Search results for: virtual Machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3971

Search results for: virtual Machine

731 Prediction of Distillation Curve and Reid Vapor Pressure of Dual-Alcohol Gasoline Blends Using Artificial Neural Network for the Determination of Fuel Performance

Authors: Leonard D. Agana, Wendell Ace Dela Cruz, Arjan C. Lingaya, Bonifacio T. Doma Jr.

Abstract:

The purpose of this paper is to study the predict the fuel performance parameters, which include drivability index (DI), vapor lock index (VLI), and vapor lock potential using distillation curve and Reid vapor pressure (RVP) of dual alcohol-gasoline fuel blends. Distillation curve and Reid vapor pressure were predicted using artificial neural networks (ANN) with macroscopic properties such as boiling points, RVP, and molecular weights as the input layers. The ANN consists of 5 hidden layers and was trained using Bayesian regularization. The training mean square error (MSE) and R-value for the ANN of RVP are 91.4113 and 0.9151, respectively, while the training MSE and R-value for the distillation curve are 33.4867 and 0.9927. Fuel performance analysis of the dual alcohol–gasoline blends indicated that highly volatile gasoline blended with dual alcohols results in non-compliant fuel blends with D4814 standard. Mixtures of low-volatile gasoline and 10% methanol or 10% ethanol can still be blended with up to 10% C3 and C4 alcohols. Intermediate volatile gasoline containing 10% methanol or 10% ethanol can still be blended with C3 and C4 alcohols that have low RVPs, such as 1-propanol, 1-butanol, 2-butanol, and i-butanol. Biography: Graduate School of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Muralla St., Intramuros, Manila, 1002, Philippines

Keywords: dual alcohol-gasoline blends, distillation curve, machine learning, reid vapor pressure

Procedia PDF Downloads 101
730 A Double Ended AC Series Arc Fault Location Algorithm Based on Currents Estimation and a Fault Map Trace Generation

Authors: Edwin Calderon-Mendoza, Patrick Schweitzer, Serge Weber

Abstract:

Series arc faults appear frequently and unpredictably in low voltage distribution systems. Many methods have been developed to detect this type of faults and commercial protection systems such AFCI (arc fault circuit interrupter) have been used successfully in electrical networks to prevent damage and catastrophic incidents like fires. However, these devices do not allow series arc faults to be located on the line in operating mode. This paper presents a location algorithm for series arc fault in a low-voltage indoor power line in an AC 230 V-50Hz home network. The method is validated through simulations using the MATLAB software. The fault location method uses electrical parameters (resistance, inductance, capacitance, and conductance) of a 49 m indoor power line. The mathematical model of a series arc fault is based on the analysis of the V-I characteristics of the arc and consists basically of two antiparallel diodes and DC voltage sources. In a first step, the arc fault model is inserted at some different positions across the line which is modeled using lumped parameters. At both ends of the line, currents and voltages are recorded for each arc fault generation at different distances. In the second step, a fault map trace is created by using signature coefficients obtained from Kirchhoff equations which allow a virtual decoupling of the line’s mutual capacitance. Each signature coefficient obtained from the subtraction of estimated currents is calculated taking into account the Discrete Fast Fourier Transform of currents and voltages and also the fault distance value. These parameters are then substituted into Kirchhoff equations. In a third step, the same procedure described previously to calculate signature coefficients is employed but this time by considering hypothetical fault distances where the fault can appear. In this step the fault distance is unknown. The iterative calculus from Kirchhoff equations considering stepped variations of the fault distance entails the obtaining of a curve with a linear trend. Finally, the fault distance location is estimated at the intersection of two curves obtained in steps 2 and 3. The series arc fault model is validated by comparing current registered from simulation with real recorded currents. The model of the complete circuit is obtained for a 49m line with a resistive load. Also, 11 different arc fault positions are considered for the map trace generation. By carrying out the complete simulation, the performance of the method and the perspectives of the work will be presented.

Keywords: indoor power line, fault location, fault map trace, series arc fault

Procedia PDF Downloads 137
729 Computational Approach to Identify Novel Chemotherapeutic Agents against Multiple Sclerosis

Authors: Syed Asif Hassan, Tabrej Khan

Abstract:

Multiple sclerosis (MS) is a chronic demyelinating autoimmune disorder, of the central nervous system (CNS). In the present scenario, the current therapies either do not halt the progression of the disease or have side effects which limit the usage of current Disease Modifying Therapies (DMTs) for a longer period of time. Therefore, keeping the current treatment failure schema, we are focusing on screening novel analogues of the available DMTs that specifically bind and inhibit the Sphingosine1-phosphate receptor1 (S1PR1) thereby hindering the lymphocyte propagation toward CNS. The novel drug-like analogs molecule will decrease the frequency of relapses (recurrence of the symptoms associated with MS) with higher efficacy and lower toxicity to human system. In this study, an integrated approach involving ligand-based virtual screening protocol (Ultrafast Shape Recognition with CREDO Atom Types (USRCAT)) to identify the non-toxic drug like analogs of the approved DMTs were employed. The potency of the drug-like analog molecules to cross the Blood Brain Barrier (BBB) was estimated. Besides, molecular docking and simulation using Auto Dock Vina 1.1.2 and GOLD 3.01 were performed using the X-ray crystal structure of Mtb LprG protein to calculate the affinity and specificity of the analogs with the given LprG protein. The docking results were further confirmed by DSX (DrugScore eXtented), a robust program to evaluate the binding energy of ligands bound to the ligand binding domain of the Mtb LprG lipoprotein. The ligand, which has a higher hypothetical affinity, also has greater negative value. Further, the non-specific ligands were screened out using the structural filter proposed by Baell and Holloway. Based on the USRCAT, Lipinski’s values, toxicity and BBB analysis, the drug-like analogs of fingolimod and BG-12 showed that RTL and CHEMBL1771640, respectively are non-toxic and permeable to BBB. The successful docking and DSX analysis showed that RTL and CHEMBL1771640 could bind to the binding pocket of S1PR1 receptor protein of human with greater affinity than as compared to their parent compound (Fingolimod). In this study, we also found that all the drug-like analogs of the standard MS drugs passed the Bell and Holloway filter.

Keywords: antagonist, binding affinity, chemotherapeutics, drug-like, multiple sclerosis, S1PR1 receptor protein

Procedia PDF Downloads 256
728 Procedural Protocol for Dual Energy Computed Tomography (DECT) Inversion

Authors: Rezvan Ravanfar Haghighi, S. Chatterjee, Pratik Kumar, V. C. Vani, Priya Jagia, Sanjiv Sharma, Susama Rani Mandal, R. Lakshmy

Abstract:

The dual energy computed tomography (DECT) aims at noting the HU(V) values for the sample at two different voltages V=V1, V2 and thus obtain the electron densities (ρe) and effective atomic number (Zeff) of the substance. In the present paper, we aim to obtain a numerical algorithm by which (ρe, Zeff) can be obtained from the HU(100) and HU(140) data, where V=100, 140 kVp. The idea is to use this inversion method to characterize and distinguish between the lipid and fibrous coronary artery plaques.With the idea to develop the inversion algorithm for low Zeff materials, as is the case with non calcified coronary artery plaque, we prepare aqueous samples whose calculated values of (ρe, Zeff) lie in the range (2.65×1023≤ ρe≤ 3.64×1023 per cc ) and (6.80≤ Zeff ≤ 8.90). We fill the phantom with these known samples and experimentally determine HU(100) and HU(140) for the same pixels. Knowing that the HU(V) values are related to the attenuation coefficient of the system, we present an algorithm by which the (ρe, Zeff) is calibrated with respect to (HU(100), HU(140)). The calibration is done with a known set of 20 samples; its accuracy is checked with a different set of 23 known samples. We find that the calibration gives the ρe with an accuracy of ± 4% while Zeff is found within ±1% of the actual value, the confidence being 95%.In this inversion method (ρe, Zeff) of the scanned sample can be found by eliminating the effects of the CT machine and also by ensuring that the determination of the two unknowns (ρe, Zeff) does not interfere with each other. It is found that this algorithm can be used for prediction of chemical characteristic (ρe, Zeff) of unknown scanned materials with 95% confidence level, by inversion of the DECT data.

Keywords: chemical composition, dual-energy computed tomography, inversion algorithm

Procedia PDF Downloads 438
727 Hand Gesture Interface for PC Control and SMS Notification Using MEMS Sensors

Authors: Keerthana E., Lohithya S., Harshavardhini K. S., Saranya G., Suganthi S.

Abstract:

In an epoch of expanding human-machine interaction, the development of innovative interfaces that bridge the gap between physical gestures and digital control has gained significant momentum. This study introduces a distinct solution that leverages a combination of MEMS (Micro-Electro-Mechanical Systems) sensors, an Arduino Mega microcontroller, and a PC to create a hand gesture interface for PC control and SMS notification. The core of the system is an ADXL335 MEMS accelerometer sensor integrated with an Arduino Mega, which communicates with a PC via a USB cable. The ADXL335 provides real-time acceleration data, which is processed by the Arduino to detect specific hand gestures. These gestures, such as left, right, up, down, or custom patterns, are interpreted by the Arduino, and corresponding actions are triggered. In the context of SMS notifications, when a gesture indicative of a new SMS is recognized, the Arduino relays this information to the PC through the serial connection. The PC application, designed to monitor the Arduino's serial port, displays these SMS notifications in the serial monitor. This study offers an engaging and interactive means of interfacing with a PC by translating hand gestures into meaningful actions, opening up opportunities for intuitive computer control. Furthermore, the integration of SMS notifications adds a practical dimension to the system, notifying users of incoming messages as they interact with their computers. The use of MEMS sensors, Arduino, and serial communication serves as a promising foundation for expanding the capabilities of gesture-based control systems.

Keywords: hand gestures, multiple cables, serial communication, sms notification

Procedia PDF Downloads 69
726 Visual Speech Perception of Arabic Emphatics

Authors: Maha Saliba Foster

Abstract:

Speech perception has been recognized as a bi-sensory process involving the auditory and visual channels. Compared to the auditory modality, the contribution of the visual signal to speech perception is not very well understood. Studying how the visual modality affects speech recognition can have pedagogical implications in second language learning, as well as clinical application in speech therapy. The current investigation explores the potential effect of speech visual cues on the perception of Arabic emphatics (AEs). The corpus consists of 36 minimal pairs each containing two contrasting consonants, an AE versus a non-emphatic (NE). Movies of four Lebanese speakers were edited to allow perceivers to have partial view of facial regions: lips only, lips-cheeks, lips-chin, lips-cheeks-chin, lips-cheeks-chin-neck. In the absence of any auditory information and relying solely on visual speech, perceivers were above chance at correctly identifying AEs or NEs across vowel contexts; moreover, the models were able to predict the probability of perceivers’ accuracy in identifying some of the COIs produced by certain speakers; additionally, results showed an overlap between the measurements selected by the computer and those selected by human perceivers. The lack of significant face effect on the perception of AEs seems to point to the lips, present in all of the videos, as the most important and often sufficient facial feature for emphasis recognition. Future investigations will aim at refining the analyses of visual cues used by perceivers by using Principal Component Analysis and including time evolution of facial feature measurements.

Keywords: Arabic emphatics, machine learning, speech perception, visual speech perception

Procedia PDF Downloads 306
725 Tomato-Weed Classification by RetinaNet One-Step Neural Network

Authors: Dionisio Andujar, Juan lópez-Correa, Hugo Moreno, Angela Ri

Abstract:

The increased number of weeds in tomato crops highly lower yields. Weed identification with the aim of machine learning is important to carry out site-specific control. The last advances in computer vision are a powerful tool to face the problem. The analysis of RGB (Red, Green, Blue) images through Artificial Neural Networks had been rapidly developed in the past few years, providing new methods for weed classification. The development of the algorithms for crop and weed species classification looks for a real-time classification system using Object Detection algorithms based on Convolutional Neural Networks. The site study was located in commercial corn fields. The classification system has been tested. The procedure can detect and classify weed seedlings in tomato fields. The input to the Neural Network was a set of 10,000 RGB images with a natural infestation of Cyperus rotundus l., Echinochloa crus galli L., Setaria italica L., Portulaca oeracea L., and Solanum nigrum L. The validation process was done with a random selection of RGB images containing the aforementioned species. The mean average precision (mAP) was established as the metric for object detection. The results showed agreements higher than 95 %. The system will provide the input for an online spraying system. Thus, this work plays an important role in Site Specific Weed Management by reducing herbicide use in a single step.

Keywords: deep learning, object detection, cnn, tomato, weeds

Procedia PDF Downloads 103
724 A Flute Tracking System for Monitoring the Wear of Cutting Tools in Milling Operations

Authors: Hatim Laalej, Salvador Sumohano-Verdeja, Thomas McLeay

Abstract:

Monitoring of tool wear in milling operations is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Although there are numerous statistical models and artificial intelligence techniques available for monitoring the wear of cutting tools, these techniques cannot pin point which cutting edge of the tool, or which insert in the case of indexable tooling, is worn or broken. Currently, the task of monitoring the wear on the tool cutting edges is carried out by the operator who performs a manual inspection, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from lost productivity. The present study is concerned with the development of a flute tracking system to segment signals related to each physical flute of a cutter with three flutes used in an end milling operation. The purpose of the system is to monitor the cutting condition for individual flutes separately in order to determine their progressive wear rates and to predict imminent tool failure. The results of this study clearly show that signals associated with each flute can be effectively segmented using the proposed flute tracking system. Furthermore, the results illustrate that by segmenting the sensor signal by flutes it is possible to investigate the wear in each physical cutting edge of the cutting tool. These findings are significant in that they facilitate the online condition monitoring of a cutting tool for each specific flute without the need for operators/engineers to perform manual inspections of the tool.

Keywords: machining, milling operation, tool condition monitoring, tool wear prediction

Procedia PDF Downloads 303
723 A Deep Learning Approach to Online Social Network Account Compromisation

Authors: Edward K. Boahen, Brunel E. Bouya-Moko, Changda Wang

Abstract:

The major threat to online social network (OSN) users is account compromisation. Spammers now spread malicious messages by exploiting the trust relationship established between account owners and their friends. The challenge in detecting a compromised account by service providers is validating the trusted relationship established between the account owners, their friends, and the spammers. Another challenge is the increase in required human interaction with the feature selection. Research available on supervised learning (machine learning) has limitations with the feature selection and accounts that cannot be profiled, like application programming interface (API). Therefore, this paper discusses the various behaviours of the OSN users and the current approaches in detecting a compromised OSN account, emphasizing its limitations and challenges. We propose a deep learning approach that addresses and resolve the constraints faced by the previous schemes. We detailed our proposed optimized nonsymmetric deep auto-encoder (OPT_NDAE) for unsupervised feature learning, which reduces the required human interaction levels in the selection and extraction of features. We evaluated our proposed classifier using the NSL-KDD and KDDCUP'99 datasets in a graphical user interface enabled Weka application. The results obtained indicate that our proposed approach outperformed most of the traditional schemes in OSN compromised account detection with an accuracy rate of 99.86%.

Keywords: computer security, network security, online social network, account compromisation

Procedia PDF Downloads 119
722 The Curvature of Bending Analysis and Motion of Soft Robotic Fingers by Full 3D Printing with MC-Cells Technique for Hand Rehabilitation

Authors: Chaiyawat Musikapan, Ratchatin Chancharoen, Saknan Bongsebandhu-Phubhakdi

Abstract:

For many recent years, soft robotic fingers were used for supporting the patients who had survived the neurological diseases that resulted in muscular disorders and neural network damages, such as stroke and Parkinson’s disease, and inflammatory symptoms such as De Quervain and trigger finger. Generally, the major hand function is significant to manipulate objects in activities of daily living (ADL). In this work, we proposed the model of soft actuator that manufactured by full 3D printing without the molding process and one material for use. Furthermore, we designed the model with a technique of multi cavitation cells (MC-Cells). Then, we demonstrated the curvature bending, fluidic pressure and force that generated to the model for assistive finger flexor and hand grasping. Also, the soft actuators were characterized in mathematics solving by the length of chord and arc length. In addition, we used an adaptive push-button switch machine to measure the force in our experiment. Consequently, we evaluated biomechanics efficiency by the range of motion (ROM) that affected to metacarpophalangeal joint (MCP), proximal interphalangeal joint (PIP) and distal interphalangeal joint (DIP). Finally, the model achieved to exhibit the corresponding fluidic pressure with force and ROM to assist the finger flexor and hand grasping.

Keywords: biomechanics efficiency, curvature bending, hand functional assistance, multi cavitation cells (MC-Cells), range of motion (ROM)

Procedia PDF Downloads 260
721 Investor Sentiment and Satisfaction in Automated Investment: A Sentimental Analysis of Robo-Advisor Platforms

Authors: Vertika Goswami, Gargi Sharma

Abstract:

The rapid evolution of fintech has led to the rise of robo-advisor platforms that utilize artificial intelligence (AI) and machine learning to offer personalized investment solutions efficiently and cost-effectively. This research paper conducts a comprehensive sentiment analysis of investor experiences with these platforms, employing natural language processing (NLP) and sentiment classification techniques. The study investigates investor perceptions, engagement, and satisfaction, identifying key drivers of positive sentiment such as clear communication, low fees, consistent returns, and robust security. Conversely, negative sentiment is linked to issues like inconsistent performance, hidden fees, poor customer support, and a lack of transparency. The analysis reveals that addressing these pain points—through improved transparency, enhanced customer service, and ongoing technological advancements—can significantly boost investor trust and satisfaction. This paper contributes valuable insights into the fields of behavioral finance and fintech innovation, offering actionable recommendations for stakeholders, practitioners, and policymakers. Future research should explore the long-term impact of these factors on investor loyalty, the role of emerging technologies, and the effects of ethical investment choices and regulatory compliance on investor sentiment.

Keywords: artificial intelligence in finance, automated investment, financial technology, investor satisfaction, investor sentiment, robo-advisors, sentimental analysis

Procedia PDF Downloads 18
720 Performance Assessment of a Variable-Flux Permanent-Magnet Memory Motor

Authors: Michel Han, Christophe Besson, Alain Savary, Yvan Becher

Abstract:

The variable flux permanent magnet synchronous motor (VF-PMSM), also called "Memory Motor", is a new generation of motor capable of modifying the magnetization state with short pulses of current during operation or standstill. The impact of such operation is the expansion of the operating range in the torque-speed characteristic and an improvement in energy efficiency at high-speed in comparison to conventional permanent magnet synchronous machines (PMSMs). This paper reviews the operating principle and the unique features of the proposed memory motor. The benefits of this concept are highlighted by comparing the performance of the rotor of the VF-PMSM to that of two PM rotors that are typically found in the industry. The investigation emphasizes the properties of the variable magnetization and presents the comparison of the torque-speed characteristic with the capability of loss reduction in a VF-PMSM by means of experimental results, especially when tests are conducted under identical conditions for each rotor (same stator, same inverter and same experimental setup). The experimental results demonstrated that the VF-PMSM gives an additional degree of freedom to optimize the efficiency over a wide speed range. Thus, with a design easy to manufacture and with the possibility of controlling the magnetization and the demagnetization of the magnets during operations, the VF-PMSM can be interesting for various applications.

Keywords: efficiency, magnetization state, memory motors, performances, permanent-magnet, synchronous machine, variable-flux, variable magnetization, wide speed application

Procedia PDF Downloads 192
719 Developing a Maturity Model of Digital Twin Application for Infrastructure Asset Management

Authors: Qingqing Feng, S. Thomas Ng, Frank J. Xu, Jiduo Xing

Abstract:

Faced with unprecedented challenges including aging assets, lack of maintenance budget, overtaxed and inefficient usage, and outcry for better service quality from the society, today’s infrastructure systems has become the main focus of many metropolises to pursue sustainable urban development and improve resilience. Digital twin, being one of the most innovative enabling technologies nowadays, may open up new ways for tackling various infrastructure asset management (IAM) problems. Digital twin application for IAM, as its name indicated, represents an evolving digital model of intended infrastructure that possesses functions including real-time monitoring; what-if events simulation; and scheduling, maintenance, and management optimization based on technologies like IoT, big data and AI. Up to now, there are already vast quantities of global initiatives of digital twin applications like 'Virtual Singapore' and 'Digital Built Britain'. With digital twin technology permeating the IAM field progressively, it is necessary to consider the maturity of the application and how those institutional or industrial digital twin application processes will evolve in future. In order to deal with the gap of lacking such kind of benchmark, a draft maturity model is developed for digital twin application in the IAM field. Firstly, an overview of current smart cities maturity models is given, based on which the draft Maturity Model of Digital Twin Application for Infrastructure Asset Management (MM-DTIAM) is developed for multi-stakeholders to evaluate and derive informed decision. The process of development follows a systematic approach with four major procedures, namely scoping, designing, populating and testing. Through in-depth literature review, interview and focus group meeting, the key domain areas are populated, defined and iteratively tuned. Finally, the case study of several digital twin projects is conducted for self-verification. The findings of the research reveal that: (i) the developed maturity model outlines five maturing levels leading to an optimised digital twin application from the aspects of strategic intent, data, technology, governance, and stakeholders’ engagement; (ii) based on the case study, levels 1 to 3 are already partially implemented in some initiatives while level 4 is on the way; and (iii) more practices are still needed to refine the draft to be mutually exclusive and collectively exhaustive in key domain areas.

Keywords: digital twin, infrastructure asset management, maturity model, smart city

Procedia PDF Downloads 157
718 Spatial Object-Oriented Template Matching Algorithm Using Normalized Cross-Correlation Criterion for Tracking Aerial Image Scene

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

Leaning on the development of aerial laser scanning in the Philippine geospatial industry, researches about remote sensing and machine vision technology became a trend. Object detection via template matching is one of its application which characterized to be fast and in real time. The paper purposely attempts to provide application for robust pattern matching algorithm based on the normalized cross correlation (NCC) criterion function subjected in Object-based image analysis (OBIA) utilizing high-resolution aerial imagery and low density LiDAR data. The height information from laser scanning provides effective partitioning order, thus improving the hierarchal class feature pattern which allows to skip unnecessary calculation. Since detection is executed in the object-oriented platform, mathematical morphology and multi-level filter algorithms were established to effectively avoid the influence of noise, small distortion and fluctuating image saturation that affect the rate of recognition of features. Furthermore, the scheme is evaluated to recognized the performance in different situations and inspect the computational complexities of the algorithms. Its effectiveness is demonstrated in areas of Misamis Oriental province, achieving an overall accuracy of 91% above. Also, the garnered results portray the potential and efficiency of the implemented algorithm under different lighting conditions.

Keywords: algorithm, LiDAR, object recognition, OBIA

Procedia PDF Downloads 245
717 Development of Automatic Laser Scanning Measurement Instrument

Authors: Chien-Hung Liu, Yu-Fen Chen

Abstract:

This study used triangular laser probe and three-axial direction mobile platform for surface measurement, programmed it and applied it to real-time analytic statistics of different measured data. This structure was used to design a system integration program: using triangular laser probe for scattering or reflection non-contact measurement, transferring the captured signals to the computer through RS-232, and using RS-485 to control the three-axis platform for a wide range of measurement. The data captured by the laser probe are formed into a 3D surface. This study constructed an optical measurement application program in the concept of visual programming language. First, the signals are transmitted to the computer through RS-232/RS-485, and then the signals are stored and recorded in graphic interface timely. This programming concept analyzes various messages, and makes proper presentation graphs and data processing to provide the users with friendly graphic interfaces and data processing state monitoring, and identifies whether the present data are normal in graphic concept. The major functions of the measurement system developed by this study are thickness measurement, SPC, surface smoothness analysis, and analytical calculation of trend line. A result report can be made and printed promptly. This study measured different heights and surfaces successfully, performed on-line data analysis and processing effectively, and developed a man-machine interface for users to operate.

Keywords: laser probe, non-contact measurement, triangulation measurement principle, statistical process control, labVIEW

Procedia PDF Downloads 360
716 Time and Cost Prediction Models for Language Classification Over a Large Corpus on Spark

Authors: Jairson Barbosa Rodrigues, Paulo Romero Martins Maciel, Germano Crispim Vasconcelos

Abstract:

This paper presents an investigation of the performance impacts regarding the variation of five factors (input data size, node number, cores, memory, and disks) when applying a distributed implementation of Naïve Bayes for text classification of a large Corpus on the Spark big data processing framework. Problem: The algorithm's performance depends on multiple factors, and knowing before-hand the effects of each factor becomes especially critical as hardware is priced by time slice in cloud environments. Objectives: To explain the functional relationship between factors and performance and to develop linear predictor models for time and cost. Methods: the solid statistical principles of Design of Experiments (DoE), particularly the randomized two-level fractional factorial design with replications. This research involved 48 real clusters with different hardware arrangements. The metrics were analyzed using linear models for screening, ranking, and measurement of each factor's impact. Results: Our findings include prediction models and show some non-intuitive results about the small influence of cores and the neutrality of memory and disks on total execution time, and the non-significant impact of data input scale on costs, although notably impacts the execution time.

Keywords: big data, design of experiments, distributed machine learning, natural language processing, spark

Procedia PDF Downloads 120
715 Twitter Ego Networks and the Capital Markets: A Social Network Analysis Perspective of Market Reactions to Earnings Announcement Events

Authors: Gregory D. Saxton

Abstract:

Networks are everywhere: lunch ties among co-workers, golfing partnerships among employees, interlocking board-of-director connections, Facebook friendship ties, etc. Each network varies in terms of its structure -its size, how inter-connected network members are, and the prevalence of sub-groups and cliques. At the same time, within any given network, some network members will have a more important, more central position on account of their greater number of connections or their capacity as “bridges” connecting members of different network cliques. The logic of network structure and position is at the heart of what is known as social network analysis, and this paper applies this logic to the study of the stock market. Using an array of data analytics and machine learning tools, this study will examine 17 million Twitter messages discussing the stocks of the firms in the S&P 1,500 index in 2018. Each of these 1,500 stocks has a distinct Twitter discussion network that varies in terms of core network characteristics such as size, density, influence, norms and values, level of activity, and embedded resources. The study’s core proposition is that the ultimate effect of any market-relevant information is contingent on the characteristics of the network through which it flows. To test this proposition, this study operationalizes each of the core network characteristics and examines their influence on market reactions to 2018 quarterly earnings announcement events.

Keywords: data analytics, investor-to-investor communication, social network analysis, Twitter

Procedia PDF Downloads 121
714 AI-Powered Conversation Tools - Chatbots: Opportunities and Challenges That Present to Academics within Higher Education

Authors: Jinming Du

Abstract:

With the COVID-19 pandemic beginning in 2020, many higher education institutions and education systems are turning to hybrid or fully distance online courses to maintain social distance and provide a safe virtual space for learning and teaching. However, the majority of faculty members were not well prepared for the shift to blended or distance learning. Communication frustrations are prevalent in both hybrid and full-distance courses. A systematic literature review was conducted by a comprehensive analysis of 1688 publications that focused on the application of the adoption of chatbots in education. This study aimed to explore instructors' experiences with chatbots in online and blended undergraduate English courses. Language learners are overwhelmed by the variety of information offered by many online sites. The recently emerged chatbots (e.g.: ChatGPT) are slightly superior in performance as compared to those traditional through previous technologies such as tapes, video recorders, and websites. The field of chatbots has been intensively researched, and new methods have been developed to demonstrate how students can best learn and practice a new language in the target language. However, it is believed that among the many areas where chatbots are applied, while chatbots have been used as effective tools for communicating with business customers, in consulting and targeting areas, and in the medical field, chatbots have not yet been fully explored and implemented in the field of language education. This issue is challenging enough for language teachers; they need to study and conduct research carefully to clarify it. Pedagogical chatbots may alleviate the perception of a lack of communication and feedback from instructors by interacting naturally with students through scaffolding the understanding of those learners, much like educators do. However, educators and instructors lack the proficiency to effectively operate this emerging AI chatbot technology and require comprehensive study or structured training to attain competence. There is a gap between language teachers’ perceptions and recent advances in the application of AI chatbots to language learning. The results of the study found that although the teachers felt that the chatbots did the best job of giving feedback, the teachers needed additional training to be able to give better instructions and to help them assist in teaching. Teachers generally perceive the utilization of chatbots to offer substantial assistance to English language instruction.

Keywords: artificial intelligence in education, chatbots, education and technology, education system, pedagogical chatbot, chatbots and language education

Procedia PDF Downloads 66
713 Revisiting Historical Illustrations in the Age of Digital Anatomy Education

Authors: Julia Wimmers-Klick

Abstract:

In the contemporary study of anatomy, medical students utilize a diverse array of resources, including lab handouts, lectures, and, increasingly, digital media such as interactive anatomy apps and digital images. Notably, a significant shift has occurred, with fewer students possessing traditional anatomy atlases or books, reflecting a broader trend towards digital approaches like Virtual Reality, Augmented Reality, and web-based programs. This paper seeks to explore the evolution of anatomy education by contrasting current digital tools with historical resources, such as classical anatomical illustrations and atlases, to assess their relevance and potential benefits in modern medical education. Through a comprehensive literature review, the development of anatomical illustrations is traced from the textual descriptions of Galen to the detailed and artistic representations of Da Vinci, Vesalius, and later anatomists. The examination includes how the printing press facilitated the dissemination of anatomical knowledge, transforming covert dissections into public spectacles and formalized teaching practices. Historical illustrations, often influenced by societal, religious, and aesthetic contexts, not only served educational purposes but also reflected the prevailing medical knowledge and ethical standards of their times. Critical questions are raised about the place of historical illustrations in today's anatomy curriculum. Specifically, their potential to teach critical thinking, highlight the history of medicine, and offer unique insights into past societal conditions are explored. These resources are viewed in their context, including the lack of diversity and the presence of ethical concerns, such as the use of illustrations from unethical sources like Pernkopf’s atlas. In conclusion, while digital tools offer innovative ways to visualize and interact with anatomical structures, historical illustrations provide irreplaceable value in understanding the evolution of medical knowledge and practice. The study advocates for a balanced approach that integrates traditional and modern resources to enrich medical education, promote critical thinking, and provide a comprehensive understanding of anatomy. Future research should investigate the optimal combination of these resources to meet the evolving needs of medical learners and the implications of the digital shift in anatomy education.

Keywords: human anatomy, historical illustrations, historical context, medical education

Procedia PDF Downloads 21
712 Extended Kalman Filter and Markov Chain Monte Carlo Method for Uncertainty Estimation: Application to X-Ray Fluorescence Machine Calibration and Metal Testing

Authors: S. Bouhouche, R. Drai, J. Bast

Abstract:

This paper is concerned with a method for uncertainty evaluation of steel sample content using X-Ray Fluorescence method. The considered method of analysis is a comparative technique based on the X-Ray Fluorescence; the calibration step assumes the adequate chemical composition of metallic analyzed sample. It is proposed in this work a new combined approach using the Kalman Filter and Markov Chain Monte Carlo (MCMC) for uncertainty estimation of steel content analysis. The Kalman filter algorithm is extended to the model identification of the chemical analysis process using the main factors affecting the analysis results; in this case, the estimated states are reduced to the model parameters. The MCMC is a stochastic method that computes the statistical properties of the considered states such as the probability distribution function (PDF) according to the initial state and the target distribution using Monte Carlo simulation algorithm. Conventional approach is based on the linear correlation, the uncertainty budget is established for steel Mn(wt%), Cr(wt%), Ni(wt%) and Mo(wt%) content respectively. A comparative study between the conventional procedure and the proposed method is given. This kind of approaches is applied for constructing an accurate computing procedure of uncertainty measurement.

Keywords: Kalman filter, Markov chain Monte Carlo, x-ray fluorescence calibration and testing, steel content measurement, uncertainty measurement

Procedia PDF Downloads 283
711 Artificial Neural Network in Ultra-High Precision Grinding of Borosilicate-Crown Glass

Authors: Goodness Onwuka, Khaled Abou-El-Hossein

Abstract:

Borosilicate-crown (BK7) glass has found broad application in the optic and automotive industries and the growing demands for nanometric surface finishes is becoming a necessity in such applications. Thus, it has become paramount to optimize the parameters influencing the surface roughness of this precision lens. The research was carried out on a 4-axes Nanoform 250 precision lathe machine with an ultra-high precision grinding spindle. The experiment varied the machining parameters of feed rate, wheel speed and depth of cut at three levels for different combinations using Box Behnken design of experiment and the resulting surface roughness values were measured using a Taylor Hobson Dimension XL optical profiler. Acoustic emission monitoring technique was applied at a high sampling rate to monitor the machining process while further signal processing and feature extraction methods were implemented to generate the input to a neural network algorithm. This paper highlights the training and development of a back propagation neural network prediction algorithm through careful selection of parameters and the result show a better classification accuracy when compared to a previously developed response surface model with very similar machining parameters. Hence artificial neural network algorithms provide better surface roughness prediction accuracy in the ultra-high precision grinding of BK7 glass.

Keywords: acoustic emission technique, artificial neural network, surface roughness, ultra-high precision grinding

Procedia PDF Downloads 305
710 Bone Mineral Density and Trabecular Bone Score in Ukrainian Men with Obesity

Authors: Vladyslav Povoroznyuk, Anna Musiienko, Nataliia Dzerovych, Roksolana Povoroznyuk

Abstract:

Osteoporosis and obesity are widespread diseases in people over 50 years associated with changes in structure and body composition. Нigher body mass index (BMI) values are associated with greater bone mineral density (BMD). However, trabecular bone score (TBS) indirectly explores bone quality, independently of BMD. The aim of our study was to evaluate the relationship between the BMD and TBS parameters in Ukrainian men suffering from obesity. We examined 396 men aged 40-89 years. Depending on their BMI all the subjects were divided into two groups: Group I – patients with obesity whose BMI was ≥ 30 kg/m2 (n=129) and Group II – patients without obesity and BMI of < 30 kg/m2 (n=267). The BMD of total body, lumbar spine L1-L4, femoral neck and forearm were measured by DXA (Prodigy, GEHC Lunar, Madison, WI, USA). The TBS of L1- L4 was assessed by means of TBS iNsight® software installed on DXA machine (product of Med-Imaps, Pessac, France). In general, obese men had a significantly higher BMD of lumbar spine L1-L4, femoral neck, total body and ultradistal forearm (p < 0.001) in comparison with men without obesity. The TBS of L1-L4 was significantly lower in obese men compared to non-obese ones (p < 0.001). BMD of lumbar spine L1-L4, femoral neck and total body significantly differ in men aged 40-49, 50-59, 60-69, and 80-89 years (p < 0.05). At the same time, in men aged 70-79 years, BMD of lumbar spine L1-L4 (p=0.46), femoral neck (p=0.18), total body (p=0.21), ultra-distal forearm (p=0.13), and TBS (p=0.07) did not significantly differ. A significant positive correlation between the fat mass and the BMD at different sites was observed. However, the correlation between the fat mass and TBS of L1-L4 was also significant, though negative.

Keywords: bone mineral density, trabecular bone score, obesity, men

Procedia PDF Downloads 463
709 Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection

Authors: S. Shankar Bharathi

Abstract:

Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects.

Keywords: metallic surface, scratches, segmentation, hausdorff dilation distance, machine vision

Procedia PDF Downloads 428
708 Biomechanical Modeling, Simulation, and Comparison of Human Arm Motion to Mitigate Astronaut Task during Extra Vehicular Activity

Authors: B. Vadiraj, S. N. Omkar, B. Kapil Bharadwaj, Yash Vardhan Gupta

Abstract:

During manned exploration of space, missions will require astronaut crewmembers to perform Extra Vehicular Activities (EVAs) for a variety of tasks. These EVAs take place after long periods of operations in space, and in and around unique vehicles, space structures and systems. Considering the remoteness and time spans in which these vehicles will operate, EVA system operations should utilize common worksites, tools and procedures as much as possible to increase the efficiency of training and proficiency in operations. All of the preparations need to be carried out based on studies of astronaut motions. Until now, development and training activities associated with the planned EVAs in Russian and U.S. space programs have relied almost exclusively on physical simulators. These experimental tests are expensive and time consuming. During the past few years a strong increase has been observed in the use of computer simulations due to the fast developments in computer hardware and simulation software. Based on this idea, an effort to develop a computational simulation system to model human dynamic motion for EVA is initiated. This study focuses on the simulation of an astronaut moving the orbital replaceable units into the worksites or removing them from the worksites. Our physics-based methodology helps fill the gap in quantitative analysis of astronaut EVA by providing a multisegment human arm model. Simulation work described in the study improves on the realism of previous efforts, incorporating joint stops to account for the physiological limits of range of motion. To demonstrate the utility of this approach human arm model is simulated virtually using ADAMS/LifeMOD® software. Kinematic mechanism for the astronaut’s task is studied from joint angles and torques. Simulation results obtained is validated with numerical simulation based on the principles of Newton-Euler method. Torques determined using mathematical model are compared among the subjects to know the grace and consistency of the task performed. We conclude that due to uncertain nature of exploration-class EVA, a virtual model developed using multibody dynamics approach offers significant advantages over traditional human modeling approaches.

Keywords: extra vehicular activity, biomechanics, inverse kinematics, human body modeling

Procedia PDF Downloads 342
707 Big Data in Construction Project Management: The Colombian Northeast Case

Authors: Sergio Zabala-Vargas, Miguel Jiménez-Barrera, Luz VArgas-Sánchez

Abstract:

In recent years, information related to project management in organizations has been increasing exponentially. Performance data, management statistics, indicator results have forced the collection, analysis, traceability, and dissemination of project managers to be essential. In this sense, there are current trends to facilitate efficient decision-making in emerging technology projects, such as: Machine Learning, Data Analytics, Data Mining, and Big Data. The latter is the most interesting in this project. This research is part of the thematic line Construction methods and project management. Many authors present the relevance that the use of emerging technologies, such as Big Data, has taken in recent years in project management in the construction sector. The main focus is the optimization of time, scope, budget, and in general mitigating risks. This research was developed in the northeastern region of Colombia-South America. The first phase was aimed at diagnosing the use of emerging technologies (Big-Data) in the construction sector. In Colombia, the construction sector represents more than 50% of the productive system, and more than 2 million people participate in this economic segment. The quantitative approach was used. A survey was applied to a sample of 91 companies in the construction sector. Preliminary results indicate that the use of Big Data and other emerging technologies is very low and also that there is interest in modernizing project management. There is evidence of a correlation between the interest in using new data management technologies and the incorporation of Building Information Modeling BIM. The next phase of the research will allow the generation of guidelines and strategies for the incorporation of technological tools in the construction sector in Colombia.

Keywords: big data, building information modeling, tecnology, project manamegent

Procedia PDF Downloads 128
706 Valence and Arousal-Based Sentiment Analysis: A Comparative Study

Authors: Usama Shahid, Muhammad Zunnurain Hussain

Abstract:

This research paper presents a comprehensive analysis of a sentiment analysis approach that employs valence and arousal as its foundational pillars, in comparison to traditional techniques. Sentiment analysis is an indispensable task in natural language processing that involves the extraction of opinions and emotions from textual data. The valence and arousal dimensions, representing the intensity and positivity/negativity of emotions, respectively, enable the creation of four quadrants, each representing a specific emotional state. The study seeks to determine the impact of utilizing these quadrants to identify distinct emotional states on the accuracy and efficiency of sentiment analysis, in comparison to traditional techniques. The results reveal that the valence and arousal-based approach outperforms other approaches, particularly in identifying nuanced emotions that may be missed by conventional methods. The study's findings are crucial for applications such as social media monitoring and market research, where the accurate classification of emotions and opinions is paramount. Overall, this research highlights the potential of using valence and arousal as a framework for sentiment analysis and offers invaluable insights into the benefits of incorporating specific types of emotions into the analysis. These findings have significant implications for researchers and practitioners in the field of natural language processing, as they provide a basis for the development of more accurate and effective sentiment analysis tools.

Keywords: sentiment analysis, valence and arousal, emotional states, natural language processing, machine learning, text analysis, sentiment classification, opinion mining

Procedia PDF Downloads 101
705 Identification of a Lead Compound for Selective Inhibition of Nav1.7 to Treat Chronic Pain

Authors: Sharat Chandra, Zilong Wang, Ru-Rong Ji, Andrey Bortsov

Abstract:

Chronic pain (CP) therapeutic approaches have limited efficacy. As a result, doctors are prescribing opioids for chronic pain, leading to opioid overuse, abuse, and addiction epidemic. Therefore, the development of effective and safe CP drugs remains an unmet medical need. Voltage-gated sodium (Nav) channels act as cardiovascular and neurological disorder’s molecular targets. Nav channels selective inhibitors are hard to design because there are nine closely-related isoforms (Nav1.1-1.9) that share the protein sequence segments. We are targeting the Nav1.7 found in the peripheral nervous system and engaged in the perception of pain. The objective of this project was to screen a 1.5 million compound library for identification of inhibitors for Nav1.7 with analgesic effect. In this study, we designed a protocol for identification of isoform-selective inhibitors of Nav1.7, by utilizing the prior information on isoform-selective antagonists. First, a similarity search was performed; then the identified hits were docked into a binding site on the fourth voltage-sensor domain (VSD4) of Nav1.7. We used the FTrees tool for similarity searching and library generation; the generated library was docked in the VSD4 domain binding site using FlexX and compounds were shortlisted using a FlexX score and SeeSAR hyde scoring. Finally, the top 25 compounds were tested with molecular dynamics simulation (MDS). We reduced our list to 9 compounds based on the MDS root mean square deviation plot and obtained them from a vendor for in vitro and in vivo validation. Whole-cell patch-clamp recordings in HEK-293 cells and dorsal root ganglion neurons were conducted. We used patch pipettes to record transient Na⁺ currents. One of the compounds reduced the peak sodium currents in Nav1.7-HEK-293 stable cell line in a dose-dependent manner, with IC50 values at 0.74 µM. In summary, our computer-aided analgesic discovery approach allowed us to develop pre-clinical analgesic candidate with significant reduction of time and cost.

Keywords: chronic pain, voltage-gated sodium channel, isoform-selective antagonist, similarity search, virtual screening, analgesics development

Procedia PDF Downloads 123
704 Brief Review of the Self-Tightening, Left-Handed Thread

Authors: Robert S. Giachetti, Emanuele Grossi

Abstract:

Loosening of bolted joints in rotating machines can adversely affect their performance, cause mechanical damage, and lead to injuries. In this paper, two potential loosening phenomena in rotating applications are discussed. First, ‘precession,’ is governed by thread/nut contact forces, while the second is based on inertial effects of the fastened assembly. These mechanisms are reviewed within the context of historical usage of left-handed fasteners in rotating machines which appears absent in the literature and common machine design texts. Historically, to prevent loosening of wheel nuts, vehicle manufacturers have used right-handed and left-handed threads on different sides of the vehicle, but most modern vehicles have abandoned this custom and only use right-handed, tapered lug nuts on all sides of the vehicle. Other classical machines such as the bicycle continue to use different handed threads on each side while other machines such as, bench grinders, circular saws and brush cutters still use left-handed threads to fasten rotating components. Despite the continued use of left-handed fasteners, the rationale and analysis of left-handed threads to mitigate self-loosening of fasteners in rotating applications is not commonly, if at all, discussed in the literature or design textbooks. Without scientific literature to support these design selections, these implementations may be the result of experimental findings or aged institutional knowledge. Based on a review of rotating applications, historical documents and mechanical design references, a formal study of the paradoxical nature of left-handed threads in various applications is merited.

Keywords: rotating machinery, self-loosening fasteners, wheel fastening, vibration loosening

Procedia PDF Downloads 136
703 An Investigation into Mechanical Properties of Laser Fabricated 308LSi Stainless Steel Walls by Wire Feedstock

Authors: Taiwo Ebenezer Abioye, Alexis Medrano-Tellez, Peter Kayode Farayibi, Peter Kayode Oke,

Abstract:

Laser metal deposition by wire feedstock has been established as a process which can provide a high material deposition rate with good quality. Sound mechanical properties of the deposited parts are the pre-requisites for the real applications of this process. This paper investigates the laser metal deposition of 308LSi stainless steel wire within a process window. Single tracks and multiple layer thin-walls of 308LSi stainless steel wire were deposited on 304 stainless steel substrate. The grain structures of the built walls were examined using optical microscopy. The mechanical properties of the built walls including the micro-hardness and tensile properties along the transverse and longitudinal directions were investigated using Vickers hardness tester and tensile test machine. Long columnar grains were found growing in the wall building direction (transverse) and nucleation were observed at the boundary between two deposited layers due to remelting of the previously deposited layers. The results showed that the hardness values of the deposited walls (ranging between 194 HV and 167 HV) decreased from the track-substrate interface to the top of the wall. The ultimate tensile strength (UTS) of the wall (518 ± 7 MPa) showed dependence on wall building directions.

Keywords: laser metal deposition, ultimate tensile strength, hardness, wall, microstructure

Procedia PDF Downloads 410
702 Context Detection in Spreadsheets Based on Automatically Inferred Table Schema

Authors: Alexander Wachtel, Michael T. Franzen, Walter F. Tichy

Abstract:

Programming requires years of training. With natural language and end user development methods, programming could become available to everyone. It enables end users to program their own devices and extend the functionality of the existing system without any knowledge of programming languages. In this paper, we describe an Interactive Spreadsheet Processing Module (ISPM), a natural language interface to spreadsheets that allows users to address ranges within the spreadsheet based on inferred table schema. Using the ISPM, end users are able to search for values in the schema of the table and to address the data in spreadsheets implicitly. Furthermore, it enables them to select and sort the spreadsheet data by using natural language. ISPM uses a machine learning technique to automatically infer areas within a spreadsheet, including different kinds of headers and data ranges. Since ranges can be identified from natural language queries, the end users can query the data using natural language. During the evaluation 12 undergraduate students were asked to perform operations (sum, sort, group and select) using the system and also Excel without ISPM interface, and the time taken for task completion was compared across the two systems. Only for the selection task did users take less time in Excel (since they directly selected the cells using the mouse) than in ISPM, by using natural language for end user software engineering, to overcome the present bottleneck of professional developers.

Keywords: natural language processing, natural language interfaces, human computer interaction, end user development, dialog systems, data recognition, spreadsheet

Procedia PDF Downloads 311