Search results for: Optical Network Unit
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8420

Search results for: Optical Network Unit

8120 The Optical Properties of CdS and Conjugated Cadmium Sulphide-Cowpea Chlorotic Mottle Virus

Authors: Afiqah Shafify Amran, Siti Aisyah Shamsudin, Nurul Yuziana Mohd Yusof

Abstract:

Cadmium Sulphide (CdS) from group II-IV quantum dots with good optical properties was successfully synthesized by using the simple colloidal method. Capping them with ligand Polyethylinamine (PEI) alters the surface defect of CdS while, thioglycolic acid (TGA) was added to the reaction as a stabilizer. Due to their cytotoxicity, we decided to conjugate them with the protein cage nanoparticles. In this research, we used capsid of Cowpea Chlorotic Mottle Virus (CCMV) to package the CdS because they have the potential to serve in drug delivery, cell targeting and imaging. Adding Sodium Hydroxide (NaOH) changes the pH of the systems hence the isoelectric charge is adjusted. We have characterized and studied the morphology and the optical properties of CdS and CdS-CCMV by transmitted electron microscopic (TEM), UV-Vis spectroscopy, photoluminescence spectroscopy, UV lamp and Fourier transform infrared spectroscopy (FTIR), respectively. The results obtained suggest that the protein cage nanoparticles do not affect the optical properties of CdS.

Keywords: cadmium sulphide, cowpea chlorotic mottle virus, protein cage nanoparticles, quantum dots

Procedia PDF Downloads 345
8119 Software-Defined Networks in Utility Power Networks

Authors: Ava Salmanpour, Hanieh Saeedi, Payam Rouhi, Elahe Hamzeil, Shima Alimohammadi, Siamak Hossein Khalaj, Mohammad Asadian

Abstract:

Software-defined network (SDN) is a network architecture designed to control network using software application in a central manner. This ability enables remote control of the whole network regardless of the network technology. In fact, in this architecture network intelligence is separated from physical infrastructure, it means that required network components can be implemented virtually using software applications. Today, power networks are characterized by a high range of complexity with a large number of intelligent devices, processing both huge amounts of data and important information. Therefore, reliable and secure communication networks are required. SDNs are the best choice to meet this issue. In this paper, SDN networks capabilities and characteristics will be reviewed and different basic controllers will be compared. The importance of using SDNs to escalate efficiency and reliability in utility power networks is going to be discussed and the comparison between the SDN-based power networks and traditional networks will be explained.

Keywords: software-defined network, SDNs, utility network, open flow, communication, gas and electricity, controller

Procedia PDF Downloads 118
8118 Electron Density Analysis and Nonlinear Optical Properties of Zwitterionic Compound

Authors: A. Chouaih, N. Benhalima, N. Boukabcha, R. Rahmani, F. Hamzaoui

Abstract:

Zwitterionic compounds have received the interest of chemists and physicists due to their applications as nonlinear optical materials. Recently, zwitterionic compounds exhibiting high nonlinear optical activity have been investigated. In this context, the molecular electron charge density distribution of the title compound is described accurately using the multipolar model of Hansen and Coppens. The net atomic charge and the molecular dipole moment have been determined in order to understand the nature of inter- and intramolecular charge transfer. The study reveals the nature of intermolecular interactions including charge transfer and hydrogen bonds in the title compound. In this crystal, the molecules form dimers via intermolecular hydrogen bonds. The dimers are further linked by C–H...O hydrogen bonds into chains along the c crystallographic axis. This study has also allowed us to determine various nonlinear optical properties such as molecular electrostatic potential, polarizability, and hyperpolarizability of the title compound.

Keywords: organic compounds, polarizability, hyperpolarizability, dipole moment

Procedia PDF Downloads 421
8117 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle

Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar

Abstract:

As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the Central Processing Unit (CPU), operational (RAM), and permanent (ROM) memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.

Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles

Procedia PDF Downloads 118
8116 Quantitative Comparison Complexity and Robustness of Supply Chain Network Based on Different Configurations

Authors: Ahmadreza Rezaei, Qiong Liu

Abstract:

Supply chain network made based on suppliers and product architecture design. these networks are complex and vulnerable that may be expose disruption risks. any supply chain network configuration has its own related complexity and robustness that can have direct effect on its efficiency. So it's necessary to evaluate any configuration with considering complexity and robustness aspects together. However, there is a lack of research about this subject to managers can evaluate their supply chain configurations and choose configuration with balanced complexity and robustness together. In this study, developed indicators improve robustness of supply chain with using framework to evaluate relationships between complexity and robustness of supply chain network under different network configurations . this framework includes Investigation and analysis of quantitative indicators based on network characteristics. Moreover, overall metrics of Shannon entropy is presented to evaluate network topological complexity. So we will analyze two factor of complexity and robustness of networks based on supply chain configurations As result, Complexity and Robustness are two integral components of network that show network resistances under disruption. It's necessary to attain a balanced level of complexity and robustness in network configurations. the proposed framework could be used in supply chain network to improve efficiency.

Keywords: supply chain design, structural complexity, robustness, supply chain configuration, Shannon entropy

Procedia PDF Downloads 13
8115 Simulation Modelling of the Transmission of Concentrated Solar Radiation through Optical Fibres to Thermal Application

Authors: M. Rahou, A. J. Andrews, G. Rosengarten

Abstract:

One of the main challenges in high-temperature solar thermal applications transfer concentrated solar radiation to the load with minimum energy loss and maximum overall efficiency. The use of a solar concentrator in conjunction with bundled optical fibres has potential advantages in terms of transmission energy efficiency, technical feasibility and cost-effectiveness compared to a conventional heat transfer system employing heat exchangers and a heat transfer fluid. In this paper, a theoretical and computer simulation method is described to estimate the net solar radiation transmission from a solar concentrator into and through optical fibres to a thermal application at the end of the fibres over distances of up to 100 m. A key input to the simulation is the angular distribution of radiation intensity at each point across the aperture plane of the optical fibre. This distribution depends on the optical properties of the solar concentrator, in this case, a parabolic mirror with a small secondary mirror with a common focal point and a point-focus Fresnel lens to give a collimated beam that pass into the optical fibre bundle. Since solar radiation comprises a broad band of wavelengths with very limited spatial coherence over the full range of spectrum only ray tracing models absorption within the fibre and reflections at the interface between core and cladding is employed, assuming no interference between rays. The intensity of the radiation across the exit plane of the fibre is found by integrating across all directions and wavelengths. Results of applying the simulation model to a parabolic concentrator and point-focus Fresnel lens with typical optical fibre bundle will be reported, to show how the energy transmission varies with the length of fibre.

Keywords: concentrated radiation, fibre bundle, parabolic dish, fresnel lens, transmission

Procedia PDF Downloads 570
8114 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network

Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar

Abstract:

Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.

Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network

Procedia PDF Downloads 519
8113 Detailed Analysis of Multi-Mode Optical Fiber Infrastructures for Data Centers

Authors: Matej Komanec, Jan Bohata, Stanislav Zvanovec, Tomas Nemecek, Jan Broucek, Josef Beran

Abstract:

With the exponential growth of social networks, video streaming and increasing demands on data rates, the number of newly built data centers rises proportionately. The data centers, however, have to adjust to the rapidly increased amount of data that has to be processed. For this purpose, multi-mode (MM) fiber based infrastructures are often employed. It stems from the fact, the connections in data centers are typically realized within a short distance, and the application of MM fibers and components considerably reduces costs. On the other hand, the usage of MM components brings specific requirements for installation service conditions. Moreover, it has to be taken into account that MM fiber components have a higher production tolerance for parameters like core and cladding diameters, eccentricity, etc. Due to the high demands for the reliability of data center components, the determination of properly excited optical field inside the MM fiber core belongs to the key parameters while designing such an MM optical system architecture. Appropriately excited mode field of the MM fiber provides optimal power budget in connections, leads to the decrease of insertion losses (IL) and achieves effective modal bandwidth (EMB). The main parameter, in this case, is the encircled flux (EF), which should be properly defined for variable optical sources and consequent different mode-field distribution. In this paper, we present detailed investigation and measurements of the mode field distribution for short MM links purposed in particular for data centers with the emphasis on reliability and safety. These measurements are essential for large MM network design. The various scenarios, containing different fibers and connectors, were tested in terms of IL and mode-field distribution to reveal potential challenges. Furthermore, we focused on estimation of particular defects and errors, which can realistically occur like eccentricity, connector shifting or dust, were simulated and measured, and their dependence to EF statistics and functionality of data center infrastructure was evaluated. The experimental tests were performed at two wavelengths, commonly used in MM networks, of 850 nm and 1310 nm to verify EF statistics. Finally, we provide recommendations for data center systems and networks, using OM3 and OM4 MM fiber connections.

Keywords: optical fiber, multi-mode, data centers, encircled flux

Procedia PDF Downloads 380
8112 Electronic, Optical, and Thermodynamic Properties of a Quantum Spin Liquid Candidate NaRuO₂: Ab-initio Investigation

Authors: A. Bouhmouche, I. Rhrissi, A. Jabar, R. Moubah

Abstract:

Quantum spin liquids (QSLs), known for their competing interactions that prevent conventional ordering, exhibit emergent phenomena and exotic properties resulting from quantum correlations. Despite these recent advancements in QSLs, a significant portion of the optical and thermodynamic properties in the Kagome lattice remains unknown. In addition, the thermodynamic phenomenology of NaRuO₂ bears a resemblance to that of highly frustrated magnets. Here, we employed ab-initio calculations to explore the electronic, optical and thermodynamic properties of NaRuO₂, a new QSL candidate. NaRuO₂ was identified as a semiconductor with a small bandgap energy of 0.69 eV. Our results reveal huge anisotropic optical properties, in which a distinct refractive index within the ab-plane indicating an impressive birefringent character of the NaRuO₂ system and a significant enhancement of the optical absorption coefficient and optical conductivity in the in-plane with respect to the c-axis. The investigation also examines the electronic anisotropy of the gap energy; by applying strain, the gap energy displays significant variations in the ab-plane compared to the out-of-plane direction. Conversely, calculations of the thermodynamic properties reveal a low thermal conductivity (2.5-0.5 W.m-¹. K-¹) and specific heat, which suggests the existence of strong interactions among the NaRuO₂ quantum spins. The linear specific heat behavior observed in NaRuO₂ suggests the fractionalization of electrons and the presence of a spinons Fermi surface. These findings hold promising potential for future quantum applications.

Keywords: quantum spin liquids, anisotropy, hybrid-DFT, applied strain, optoelectronic and thermodynamic properties

Procedia PDF Downloads 26
8111 Impact of Integrated Signals for Doing Human Activity Recognition Using Deep Learning Models

Authors: Milagros Jaén-Vargas, Javier García Martínez, Karla Miriam Reyes Leiva, María Fernanda Trujillo-Guerrero, Francisco Fernandes, Sérgio Barroso Gonçalves, Miguel Tavares Silva, Daniel Simões Lopes, José Javier Serrano Olmedo

Abstract:

Human Activity Recognition (HAR) is having a growing impact in creating new applications and is responsible for emerging new technologies. Also, the use of wearable sensors is an important key to exploring the human body's behavior when performing activities. Hence, the use of these dispositive is less invasive and the person is more comfortable. In this study, a database that includes three activities is used. The activities were acquired from inertial measurement unit sensors (IMU) and motion capture systems (MOCAP). The main objective is differentiating the performance from four Deep Learning (DL) models: Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and hybrid model Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), when considering acceleration, velocity and position and evaluate if integrating the IMU acceleration to obtain velocity and position represent an increment in performance when it works as input to the DL models. Moreover, compared with the same type of data provided by the MOCAP system. Despite the acceleration data is cleaned when integrating, results show a minimal increase in accuracy for the integrated signals.

Keywords: HAR, IMU, MOCAP, acceleration, velocity, position, feature maps

Procedia PDF Downloads 105
8110 A Vision-Based Early Warning System to Prevent Elephant-Train Collisions

Authors: Shanaka Gunasekara, Maleen Jayasuriya, Nalin Harischandra, Lilantha Samaranayake, Gamini Dissanayake

Abstract:

One serious facet of the worsening Human-Elephant conflict (HEC) in nations such as Sri Lanka involves elephant-train collisions. Endangered Asian elephants are maimed or killed during such accidents, which also often result in orphaned or disabled elephants, contributing to the phenomenon of lone elephants. These lone elephants are found to be more likely to attack villages and showcase aggressive behaviour, which further exacerbates the overall HEC. Furthermore, Railway Services incur significant financial losses and disruptions to services annually due to such accidents. Most elephant-train collisions occur due to a lack of adequate reaction time. This is due to the significant stopping distance requirements of trains, as the full braking force needs to be avoided to minimise the risk of derailment. Thus, poor driver visibility at sharp turns, nighttime operation, and poor weather conditions are often contributing factors to this problem. Initial investigations also indicate that most collisions occur in localised “hotspots” where elephant pathways/corridors intersect with railway tracks that border grazing land and watering holes. Taking these factors into consideration, this work proposes the leveraging of recent developments in Convolutional Neural Network (CNN) technology to detect elephants using an RGB/infrared capable camera around known hotspots along the railway track. The CNN was trained using a curated dataset of elephants collected on field visits to elephant sanctuaries and wildlife parks in Sri Lanka. With this vision-based detection system at its core, a prototype unit of an early warning system was designed and tested. This weatherised and waterproofed unit consists of a Reolink security camera which provides a wide field of view and range, an Nvidia Jetson Xavier computing unit, a rechargeable battery, and a solar panel for self-sufficient functioning. The prototype unit was designed to be a low-cost, low-power and small footprint device that can be mounted on infrastructures such as poles or trees. If an elephant is detected, an early warning message is communicated to the train driver using the GSM network. A mobile app for this purpose was also designed to ensure that the warning is clearly communicated. A centralized control station manages and communicates all information through the train station network to ensure coordination among important stakeholders. Initial results indicate that detection accuracy is sufficient under varying lighting situations, provided comprehensive training datasets that represent a wide range of challenging conditions are available. The overall hardware prototype was shown to be robust and reliable. We envision a network of such units may help contribute to reducing the problem of elephant-train collisions and has the potential to act as an important surveillance mechanism in dealing with the broader issue of human-elephant conflicts.

Keywords: computer vision, deep learning, human-elephant conflict, wildlife early warning technology

Procedia PDF Downloads 231
8109 Rapid Monitoring of Earthquake Damages Using Optical and SAR Data

Authors: Saeid Gharechelou, Ryutaro Tateishi

Abstract:

Earthquake is an inevitable catastrophic natural disaster. The damages of buildings and man-made structures, where most of the human activities occur are the major cause of casualties from earthquakes. A comparison of optical and SAR data is presented in the case of Kathmandu valley which was hardly shaken by 2015-Nepal Earthquake. Though many existing researchers have conducted optical data based estimated or suggested combined use of optical and SAR data for improved accuracy, however finding cloud-free optical images when urgently needed are not assured. Therefore, this research is specializd in developing SAR based technique with the target of rapid and accurate geospatial reporting. Should considers that limited time available in post-disaster situation offering quick computation exclusively based on two pairs of pre-seismic and co-seismic single look complex (SLC) images. The InSAR coherence pre-seismic, co-seismic and post-seismic was used to detect the change in damaged area. In addition, the ground truth data from field applied to optical data by random forest classification for detection of damaged area. The ground truth data collected in the field were used to assess the accuracy of supervised classification approach. Though a higher accuracy obtained from the optical data then integration by optical-SAR data. Limitation of cloud-free images when urgently needed for earthquak evevent are and is not assured, thus further research on improving the SAR based damage detection is suggested. Availability of very accurate damage information is expected for channelling the rescue and emergency operations. It is expected that the quick reporting of the post-disaster damage situation quantified by the rapid earthquake assessment should assist in channeling the rescue and emergency operations, and in informing the public about the scale of damage.

Keywords: Sentinel-1A data, Landsat-8, earthquake damage, InSAR, rapid damage monitoring, 2015-Nepal earthquake

Procedia PDF Downloads 174
8108 Detecting the Palaeochannels Based on Optical Data and High-Resolution Radar Data for Periyarriver Basin

Authors: S. Jayalakshmi, Gayathri S., Subiksa V., Nithyasri P., Agasthiya

Abstract:

Paleochannels are the buried part of an active river system which was separated from the active river channel by the process of cutoff or abandonment during the dynamic evolution of the active river. Over time, they are filled by young unconsolidated or semi-consolidated sediments. Additionally, it is impacted by geo morphological influences, lineament alterations, and other factors. The primary goal of this study is to identify the paleochannels in Periyar river basin for the year 2023. Those channels has a high probability in the presence of natural resources, including gold, platinum,tin,an duranium. Numerous techniques are used to map the paleochannel. Using the optical data, Satellite images were collected from various sources, which comprises multispectral satellite images from which indices such as Normalized Difference Vegetation Index (NDVI),Normalized Difference Water Index (NDWI), Soil Adjusted Vegetative Index (SAVI) and thematic layers such as Lithology, Stream Network, Lineament were prepared. Weights are assigned to each layer based on its importance, and overlay analysis has done, which concluded that the northwest region of the area has shown some paleochannel patterns. The results were cross-verified using the results obtained using microwave data. Using Sentinel data, Synthetic Aperture Radar (SAR) Image was extracted from European Space Agency (ESA) portal, pre-processed it using SNAP 6.0. In addition to that, Polarimetric decomposition technique has incorporated to detect the paleochannels based on its scattering property. Further, Principal component analysis has done for enhanced output imagery. Results obtained from optical and microwave radar data were compared and the location of paleochannels were detected. It resulted six paleochannels in the study area out of which three paleochannels were validated with the existing data published by Department of Geology and Environmental Science, Kerala. The other three paleochannels were newly detected with the help of SAR image.

Keywords: paleochannels, optical data, SAR image, SNAP

Procedia PDF Downloads 95
8107 Analysis of Metamaterial Permeability on the Performance of Loosely Coupled Coils

Authors: Icaro V. Soares, Guilherme L. F. Brandao, Ursula D. C. Resende, Glaucio L. Siqueira

Abstract:

Electrical energy can be wirelessly transmitted through resonant coupled coils that operate in the near-field region. Once in this region, the field has evanescent character, the efficiency of Resonant Wireless Power Transfer (RWPT) systems decreases proportionally with the inverse cube of distance between the transmitter and receiver coils. The commercially available RWPT systems are restricted to short and mid-range applications in which the distance between coils is lesser or equal to the coil size. An alternative to overcome this limitation is applying metamaterial structures to enhance the coupling between coils, thus reducing the field decay along the distance between them. Metamaterials can be conceived as composite materials with periodic or non-periodic structure whose unconventional electromagnetic behaviour is due to its unit cell disposition and chemical composition. This new kind of material has been used in frequency selective surfaces, invisibility cloaks, leaky-wave antennas, among other applications. However, for RWPT it is mainly applied as superlenses which are lenses that can overcome the optical limitation and are made of left-handed media, that is, a medium with negative magnetic permeability and electric permittivity. As RWPT systems usually operate at wavelengths of hundreds of meters, the metamaterial unit cell size is much smaller than the wavelength. In this case, electric and magnetic field are decoupled, therefore the double negative condition for superlenses are not required and the negative magnetic permeability is enough to produce an artificial magnetic medium. In this work, the influence of the magnetic permeability of a metamaterial slab inserted between two loosely coupled coils is studied in order to find the condition that leads to the maximum transmission efficiency. The metamaterial used is formed by a subwavelength unit cell that consist of a capacitor-loaded split ring with an inner spiral that is designed and optimized using the software Computer Simulation Technology. The unit cell permeability is experimentally characterized by the ratio of the transmission parameters between coils measured with and without the presence of the metamaterial slab. Early measurements results show that the transmission coefficient at the resonant frequency after the inclusion of the metamaterial is about three times higher than with just the two coils, which confirms the enhancement that this structure brings to RWPT systems.

Keywords: electromagnetic lens, loosely coupled coils, magnetic permeability, metamaterials, resonant wireless power transfer, subwavelength unit cells

Procedia PDF Downloads 148
8106 Fight against Money Laundering with Optical Character Recognition

Authors: Saikiran Subbagari, Avinash Malladhi

Abstract:

Anti Money Laundering (AML) regulations are designed to prevent money laundering and terrorist financing activities worldwide. Financial institutions around the world are legally obligated to identify, assess and mitigate the risks associated with money laundering and report any suspicious transactions to governing authorities. With increasing volumes of data to analyze, financial institutions seek to automate their AML processes. In the rise of financial crimes, optical character recognition (OCR), in combination with machine learning (ML) algorithms, serves as a crucial tool for automating AML processes by extracting the data from documents and identifying suspicious transactions. In this paper, we examine the utilization of OCR for AML and delve into various OCR techniques employed in AML processes. These techniques encompass template-based, feature-based, neural network-based, natural language processing (NLP), hidden markov models (HMMs), conditional random fields (CRFs), binarizations, pattern matching and stroke width transform (SWT). We evaluate each technique, discussing their strengths and constraints. Also, we emphasize on how OCR can improve the accuracy of customer identity verification by comparing the extracted text with the office of foreign assets control (OFAC) watchlist. We will also discuss how OCR helps to overcome language barriers in AML compliance. We also address the implementation challenges that OCR-based AML systems may face and offer recommendations for financial institutions based on the data from previous research studies, which illustrate the effectiveness of OCR-based AML.

Keywords: anti-money laundering, compliance, financial crimes, fraud detection, machine learning, optical character recognition

Procedia PDF Downloads 146
8105 Bi-Lateral Comparison between NIS-Egypt and NMISA-South Africa for the Calibration of an Optical Time Domain Reflectometer

Authors: Osama Terra, Mariesa Nel, Hatem Hussein

Abstract:

Calibration of Optical Time Domain Reflectometer (OTDR) has a crucial role for the accurate determination of fault locations and the accurate calculation of loss budget of long-haul optical fibre links during installation and repair. A comparison has been made between the Egyptian National Institute for Standards (NIS-Egypt) and the National Metrology institute of South Africa (NMISA-South Africa) for the calibration of an OTDR. The distance and the attenuation scales of a transfer OTDR have been calibrated by both institutes using their standards according to the standard IEC 61746-1 (2009). The results of this comparison have been compiled in this report.

Keywords: OTDR calibration, recirculating loop, concatenated method, standard fiber

Procedia PDF Downloads 451
8104 Design and Implementation of a Cross-Network Security Management System

Authors: Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai

Abstract:

In recent years, the emerging network worms and attacks have distributive characteristics, which can spread globally in a very short time. Security management crossing networks to co-defense network-wide attacks and improve the efficiency of security administration is urgently needed. We propose a hierarchical distributed network security management system (HD-NSMS), which can integrate security management across multiple networks. First, we describe the system in macrostructure and microstructure; then discuss three key problems when building HD-NSMS: device model, alert mechanism, and emergency response mechanism; lastly, we describe the implementation of HD-NSMS. The paper is valuable for implementing NSMS in that it derives from a practical network security management system (NSMS).

Keywords: network security management, device organization, emergency response, cross-network

Procedia PDF Downloads 171
8103 Packet Analysis in Network Forensics: Insights, Tools, and Case Study

Authors: Dalal Nasser Fathi, Amal Saud Al-Mutairi, Mada Hamed Al-Towairqi, Enas Fawzi Khairallah

Abstract:

Network forensics is essential for investigating cyber incidents and detecting malicious activities by analyzing network traffic, with a focus on packet and protocol data. This process involves capturing, filtering, and examining network data to identify patterns and signs of attacks. Packet analysis, a core technique in this field, provides insights into the origins of data, the protocols used, and any suspicious payloads, which aids in detecting malicious activity. This paper explores network forensics, providing guidance for the analyst on what to look for and identifying attack sites guided by the seven layers of the OSI model. Additionally, it explains the most commonly used tools in network forensics and demonstrates a practical example using Wireshark.

Keywords: network forensic, packet analysis, Wireshark tools, forensic investigation, digital evidence

Procedia PDF Downloads 14
8102 Generalization of Clustering Coefficient on Lattice Networks Applied to Criminal Networks

Authors: Christian H. Sanabria-Montaña, Rodrigo Huerta-Quintanilla

Abstract:

A lattice network is a special type of network in which all nodes have the same number of links, and its boundary conditions are periodic. The most basic lattice network is the ring, a one-dimensional network with periodic border conditions. In contrast, the Cartesian product of d rings forms a d-dimensional lattice network. An analytical expression currently exists for the clustering coefficient in this type of network, but the theoretical value is valid only up to certain connectivity value; in other words, the analytical expression is incomplete. Here we obtain analytically the clustering coefficient expression in d-dimensional lattice networks for any link density. Our analytical results show that the clustering coefficient for a lattice network with density of links that tend to 1, leads to the value of the clustering coefficient of a fully connected network. We developed a model on criminology in which the generalized clustering coefficient expression is applied. The model states that delinquents learn the know-how of crime business by sharing knowledge, directly or indirectly, with their friends of the gang. This generalization shed light on the network properties, which is important to develop new models in different fields where network structure plays an important role in the system dynamic, such as criminology, evolutionary game theory, econophysics, among others.

Keywords: clustering coefficient, criminology, generalized, regular network d-dimensional

Procedia PDF Downloads 414
8101 Measurement of Acoustic Loss in Nano-Layered Coating Developed for Thermal Noise Reduction

Authors: E. Cesarini, M. Lorenzini, R. Cardarelli, S. Chao, E. Coccia, V. Fafone, Y. Minenkow, I. Nardecchia, I. M. Pinto, A. Rocchi, V. Sequino, C. Taranto

Abstract:

Structural relaxation processes in optical coatings represent a fundamental limit to the sensitivity of gravitational waves detectors, MEMS, optical metrology and entangled state experiments. To face this problem, many research lines are now active, in particular the characterization of new materials and novel solutions to be employed as coatings in future gravitational wave detectors. Nano-layered coating deposition is among the most promising techniques. We report on the measurement of acoustic loss of nm-layered composites (Ti2O/SiO2), performed with the GeNS nodal suspension, compared with sputtered λ/4 thin films nowadays employed.

Keywords: mechanical measurement, nanomaterials, optical coating, thermal noise

Procedia PDF Downloads 425
8100 Organization Structure of Towns and Villages System in County Area Based on Fractal Theory and Gravity Model: A Case Study of Suning, Hebei Province, China

Authors: Liuhui Zhu, Peng Zeng

Abstract:

With the rapid development in China, the urbanization has entered the transformation and promotion stage, and its direction of development has shifted to overall regional synergy. China has a large number of towns and villages, with comparative small scale and scattered distribution, which always support and provide resources to cities leading to urban-rural opposition, so it is difficult to achieve common development in a single town or village. In this context, the regional development should focus more on towns and villages to form a synergetic system, joining the regional association with cities. Thus, the paper raises the question about how to effectively organize towns and villages system to regulate the resource allocation and improve the comprehensive value of the regional area. To answer the question, it is necessary to find a suitable research unit and analysis of its present situation of towns and villages system for optimal development. By combing relevant researches and theoretical models, the county is the most basic administrative unit in China, which can directly guide and regulate the development of towns and villages, so the paper takes county as the research unit. Following the theoretical concept of ‘three structures and one network’, the paper concludes the research framework to analyse the present situation of towns and villages system, including scale structure, functional structure, spatial structure, and organization network. The analytical methods refer to the fractal theory and gravity model, using statistics and spatial data. The scale structure analyzes rank-size dimensions and uses the principal component method to calculate the comprehensive scale of towns and villages. The functional structure analyzes the functional types and industrial development of towns and villages. The spatial structure analyzes the aggregation dimension, network dimension, and correlation dimension of spatial elements to represent the overall spatial relationships. In terms of organization network, from the perspective of entity and ono-entity, the paper analyzes the transportation network and gravitational network. Based on the present situation analysis, the optimization strategies are proposed in order to achieve a synergetic relationship between towns and villages in the county area. The paper uses Suning county in the Beijing-Tianjin-Hebei region as a case study to apply the research framework and methods and then proposes the optimization orientations. The analysis results indicate that: (1) The Suning county is lack of medium-scale towns to transfer effect from towns to villages. (2) The distribution of gravitational centers is uneven, and the effect of gravity is limited only for nearby towns and villages. The gravitational network is not complete, leading to economic activities scattered and isolated. (3) The overall development of towns and villages system is immature, staying at ‘single heart and multi-core’ stage, and some specific optimization strategies are proposed. This study provides a regional view for the development of towns and villages and concludes the research framework and methods of towns and villages system for forming an effective synergetic relationship between them, contributing to organize resources and stimulate endogenous motivation, and form counter magnets to join the urban-rural integration.

Keywords: towns and villages system, organization structure, county area, fractal theory, gravity model

Procedia PDF Downloads 143
8099 Retaining Users in a Commercially-Supported Social Network

Authors: Sasiphan Nitayaprapha

Abstract:

A commercially-supported social network has become an emerging channel for an organization to communicate with and provide services to customers. The success of the commercially-supported social network depends on the ability of the organization to keep the customers in participating in the network. Drawing from the theories of information adoption, information systems continuance, and web usability, the author develops a model to explore how a commercially-supported social network can encourage customers to continue participating and using the information in the network. The theoretical model will be proved through an online survey of customers using the commercially-supported social networking sites of several high technology companies operating in the same sector. The result will be compared with previous studies to learn about the explanatory power of the research model, and to identify the main factors determining users’ intention to continue using a commercially-supported social network. Theoretical and practical implications, and limitations are discussed.

Keywords: social network, information adoption, information systems continuance, web usability, user satisfaction

Procedia PDF Downloads 318
8098 Investigation about Structural and Optical Properties of Bulk and Thin Film of 1H-CaAlSi by Density Functional Method

Authors: M. Babaeipour, M. Vejdanihemmat

Abstract:

Optical properties of bulk and thin film of 1H-CaAlSi for two directions (1,0,0) and (0,0,1) were studied. The calculations are carried out by Density Functional Theory (DFT) method using full potential. GGA approximation was used to calculate exchange-correlation energy. The calculations are performed by WIEN2k package. The results showed that the absorption edge is shifted backward 0.82eV in the thin film than the bulk for both directions. The static values of the real part of dielectric function for four cases were obtained. The static values of the refractive index for four cases are calculated too. The reflectivity graphs have shown an intensive difference between the reflectivity of the thin film and the bulk in the ultraviolet region.

Keywords: 1H-CaAlSi, absorption, bulk, optical, thin film

Procedia PDF Downloads 523
8097 Design of a Compact Herriott Cell for Heat Flux Measurement Applications

Authors: R. G. Ramírez-Chavarría, C. Sánchez-Pérez, V. Argueta-Díaz

Abstract:

In this paper we present the design of an optical device based on a Herriott multi-pass cell fabricated on a small sized acrylic slab for heat flux measurements using the deflection of a laser beam propagating inside the cell. The beam deflection is produced by the heat flux conducted to the acrylic slab due to a gradient in the refractive index. The use of a long path cell as the sensitive element in this measurement device, gives the possibility of high sensitivity within a small size device. We present the optical design as well as some experimental results in order to validate the device’s operation principle.

Keywords: heat flux, Herriott cell, optical beam deflection, thermal conductivity

Procedia PDF Downloads 662
8096 Prediction of Oil Recovery Factor Using Artificial Neural Network

Authors: O. P. Oladipo, O. A. Falode

Abstract:

The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them.

Keywords: recovery factor, reservoir, reserves, artificial neural network, hydrocarbon, MATLAB, API, Guthrie, Greenberger

Procedia PDF Downloads 448
8095 One Dimensional Magneto-Plasmonic Structure Based On Metallic Nano-Grating

Authors: S. M. Hamidi, M. Zamani

Abstract:

Magneto-plasmonic (MP) structures have turned into essential tools for the amplification of magneto-optical (MO) responses via the combination of MO activity and surface Plasmon resonance (SPR). Both the plasmonic and the MO properties of the resulting MP structure become interrelated because the SPR of the metallic medium. This interconnection can be modified the wave vector of surface plasmon polariton (SPP) in MP multilayer [1] or enhanced the MO activity [2- 3] and also modified the sensor responses [4]. There are several types of MP structures which are studied to enhance MO response in miniaturized configuration. In this paper, we propose a new MP structure based on the nano-metal grating and we investigate the MO and optical properties of this new structure. Our new MP structure fabricate by DC magnetron sputtering method and our home made MO experimental setup use for characterization of the structure.

Keywords: Magneto-plasmonic structures, magneto-optical effect, nano-garting

Procedia PDF Downloads 566
8094 ChaQra: A Cellular Unit of the Indian Quantum Network

Authors: Shashank Gupta, Iteash Agarwal, Vijayalaxmi Mogiligidda, Rajesh Kumar Krishnan, Sruthi Chennuri, Deepika Aggarwal, Anwesha Hoodati, Sheroy Cooper, Ranjan, Mohammad Bilal Sheik, Bhavya K. M., Manasa Hegde, M. Naveen Krishna, Amit Kumar Chauhan, Mallikarjun Korrapati, Sumit Singh, J. B. Singh, Sunil Sud, Sunil Gupta, Sidhartha Pant, Sankar, Neha Agrawal, Ashish Ranjan, Piyush Mohapatra, Roopak T., Arsh Ahmad, Nanjunda M., Dilip Singh

Abstract:

Major research interests on quantum key distribution (QKD) are primarily focussed on increasing 1. point-to-point transmission distance (1000 Km), 2. secure key rate (Mbps), 3. security of quantum layer (device-independence). It is great to push the boundaries on these fronts, but these isolated approaches are neither scalable nor cost-effective due to the requirements of specialised hardware and different infrastructure. Current and future QKD network requires addressing different sets of challenges apart from distance, key rate, and quantum security. In this regard, we present ChaQra -a sub-quantum network with core features as 1) Crypto agility (integration in the already deployed telecommunication fibres), 2) Software defined networking (SDN paradigm for routing different nodes), 3) reliability (addressing denial-of-service with hybrid quantum safe cryptography), 4) upgradability (modules upgradation based on scientific and technological advancements), 5) Beyond QKD (using QKD network for distributed computing, multi-party computation etc). Our results demonstrate a clear path to create and accelerate quantum secure Indian subcontinent under the national quantum mission.

Keywords: quantum network, quantum key distribution, quantum security, quantum information

Procedia PDF Downloads 62
8093 Congestion Control in Mobile Network by Prioritizing Handoff Calls

Authors: O. A. Lawal, O. A Ojesanmi

Abstract:

The demand for wireless cellular services continues to increase while the radio resources remain limited. Thus, network operators have to continuously manage the scarce radio resources in order to have an improved quality of service for mobile users. This paper proposes how to handle the problem of congestion in the mobile network by prioritizing handoff call, using the guard channel allocation scheme. The research uses specific threshold value for the time of allocation of the channel in the algorithm. The scheme would be simulated by generating various data for different traffics in the network as it would be in the real life. The result would be used to determine the probability of handoff call dropping and the probability of the new call blocking as a way of measuring the network performance.

Keywords: call block, channel, handoff, mobile cellular network

Procedia PDF Downloads 398
8092 Compact Low Loss Design of SOI 1x2 Y-Branch Optical Power Splitter with S-Bend Waveguide and Study on the Variation of Transmitted Power with Various Waveguide Parameters

Authors: Nagaraju Pendam, C. P. Vardhani

Abstract:

A simple technology–compatible design of silicon-on-insulator based 1×2 optical power splitter is proposed. For developing large area Opto-electronic Silicon-on-Insulator (SOI) devices, the power splitter is a key passive device. The SOI rib- waveguide dimensions (height, width, and etching depth, refractive indices, length of waveguide) leading simultaneously to single mode propagation. In this paper a low loss optical power splitter is designed by using R Soft cad tool and simulated by Beam propagation method, here s-bend waveguides proposed. We concentrate changing the refractive index difference, branching angle, width of the waveguide, free space wavelength of the waveguide and observing transmitted power, effective refractive index in the designed waveguide, and choosing the best simulated results to be fabricated on silicon-on insulator platform. In this design 1550 nm free spacing are used.

Keywords: beam propagation method, insertion loss, optical power splitter, rib waveguide, transmitted power

Procedia PDF Downloads 665
8091 Person Re-Identification using Siamese Convolutional Neural Network

Authors: Sello Mokwena, Monyepao Thabang

Abstract:

In this study, we propose a comprehensive approach to address the challenges in person re-identification models. By combining a centroid tracking algorithm with a Siamese convolutional neural network model, our method excels in detecting, tracking, and capturing robust person features across non-overlapping camera views. The algorithm efficiently identifies individuals in the camera network, while the neural network extracts fine-grained global features for precise cross-image comparisons. The approach's effectiveness is further accentuated by leveraging the camera network topology for guidance. Our empirical analysis on benchmark datasets highlights its competitive performance, particularly evident when background subtraction techniques are selectively applied, underscoring its potential in advancing person re-identification techniques.

Keywords: camera network, convolutional neural network topology, person tracking, person re-identification, siamese

Procedia PDF Downloads 77