar SDS encapsulated TB with DNA occurs at a rate constant of k1 ~652 s 1. However, no significant release of encapsulated TB at micellar concentration was observed within the experimental time frame. This originated from the higher binding affinity of TB towards the nano-cavity of SDS at micellar concentration which does not allow the delivery of TB from the nano-cavity of SDS micelles to DNA. Thus, molecular recognition controls the extent of DNA recognition by TB which in turn modulates the rate of delivery of TB from SDS in a concentration-dependent manner.

Keywords: DNA, drug delivery, micelle, pre-micelle, SDS, toluidine blue

Procedia PDF Downloads 113
2080 A Comparative Study of k-NN and MLP-NN Classifiers Using GA-kNN Based Feature Selection Method for Wood Recognition System

Authors: Uswah Khairuddin, Rubiyah Yusof, Nenny Ruthfalydia Rosli

Abstract:

This paper presents a comparative study between k-Nearest Neighbour (k-NN) and Multi-Layer Perceptron Neural Network (MLP-NN) classifier using Genetic Algorithm (GA) as feature selector for wood recognition system. The features have been extracted from the images using Grey Level Co-Occurrence Matrix (GLCM). The use of GA based feature selection is mainly to ensure that the database used for training the features for the wood species pattern classifier consists of only optimized features. The feature selection process is aimed at selecting only the most discriminating features of the wood species to reduce the confusion for the pattern classifier. This feature selection approach maintains the ‘good’ features that minimizes the inter-class distance and maximizes the intra-class distance. Wrapper GA is used with k-NN classifier as fitness evaluator (GA-kNN). The results shows that k-NN is the best choice of classifier because it uses a very simple distance calculation algorithm and classification tasks can be done in a short time with good classification accuracy.

Keywords: feature selection, genetic algorithm, optimization, wood recognition system

Procedia PDF Downloads 545
2079 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition

Authors: A. Shoiynbek, K. Kozhakhmet, P. Menezes, D. Kuanyshbay, D. Bayazitov

Abstract:

Speech emotion recognition has received increasing research interest all through current years. There was used emotional speech that was collected under controlled conditions in most research work. Actors imitating and artificially producing emotions in front of a microphone noted those records. There are four issues related to that approach, namely, (1) emotions are not natural, and it means that machines are learning to recognize fake emotions. (2) Emotions are very limited by quantity and poor in their variety of speaking. (3) There is language dependency on SER. (4) Consequently, each time when researchers want to start work with SER, they need to find a good emotional database on their language. In this paper, we propose the approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describe the sequence of actions of the proposed approach. One of the first objectives of the sequence of actions is a speech detection issue. The paper gives a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian languages. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To illustrate the working capacity of the developed model, we have performed an analysis of speech detection and extraction from real tasks.

Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset

Procedia PDF Downloads 101
2078 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction

Procedia PDF Downloads 338
2077 Existence of Rational Primitive Normal Pairs with Prescribed Norm and Trace

Authors: Soniya Takshak, R. K. Sharma

Abstract:

Let q and n be positive integers, then Fᵩ denotes the finite field of q elements, and Fqn denotes the extension of Fᵩ of degree n. Also, Fᵩ* represents the multiplicative group of non-zero elements of Fᵩ, and the generators of Fᵩ* are called primitive elements. A normal element α of a finite field Fᵩⁿ is such that {α, αᵠ, . . . , αᵠⁿ⁻¹} forms a basis for Fᵩⁿ over Fᵩ. Primitive normal elements have several applications in coding theory and cryptography. So, establishing the existence of primitive normal elements under certain conditions is both theoretically important and a natural issue. In this article, we provide a sufficient condition for the existence of a primitive normal element α in Fᵩⁿ of a prescribed primitive norm and non-zero trace over Fᵩ such that f(α) is also primitive, where f(x) ∈ Fᵩⁿ(x) is a rational function of degree sum m. Particularly, we investigated the rational functions of degree sum 4 over Fᵩⁿ, where q = 11ᵏ and demonstrated that there are only 3 exceptional pairs (q, n), n ≥ 7 for which such kind of primitive normal elements may not exist. In general, we show that such elements always exist except for finitely many choices of (q, n). To arrive to our conclusion, we used additive and multiplicative character sums.

Keywords: finite field, primitive element, normal element, norm, trace, character

Procedia PDF Downloads 104