Search results for: solar architecture
32 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data
Authors: M. Mueller, M. Kuehn, M. Voelker
Abstract:
In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing
Procedia PDF Downloads 13431 Genotoxic Effect of Tricyclieandidepressant Drug “Clomipramine Hydrochloride’ on Somatic and Germ Cells of Male Mice
Authors: Samia A. El-Fiky, F. A. Abou-Zaid, Ibrahim M. Farag, Naira M. Efiky
Abstract:
Clomipramine hydrochloride is one of the most used tricyclic antidepressant drug in Egypt. This drug contains in its chemical structure on two benzene rings. Benzene is considered to be toxic and clastogenic agent. So, the present study was designed to assess the genotoxic effect of Clomipramine hydrochloride on somatic and germ cells in mice. Three dose levels 0.195 (Low), 0.26 (Medium), and 0.65 (High) mg/kg.b.wt. were used. Seven groups of male mice were utilized in this work. The first group was employed as a control. In the remaining six groups, each of the above doses was orally administrated for two groups, one of them was treated for 5 days and the other group was given the same dose for 30 days. At the end of experiments, the animals were sacrificed for cytogenetic and sperm examination as well as histopathological investigations by using hematoxylin and eosin stains (H and E stains) and electron microscope. Concerning the sperm studies, these studies were confined to 5 days treatment with different dose levels. Moreover, the ultrastructural investigation by electron microscope was restricted to 30 days treatment with drug doses. The results of the dose dependent effect of Clomipramine showed that the treatment with three different doses induced increases of frequencies of chromosome aberrations in bone marrow and spermatocyte cells as compared to control. In addition, mitotic and meiotic activities of somatic and germ cells were declined. The treatments with medium or high doses were more effective for inducing significant increases of chromosome aberrations and significant decreases of cell divisions than treatment with low dose. The effect of high dose was more pronounced for causing such genetic deleterious in respect to effect of medium dose. Moreover, the results of the time dependent effect of Clomipramine observed that the treatment with different dose levels for 30 days led to significant increases of genetic aberrations than treatment for 5 days. Sperm examinations revealed that the treatment with Clomipramine at different dose levels caused significant increase of sperm shape abnormalities and significant decrease in sperm count as compared to control. The adverse effects on sperm shape and count were more obviousness by using the treatments with medium or high doses than those found in treatment with low dose. The group of mice treated with high dose had the highest rate of sperm shape abnormalities and the lowest proportion of sperm count as compared to mice received medium dose. In histopathological investigation, hematoxylin and eosin stains showed that, the using of low dose of Clomipramine for 5 or 30 days caused a little pathological changes in liver tissue. However, using medium and high doses for 5 or 30 days induced severe damages than that observed in mice treated with low dose. The treatment with high dose for 30 days gave the worst results of pathological changes in hepatic cells. Moreover, ultrastructure examination revealed, the mice treated with low dose of Clomipramine had little differences in liver histological architecture as compared to control group. These differences were confined to cytoplasmic inclusions. Whereas, prominent pathological changes in nuclei as well as dilated of rough Endoplasmic Reticulum (rER) were observed in mice treated with medium or high doses of Clomipramine drug. In conclusion, the present study adds evidence that treatments with medium or high doses of Clomipramine have genotoxic effects on somatic and germ cells of mice, as unwanted side effects. However, the using of low dose (especially for short time, 5 days) can be utilized as a therapeutic dose, where it caused relatively similar proportions of genetic, sperm, and histopathological changes as those found in normal control.Keywords: clomipramine, mice, chromosome aberrations, sperm abnormalities, histopathology
Procedia PDF Downloads 42330 The Link Between Success Factors of Online Architectural Education and Students’ Demographics
Authors: Yusuf Berkay Metinal, Gulden Gumusburun Ayalp
Abstract:
Architectural education is characterized by its distinctive amalgamation of studio-based pedagogy and theoretical instruction. It offers students a comprehensive learning experience that blends practical skill development with critical inquiry and conceptual exploration. Design studios are central to this educational paradigm, which serve as dynamic hubs of creativity and innovation, providing students with immersive environments for experimentation and collaborative engagement. The physical presence and interactive dynamics inherent in studio-based learning underscore the indispensability of face-to-face instruction and interpersonal interaction in nurturing the next generation of architects. However, architectural education underwent a seismic transformation in response to the global COVID-19 pandemic, precipitating an abrupt transition from traditional, in-person instruction to online education modalities. While this shift introduced newfound flexibility in terms of temporal and spatial constraints, it also brought many challenges to the fore. Chief among these challenges was maintaining effective communication and fostering meaningful collaboration among students in virtual learning environments. Besides these challenges, lack of peer learning emerged as a vital issue of the educational experience, particularly crucial for novice students navigating the intricacies of architectural practice. Nevertheless, the pivot to online education also laid bare a discernible decline in educational efficacy, prompting inquiries regarding the enduring viability of online education in architectural pedagogy. Moreover, as educational institutions grappled with the exigencies of remote instruction, discernible disparities between different institutional contexts emerged. While state universities often contended with fiscal constraints that shaped their operational capacities, private institutions encountered challenges from a lack of institutional fortification and entrenched educational traditions. Acknowledging the multifaceted nature of these challenges, this study endeavored to undertake a comprehensive inquiry into the dynamics of online education within architectural pedagogy by interrogating variables such as class level and type of university; the research aimed to elucidate demographic critical success factors that underpin the effectiveness of online education initiatives. To this end, a meticulously constructed questionnaire was administered to architecture students from diverse academic institutions across Turkey, informed by an exhaustive review of extant literature and scholarly discourse. The resulting dataset, comprising responses from 232 participants, underwent rigorous statistical analysis, including independent samples t-test and one-way ANOVA, to discern patterns and correlations indicative of overarching trends and salient insights. In sum, the findings of this study serve as a scholarly compass for educators, policymakers, and stakeholders navigating the evolving landscapes of architectural education. By elucidating the intricate interplay of demographical factors that shape the efficacy of online education in architectural pedagogy, this research offers a scholarly foundation upon which to anchor informed decisions and strategic interventions to elevate the educational experience for future cohorts of aspiring architects.Keywords: architectural education, COVID-19, distance education, online education
Procedia PDF Downloads 5129 Design and Implementation of an Affordable Electronic Medical Records in a Rural Healthcare Setting: A Qualitative Intrinsic Phenomenon Case Study
Authors: Nitika Sharma, Yogesh Jain
Abstract:
Introduction: An efficient Information System helps in improving the service delivery as well provides the foundation for policy and regulation of other building blocks of Health System. Health care organizations require an integrated working of its various sub-systems. An efficient EMR software boosts the teamwork amongst the various sub-systems thereby resulting in improved service delivery. Although there has been a huge impetus to EMR under the Digital India initiative, it has still not been mandated in India. It is generally implemented in huge funded public or private healthcare organizations only. Objective: The study was conducted to understand the factors that lead to the successful adoption of an affordable EMR in the low level healthcare organization. It intended to understand the design of the EMR and address the solutions to the challenges faced in adoption of the EMR. Methodology: The study was conducted in a non-profit registered Healthcare organization that has been providing healthcare facilities to more than 2500 villages including certain areas that are difficult to access. The data was collected with help of field notes, in-depth interviews and participant observation. A total of 16 participants using the EMR from different departments were enrolled via purposive sampling technique. The participants included in the study were working in the organization before the implementation of the EMR system. The study was conducted in one month period from 25 June-20 July 2018. The Ethical approval was taken from the institute along with prior approval of the participants. Data analysis: A word document of more than 4000 words was obtained after transcribing and translating the answers of respondents. It was further analyzed by focused coding, a line by line review of the transcripts, underlining words, phrases or sentences that might suggest themes to do thematic narrative analysis. Results: Based on the answers the results were thematically grouped under four headings: 1. governance of organization, 2. architecture and design of the software, 3. features of the software, 4. challenges faced in adoption and the solutions to address them. It was inferred that the successful implementation was attributed to the easy and comprehensive design of the system which has facilitated not only easy data storage and retrieval but contributes in constructing a decision support system for the staff. Portability has lead to increased acceptance by physicians. The proper division of labor, increased efficiency of staff, incorporation of auto-correction features and facilitation of task shifting has lead to increased acceptance amongst the users of various departments. Geographical inhibitions, low computer literacy and high patient load were the major challenges faced during its implementation. Despite of dual efforts made both by the architects and administrators to combat these challenges, there are still certain ongoing challenges faced by organization. Conclusion: Whenever any new technology is adopted there are certain innovators, early adopters, late adopters and laggards. The same pattern was followed in adoption of this software. He challenges were overcome with joint efforts of organization administrators and users as well. Thereby this case study provides a framework of implementing similar systems in public sector of countries that are struggling for digitizing the healthcare in presence of crunch of human and financial resources.Keywords: EMR, healthcare technology, e-health, EHR
Procedia PDF Downloads 10628 Poly(Trimethylene Carbonate)/Poly(ε-Caprolactone) Phase-Separated Triblock Copolymers with Advanced Properties
Authors: Nikola Toshikj, Michel Ramonda, Sylvain Catrouillet, Jean-Jacques Robin, Sebastien Blanquer
Abstract:
Biodegradable and biocompatible block copolymers have risen as the golden materials in both medical and environmental applications. Moreover, if their architecture is of controlled manner, higher applications can be foreseen. In the meantime, organocatalytic ROP has been promoted as more rapid and immaculate route, compared to the traditional organometallic catalysis, towards efficient synthesis of block copolymer architectures. Therefore, herein we report novel organocatalytic pathway with guanidine molecules (TBD) for supported synthesis of trimethylene carbonate initiated by poly(caprolactone) as pre-polymer. Pristine PTMC-b-PCL-b-PTMC block copolymer structure, without any residual products and clear desired block proportions, was achieved under 1.5 hours at room temperature and verified by NMR spectroscopies and size-exclusion chromatography. Besides, when elaborating block copolymer films, further stability and amelioration of mechanical properties can be achieved via additional reticulation step of precedently methacrylated block copolymers. Subsequently, stimulated by the insufficient studies on the phase-separation/crystallinity relationship in these semi-crystalline block copolymer systems, their intrinsic thermal and morphology properties were investigated by differential scanning calorimetry and atomic force microscopy. Firstly, by DSC measurements, the block copolymers with χABN values superior to 20 presented two distinct glass transition temperatures, close to the ones of the respecting homopolymers, demonstrating an initial indication of a phase-separated system. In the interim, the existence of the crystalline phase was supported by the presence of melting temperature. As expected, the crystallinity driven phase-separated morphology predominated in the AFM analysis of the block copolymers. Neither crosslinking at melted state, hence creation of a dense polymer network, disturbed the crystallinity phenomena. However, the later revealed as sensible to rapid liquid nitrogen quenching directly from the melted state. Therefore, AFM analysis of liquid nitrogen quenched and crosslinked block copolymer films demonstrated a thermodynamically driven phase-separation clearly predominating over the originally crystalline one. These AFM films remained stable with their morphology unchanged even after 4 months at room temperature. However, as demonstrated by DSC analysis once rising the temperature above the melting temperature of the PCL block, neither the crosslinking nor the liquid nitrogen quenching shattered the semi-crystalline network, while the access to thermodynamical phase-separated structures was possible for temperatures under the poly (caprolactone) melting point. Precisely this coexistence of dual crosslinked/crystalline networks in the same copolymer structure allowed us to establish, for the first time, the shape-memory properties in such materials, as verified by thermomechanical analysis. Moreover, the response temperature to the material original shape depended on the block copolymer emplacement, hence PTMC or PCL as end-block. Therefore, it has been possible to reach a block copolymer with transition temperature around 40°C thus opening potential real-life medical applications. In conclusion, the initial study of phase-separation/crystallinity relationship in PTMC-b-PCL-b-PTMC block copolymers lead to the discovery of novel shape memory materials with superior properties, widely demanded in modern-life applications.Keywords: biodegradable block copolymers, organocatalytic ROP, self-assembly, shape-memory
Procedia PDF Downloads 12927 Improvements and Implementation Solutions to Reduce the Computational Load for Traffic Situational Awareness with Alerts (TSAA)
Authors: Salvatore Luongo, Carlo Luongo
Abstract:
This paper discusses the implementation solutions to reduce the computational load for the Traffic Situational Awareness with Alerts (TSAA) application, based on Automatic Dependent Surveillance-Broadcast (ADS-B) technology. In 2008, there were 23 total mid-air collisions involving general aviation fixed-wing aircraft, 6 of which were fatal leading to 21 fatalities. These collisions occurred during visual meteorological conditions, indicating the limitations of the see-and-avoid concept for mid-air collision avoidance as defined in the Federal Aviation Administration’s (FAA). The commercial aviation aircraft are already equipped with collision avoidance system called TCAS, which is based on classic transponder technology. This system dramatically reduced the number of mid-air collisions involving air transport aircraft. In general aviation, the same reduction in mid-air collisions has not occurred, so this reduction is the main objective of the TSAA application. The major difference between the original conflict detection application and the TSAA application is that the conflict detection is focused on preventing loss of separation in en-route environments. Instead TSAA is devoted to reducing the probability of mid-air collision in all phases of flight. The TSAA application increases the flight crew traffic situation awareness providing alerts of traffic that are detected in conflict with ownship in support of the see-and-avoid responsibility. The relevant effort has been spent in the design process and the code generation in order to maximize the efficiency and performances in terms of computational load and memory consumption reduction. The TSAA architecture is divided into two high-level systems: the “Threats database” and the “Conflict detector”. The first one receives the traffic data from ADS-B device and provides the memorization of the target’s data history. Conflict detector module estimates ownship and targets trajectories in order to perform the detection of possible future loss of separation between ownship and each target. Finally, the alerts are verified by additional conflict verification logic, in order to prevent possible undesirable behaviors of the alert flag. In order to reduce the computational load, a pre-check evaluation module is used. This pre-check is only a computational optimization, so the performances of the conflict detector system are not modified in terms of number of alerts detected. The pre-check module uses analytical trajectories propagation for both target and ownship. This allows major accuracy and avoids the step-by-step propagation, which requests major computational load. Furthermore, the pre-check permits to exclude the target that is certainly not a threat, using an analytical and efficient geometrical approach, in order to decrease the computational load for the following modules. This software improvement is not suggested by FAA documents, and so it is the main innovation of this work. The efficiency and efficacy of this enhancement are verified using fast-time and real-time simulations and by the execution on a real device in several FAA scenarios. The final implementation also permits the FAA software certification in compliance with DO-178B standard. The computational load reduction allows the installation of TSAA application also on devices with multiple applications and/or low capacity in terms of available memory and computational capabilitiesKeywords: traffic situation awareness, general aviation, aircraft conflict detection, computational load reduction, implementation solutions, software certification
Procedia PDF Downloads 28626 Re-Designing Community Foodscapes to Enhance Social Inclusion in Sustainable Urban Environments
Authors: Carles Martinez-Almoyna Gual, Jiwon Choi
Abstract:
Urban communities face risks of disintegration and segregation as a consequence of globalised migration processes towards urban environments. Linking social and cultural components with environmental and economic dimensions becomes the goal of all the disciplines that aim to shape more sustainable urban environments. Solutions require interdisciplinary approaches and the use of a complex array of tools. One of these tools is the implementation of urban farming, which provides a wide range of advantages for creating more inclusive spaces and integrated communities. Since food is strongly related to the values and identities of any cultural group, it can be used as a medium to promote social inclusion in the context of urban multicultural societies. By bringing people together into specific urban sites, food production can be integrated into multifunctional spaces while addressing social, economic and ecological goals. The goal of this research is to assess different approaches to urban agriculture by analysing three existing community gardens located in Newtown, a suburb of Wellington, New Zealand. As a context for developing research, Newtown offers different approaches to urban farming and is really valuable for observing current trends of socialization in diverse and multicultural societies. All three spaces are located on public land owned by Wellington City Council and confined to a small, complex and progressively denser urban area. The developed analysis was focused on social, cultural and physical dimensions, combining community engagement with different techniques of spatial assessment. At the same time, a detailed investigation of each community garden was conducted with comparative analysis methodologies. This multidirectional setting of the analysis was established for extracting from the case studies both specific and typological knowledge. Each site was analysed and categorised under three broad themes: people, space and food. The analysis revealed that all three case studies had really different spatial settings, different approaches to food production and varying profiles of supportive communities. The main differences identified were demographics, values, objectives, internal organization, appropriation, and perception of the space. The community gardens were approached as case studies for developing design research. Following participatory design processes with the different communities, the knowledge gained from the analysis was used for proposing changes in the physical environment. The end goal of the design research was to improve the capacity of the spaces to facilitate social inclusiveness. In order to generate tangible changes, a range of small, strategic and feasible spatial interventions was explored. The smallness of the proposed interventions facilitates implementation by reducing time frames, technical resources, funding needs, and legal processes, working within the community´s own realm. These small interventions are expected to be implemented over time as part of an ongoing collaboration between the different communities, the university, and the local council. The applied research methodology showcases the capacity of universities to develop civic engagement by working with real communities that have concrete needs and face overall threats of disintegration and segregation.Keywords: community gardening, landscape architecture, participatory design, placemaking, social inclusion
Procedia PDF Downloads 12825 Mapping Iron Content in the Brain with Magnetic Resonance Imaging and Machine Learning
Authors: Gabrielle Robertson, Matthew Downs, Joseph Dagher
Abstract:
Iron deposition in the brain has been linked with a host of neurological disorders such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis. While some treatment options exist, there are no objective measurement tools that allow for the monitoring of iron levels in the brain in vivo. An emerging Magnetic Resonance Imaging (MRI) method has been recently proposed to deduce iron concentration through quantitative measurement of magnetic susceptibility. This is a multi-step process that involves repeated modeling of physical processes via approximate numerical solutions. For example, the last two steps of this Quantitative Susceptibility Mapping (QSM) method involve I) mapping magnetic field into magnetic susceptibility and II) mapping magnetic susceptibility into iron concentration. Process I involves solving an ill-posed inverse problem by using regularization via injection of prior belief. The end result from Process II highly depends on the model used to describe the molecular content of each voxel (type of iron, water fraction, etc.) Due to these factors, the accuracy and repeatability of QSM have been an active area of research in the MRI and medical imaging community. This work aims to estimate iron concentration in the brain via a single step. A synthetic numerical model of the human head was created by automatically and manually segmenting the human head on a high-resolution grid (640x640x640, 0.4mm³) yielding detailed structures such as microvasculature and subcortical regions as well as bone, soft tissue, Cerebral Spinal Fluid, sinuses, arteries, and eyes. Each segmented region was then assigned tissue properties such as relaxation rates, proton density, electromagnetic tissue properties and iron concentration. These tissue property values were randomly selected from a Probability Distribution Function derived from a thorough literature review. In addition to having unique tissue property values, different synthetic head realizations also possess unique structural geometry created by morphing the boundary regions of different areas within normal physical constraints. This model of the human brain is then used to create synthetic MRI measurements. This is repeated thousands of times, for different head shapes, volume, tissue properties and noise realizations. Collectively, this constitutes a training-set that is similar to in vivo data, but larger than datasets available from clinical measurements. This 3D convolutional U-Net neural network architecture was used to train data-driven Deep Learning models to solve for iron concentrations from raw MRI measurements. The performance was then tested on both synthetic data not used in training as well as real in vivo data. Results showed that the model trained on synthetic MRI measurements is able to directly learn iron concentrations in areas of interest more effectively than other existing QSM reconstruction methods. For comparison, models trained on random geometric shapes (as proposed in the Deep QSM method) are less effective than models trained on realistic synthetic head models. Such an accurate method for the quantitative measurement of iron deposits in the brain would be of important value in clinical studies aiming to understand the role of iron in neurological disease.Keywords: magnetic resonance imaging, MRI, iron deposition, machine learning, quantitative susceptibility mapping
Procedia PDF Downloads 13824 Genotoxic Effect of Tricyclic Antidepressant Drug “Clomipramine Hydrochloride’ on Somatic and Germ Cells of Male Mice
Authors: Samia A. El-Fiky, Fouad A. Abou-Zaid, Ibrahim M. Farag, Naira M. El-Fiky
Abstract:
Clomipramine hydrochloride is one of the most used tricyclic antidepressant drug in Egypt. This drug contains in its chemical structure on two benzene rings. Benzene is considered to be toxic and clastogenic agent. So, the present study was designed to assess the genotoxic effect of Clomipramine hydrochloride on somatic and germ cells in mice. Three dose levels 0.195 (Low), 0.26 (Medium), and 0.65 (High) mg/kg.b.wt. were used. Seven groups of male mice were utilized in this work. The first group was employed as a control. In the remaining six groups, each of the above doses was orally administrated for two groups, one of them was treated for 5 days and the other group was given the same dose for 30 days. At the end of experiments, the animals were sacrificed for cytogenetic and sperm examination as well as histopathological investigations by using hematoxylin and eosin stains (H and E stains) and electron microscope. Concerning the sperm studies, these studies were confined to 5 days treatment with different dose levels. Moreover, the ultrastructural investigation by electron microscope was restricted to 30 days treatment with drug doses. The results of the dose dependent effect of Clomipramine showed that the treatment with three different doses induced increases of frequencies of chromosome aberrations in bone marrow and spermatocyte cells as compared to control. In addition, mitotic and meiotic activities of somatic and germ cells were declined. The treatments with medium or high doses were more effective for inducing significant increases of chromosome aberrations and significant decreases of cell divisions than treatment with low dose. The effect of high dose was more pronounced for causing such genetic deleterious in respect to effect of medium dose. Moreover, the results of the time dependent effect of Clomipramine observed that the treatment with different dose levels for 30 days led to significant increases of genetic aberrations than treatment for 5 days. Sperm examinations revealed that the treatment with Clomipramine at different dose levels caused significant increase of sperm shape abnormalities and significant decrease in sperm count as compared to control. The adverse effects on sperm shape and count were more obviousness by using the treatments with medium or high doses than those found in treatment with low dose. The group of mice treated with high dose had the highest rate of sperm shape abnormalities and the lowest proportion of sperm count as compared to mice received medium dose. In histopathological investigation, hematoxylin and eosin stains showed that, the using of low dose of Clomipramine for 5 or 30 days caused a little pathological changes in liver tissue. However, using medium and high doses for 5 or 30 days induced severe damages than that observed in mice treated with low dose. The treatment with high dose for 30 days gave the worst results of pathological changes in hepatic cells. Moreover, ultrastructure examination revealed, the mice treated with low dose of Clomipramine had little differences in liver histological architecture as compared to control group. These differences were confined to cytoplasmic inclusions. Whereas, prominent pathological changes in nuclei as well as dilated of rough Endoplasmic Reticulum (rER) were observed in mice treated with medium or high doses of Clomipramine drug. In conclusion, the present study adds evidence that treatments with medium or high doses of Clomipramine have genotoxic effects on somatic and germ cells of mice, as unwanted side effects. However, the using of low dose (especially for short time, 5 days) can be utilized as a therapeutic dose, where it caused relatively similar proportions of genetic, sperm, and histopathological changes as those found in normal control.Keywords: chromosome aberrations, clomipramine, mice, histopathology, sperm abnormalities
Procedia PDF Downloads 52123 Non-Mammalian Pattern Recognition Receptor from Rock Bream (Oplegnathus fasciatus): Genomic Characterization and Transcriptional Profile upon Bacterial and Viral Inductions
Authors: Thanthrige Thiunuwan Priyathilaka, Don Anushka Sandaruwan Elvitigala, Bong-Soo Lim, Hyung-Bok Jeong, Jehee Lee
Abstract:
Toll like receptors (TLRs) are a phylogeneticaly conserved family of pattern recognition receptors, which participates in the host immune responses against various pathogens and pathogen derived mitogen. TLR21, a non-mammalian type, is almost restricted to the fish species even though those can be identified rarely in avians and amphibians. Herein, this study was carried out to identify and characterize TLR21 from rock bream (Oplegnathus fasciatus) designated as RbTLR21, at transcriptional and genomic level. In this study, the full length cDNA and genomic sequence of RbTLR21 was identified using previously constructed cDNA sequence database and BAC library, respectively. Identified RbTLR21 sequence was characterized using several bioinformatics tools. The quantitative real time PCR (qPCR) experiment was conducted to determine tissue specific expressional distribution of RbTLR21. Further, transcriptional modulation of RbTLR21 upon the stimulation with Streptococcus iniae (S. iniae), rock bream iridovirus (RBIV) and Edwardsiella tarda (E. tarda) was analyzed in spleen tissues. The complete coding sequence of RbTLR21 was 2919 bp in length which can encode a protein consisting of 973 amino acid residues with molecular mass of 112 kDa and theoretical isoelectric point of 8.6. The anticipated protein sequence resembled a typical TLR domain architecture including C-terminal ectodomain with 16 leucine rich repeats, a transmembrane domain, cytoplasmic TIR domain and signal peptide with 23 amino acid residues. Moreover, protein folding pattern prediction of RbTLR21 exhibited well-structured and folded ectodomain, transmembrane domain and cytoplasmc TIR domain. According to the pair wise sequence analysis data, RbTLR21 showed closest homology with orange-spotted grouper (Epinephelus coioides) TLR21with 76.9% amino acid identity. Furthermore, our phylogenetic analysis revealed that RbTLR21 shows a close evolutionary relationship with its ortholog from Danio rerio. Genomic structure of RbTLR21 consisted of single exon similar to its ortholog of zebra fish. Sevaral putative transcription factor binding sites were also identified in 5ʹ flanking region of RbTLR21. The RBTLR 21 was ubiquitously expressed in all the tissues we tested. Relatively, high expression levels were found in spleen, liver and blood tissues. Upon induction with rock bream iridovirus, RbTLR21 expression was upregulated at the early phase of post induction period even though RbTLR21 expression level was fluctuated at the latter phase of post induction period. Post Edwardsiella tarda injection, RbTLR transcripts were upregulated throughout the experiment. Similarly, Streptococcus iniae induction exhibited significant upregulations of RbTLR21 mRNA expression in the spleen tissues. Collectively, our findings suggest that RbTLR21 is indeed a homolog of TLR21 family members and RbTLR21 may be involved in host immune responses against bacterial and DNA viral infections.Keywords: rock bream, toll like receptor 21 (TLR21), pattern recognition receptor, genomic characterization
Procedia PDF Downloads 54322 Silk Fibroin-PVP-Nanoparticles-Based Barrier Membranes for Tissue Regeneration
Authors: Ivone R. Oliveira, Isabela S. Gonçalves, Tiago M. B. Campos, Leandro J. Raniero, Luana M. R. Vasconcellos, João H. Lopes
Abstract:
Originally, the principles of guided tissue/bone regeneration (GTR/GBR) were followed to restore the architecture and functionality of the periodontal system. In essence, a biocompatible polymer-based occlusive membrane is used as a barrier to prevent migration of epithelial and connective tissue to the regenerating site. In this way, progenitor cells located in the remaining periodontal ligament can recolonize the root area and differentiate into new periodontal tissues, alveolar bone, and new connective attachment. The use of synthetic or collagen-derived membranes with or without calcium phosphate-based bone graft materials has been the treatment used. Ideally, these membranes need to exhibit sufficient initial mechanical strength to allow handling and implantation, withstand the various mechanical stresses suffered during surgery while maintaining their integrity, and support the process of bone tissue regeneration and repair by resisting cellular traction forces and wound contraction forces during tissue healing in vivo. Although different RTG/ROG products are available on the market, they have serious deficiencies in terms of mechanical strength. Aiming to improve the mechanical strength and osteogenic properties of the membrane, this work evaluated the production of membranes that integrate the biocompatibility of the natural polymer (silk fibroin - FS) and the synthetic polymer poly(vinyl pyrrolidone - PVP) with graphene nanoplates (NPG) and gold nanoparticles (AuNPs), using the electrospinning equipment (AeroSpinner L1.0 from Areka) which allows the execution of high voltage spinning and/or solution blowing and with a high production rate, enabling development on an industrial scale. Silk fibroin uniquely solved many of the problems presented by collagen and was used in this work because it has unique combined merits, such as programmable biodegradability, biocompatibility and sustainable large-scale production. Graphene has attracted considerable attention in recent years as a potential biomaterial for mechanical reinforcement because of its unique physicochemical properties and was added to improve the mechanical properties of the membranes associated or not with the presence of AuNPs, which have shown great potential in regulating osteoblast activity. The preparation of FS from silkworm cocoons involved cleaning, degumming, dissolution in lithium bromide, dialysis, lyophilization and dissolution in hexafluoroisopropanol (HFIP) to prepare the solution for electrospinning, and crosslinking tests were performed in methanol. The NPGs were characterized and underwent treatment in nitric acid for functionalization to improve the adhesion of the nanoplates to the PVP fibers. PVP-NPG membranes were produced with 0.5, 1.0 and 1.5 wt% functionalized or not and evaluated by SEM/FEG, FTIR, mechanical strength and cell culture assays. Functionalized GNP particles showed stronger binding, remaining adhered to the fibers. Increasing the graphene content resulted in higher mechanical strength of the membrane and greater biocompatibility. The production of FS-PVP-NPG-AuNPs hybrid membranes was performed by electrospinning in separate syringes and simultaneously the FS solution and the solution containing PVP-NPG 1.5 wt% in the presence or absence of AuNPs. After cross-linking, they were characterized by SEM/FEG, FTIR and behavior in cell culture. The presence of NPG-AuNPs increased the viability and the presence of mineralization nodules.Keywords: barrier membranes, silk fibroin, nanoparticles, tissue regeneration.
Procedia PDF Downloads 1521 Point-of-Decision Design (PODD) to Support Healthy Behaviors in the College Campuses
Authors: Michelle Eichinger, Upali Nanda
Abstract:
Behavior choices during college years can establish the pattern of lifelong healthy living. Nearly 1/3rd of American college students are either overweight (25 < BMI < 30) or obese (BMI > 30). In addition, overweight/obesity contributes to depression, which is a rising epidemic among college students, affecting academic performance and college drop-out rates. Overweight and obesity result in an imbalance of energy consumption (diet) and energy expenditure (physical activity). Overweight/obesity is a significant contributor to heart disease, diabetes, stroke, physical disabilities and some cancers, which are the leading causes of death and disease in the US. There has been a significant increase in obesity and obesity-related disorders such as type 2 diabetes, hypertension, and dyslipidemia among people in their teens and 20s. Historically, the evidence-based interventions for obesity prevention focused on changing the health behavior at the individual level and aimed at increasing awareness and educating people about nutrition and physical activity. However, it became evident that the environmental context of where people live, work and learn was interdependent to healthy behavior change. As a result, a comprehensive approach was required to include altering the social and built environment to support healthy living. College campus provides opportunities to support lifestyle behavior and form a health-promoting culture based on some key point of decisions such as stairs/ elevator, walk/ bike/ car, high-caloric and fast foods/balanced and nutrient-rich foods etc. At each point of decision, design, can help/hinder the healthier choice. For example, stair well design and motivational signage support physical activity; grocery store/market proximity influence healthy eating etc. There is a need to collate the vast information that is in planning and public health domains on a range of successful point of decision prompts, and translate it into architectural guidelines that help define the edge condition for critical point of decision prompts. This research study aims to address healthy behaviors through the built environment with the questions, how can we make the healthy choice an easy choice through the design of critical point of decision prompts? Our hypothesis is that well-designed point of decision prompts in the built environment of college campuses can promote healthier choices by students, which can directly impact mental and physical health related to obesity. This presentation will introduce a combined health and architectural framework aimed to influence healthy behaviors through design applied for college campuses. The premise behind developing our concept, point-of-decision design (PODD), is healthy decision-making can be built into, or afforded by our physical environments. Using effective design intervention strategies at these 'points-of-decision' on college campuses to make the healthy decision the default decision can be instrumental in positively impacting health at the population level. With our model, we aim to advance health research by utilizing point-of-decision design to impact student health via core sectors of influences within college settings, such as campus facilities and transportation. We will demonstrate how these domains influence patterns/trends in healthy eating and active living behaviors among students. how these domains influence patterns/trends in healthy eating and active living behaviors among students.Keywords: architecture and health promotion, college campus, design strategies, health in built environment
Procedia PDF Downloads 22420 Enhancing Scalability in Ethereum Network Analysis: Methods and Techniques
Authors: Stefan K. Behfar
Abstract:
The rapid growth of the Ethereum network has brought forth the urgent need for scalable analysis methods to handle the increasing volume of blockchain data. In this research, we propose efficient methodologies for making Ethereum network analysis scalable. Our approach leverages a combination of graph-based data representation, probabilistic sampling, and parallel processing techniques to achieve unprecedented scalability while preserving critical network insights. Data Representation: We develop a graph-based data representation that captures the underlying structure of the Ethereum network. Each block transaction is represented as a node in the graph, while the edges signify temporal relationships. This representation ensures efficient querying and traversal of the blockchain data. Probabilistic Sampling: To cope with the vastness of the Ethereum blockchain, we introduce a probabilistic sampling technique. This method strategically selects a representative subset of transactions and blocks, allowing for concise yet statistically significant analysis. The sampling approach maintains the integrity of the network properties while significantly reducing the computational burden. Graph Convolutional Networks (GCNs): We incorporate GCNs to process the graph-based data representation efficiently. The GCN architecture enables the extraction of complex spatial and temporal patterns from the sampled data. This combination of graph representation and GCNs facilitates parallel processing and scalable analysis. Distributed Computing: To further enhance scalability, we adopt distributed computing frameworks such as Apache Hadoop and Apache Spark. By distributing computation across multiple nodes, we achieve a significant reduction in processing time and enhanced memory utilization. Our methodology harnesses the power of parallelism, making it well-suited for large-scale Ethereum network analysis. Evaluation and Results: We extensively evaluate our methodology on real-world Ethereum datasets covering diverse time periods and transaction volumes. The results demonstrate its superior scalability, outperforming traditional analysis methods. Our approach successfully handles the ever-growing Ethereum data, empowering researchers and developers with actionable insights from the blockchain. Case Studies: We apply our methodology to real-world Ethereum use cases, including detecting transaction patterns, analyzing smart contract interactions, and predicting network congestion. The results showcase the accuracy and efficiency of our approach, emphasizing its practical applicability in real-world scenarios. Security and Robustness: To ensure the reliability of our methodology, we conduct thorough security and robustness evaluations. Our approach demonstrates high resilience against adversarial attacks and perturbations, reaffirming its suitability for security-critical blockchain applications. Conclusion: By integrating graph-based data representation, GCNs, probabilistic sampling, and distributed computing, we achieve network scalability without compromising analytical precision. This approach addresses the pressing challenges posed by the expanding Ethereum network, opening new avenues for research and enabling real-time insights into decentralized ecosystems. Our work contributes to the development of scalable blockchain analytics, laying the foundation for sustainable growth and advancement in the domain of blockchain research and application.Keywords: Ethereum, scalable network, GCN, probabilistic sampling, distributed computing
Procedia PDF Downloads 7819 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 7418 Structured Cross System Planning and Control in Modular Production Systems by Using Agent-Based Control Loops
Authors: Simon Komesker, Achim Wagner, Martin Ruskowski
Abstract:
In times of volatile markets with fluctuating demand and the uncertainty of global supply chains, flexible production systems are the key to an efficient implementation of a desired production program. In this publication, the authors present a holistic information concept taking into account various influencing factors for operating towards the global optimum. Therefore, a strategy for the implementation of multi-level planning for a flexible, reconfigurable production system with an alternative production concept in the automotive industry is developed. The main contribution of this work is a system structure mixing central and decentral planning and control evaluated in a simulation framework. The information system structure in current production systems in the automotive industry is rigidly hierarchically organized in monolithic systems. The production program is created rule-based with the premise of achieving uniform cycle time. This program then provides the information basis for execution in subsystems at the station and process execution level. In today's era of mixed-(car-)model factories, complex conditions and conflicts arise in achieving logistics, quality, and production goals. There is no provision for feedback loops of results from the process execution level (resources) and process supporting (quality and logistics) systems and reconsideration in the planning systems. To enable a robust production flow, the complexity of production system control is artificially reduced by the line structure and results, for example in material-intensive processes (buffers and safety stocks - two container principle also for different variants). The limited degrees of freedom of line production have produced the principle of progress figure control, which results in one-time sequencing, sequential order release, and relatively inflexible capacity control. As a result, modularly structured production systems such as modular production according to known approaches with more degrees of freedom are currently difficult to represent in terms of information technology. The remedy is an information concept that supports cross-system and cross-level information processing for centralized and decentralized decision-making. Through an architecture of hierarchically organized but decoupled subsystems, the paradigm of hybrid control is used, and a holonic manufacturing system is offered, which enables flexible information provisioning and processing support. In this way, the influences from quality, logistics, and production processes can be linked holistically with the advantages of mixed centralized and decentralized planning and control. Modular production systems also require modularly networked information systems with semi-autonomous optimization for a robust production flow. Dynamic prioritization of different key figures between subsystems should lead the production system to an overall optimum. The tasks and goals of quality, logistics, process, resource, and product areas in a cyber-physical production system are designed as an interconnected multi-agent-system. The result is an alternative system structure that executes centralized process planning and decentralized processing. An agent-based manufacturing control is used to enable different flexibility and reconfigurability states and manufacturing strategies in order to find optimal partial solutions of subsystems, that lead to a near global optimum for hybrid planning. This allows a robust near to plan execution with integrated quality control and intralogistics.Keywords: holonic manufacturing system, modular production system, planning, and control, system structure
Procedia PDF Downloads 16917 Remote BioMonitoring of Mothers and Newborns for Temperature Surveillance Using a Smart Wearable Sensor: Techno-Feasibility Study and Clinical Trial in Southern India
Authors: Prem K. Mony, Bharadwaj Amrutur, Prashanth Thankachan, Swarnarekha Bhat, Suman Rao, Maryann Washington, Annamma Thomas, N. Sheela, Hiteshwar Rao, Sumi Antony
Abstract:
The disease burden among mothers and newborns is caused mostly by a handful of avoidable conditions occurring around the time of childbirth and within the first month following delivery. Real-time monitoring of vital parameters of mothers and neonates offers a potential opportunity to impact access as well as the quality of care in vulnerable populations. We describe the design, development and testing of an innovative wearable device for remote biomonitoring (RBM) of body temperatures in mothers and neonates in a hospital in southern India. The architecture consists of: [1] a low-cost, wearable sensor tag; [2] a gateway device for ‘real-time’ communication link; [3] piggy-backing on a commercial GSM communication network; and [4] an algorithm-based data analytics system. Requirements for the device were: long battery-life upto 28 days (with sampling frequency 5/hr); robustness; IP 68 hermetic sealing; and human-centric design. We undertook pre-clinical laboratory testing followed by clinical trial phases I & IIa for evaluation of safety and efficacy in the following sequence: seven healthy adult volunteers; 18 healthy mothers; and three sets of babies – 3 healthy babies; 10 stable babies in the Neonatal Intensive Care Unit (NICU) and 1 baby with hypoxic ischaemic encephalopathy (HIE). The 3-coin thickness, pebble-design sensor weighing about 8 gms was secured onto the abdomen for the baby and over the upper arm for adults. In the laboratory setting, the response-time of the sensor device to attain thermal equilibrium with the surroundings was 4 minutes vis-a-vis 3 minutes observed with a precision-grade digital thermometer used as a reference standard. The accuracy was ±0.1°C of the reference standard within the temperature range of 25-40°C. The adult volunteers, aged 20 to 45 years, contributed a total of 345 hours of readings over a 7-day period and the postnatal mothers provided a total of 403 paired readings. The mean skin temperatures measured in the adults by the sensor were about 2°C lower than the axillary temperature readings (sensor =34.1 vs digital = 36.1); this difference was statistically significant (t-test=13.8; p<0.001). The healthy neonates provided a total of 39 paired readings; the mean difference in temperature was 0.13°C (sensor =36.9 vs digital = 36.7; p=0.2). The neonates in the NICU provided a total of 130 paired readings. Their mean skin temperature measured by the sensor was 0.6°C lower than that measured by the radiant warmer probe (sensor =35.9 vs warmer probe = 36.5; p < 0.001). The neonate with HIE provided a total of 25 paired readings with the mean sensor reading being not different from the radian warmer probe reading (sensor =33.5 vs warmer probe = 33.5; p=0.8). No major adverse events were noted in both the adults and neonates; four adult volunteers reported mild sweating under the device/arm band and one volunteer developed mild skin allergy. This proof-of-concept study shows that real-time monitoring of temperatures is technically feasible and that this innovation appears to be promising in terms of both safety and accuracy (with appropriate calibration) for improved maternal and neonatal health.Keywords: public health, remote biomonitoring, temperature surveillance, wearable sensors, mothers and newborns
Procedia PDF Downloads 21016 Enabling Rather Than Managing: Organizational and Cultural Innovation Mechanisms in a Heterarchical Organization
Authors: Sarah M. Schoellhammer, Stephen Gibb
Abstract:
Bureaucracy, in particular, its core element, a formal and stable hierarchy of authority, is proving less and less appropriate under the conditions of today’s knowledge economy. Centralization and formalization were consistently found to hinder innovation, undermining cross-functional collaboration, personal responsibility, and flexibility. With its focus on systematical planning, controlling and monitoring the development of new or improved solutions for customers, even innovation management as a discipline is to a significant extent based on a mechanistic understanding of organizations. The most important drivers of innovation, human creativity, and initiative, however, can be more hindered than supported by central elements of classic innovation management, such as predefined innovation strategies, rigid stage gate processes, and decisions made in management gate meetings. Heterarchy, as an alternative network form of organization, is essentially characterized by its dynamic influence structures, whereby the biggest influence is allocated by the collective to the persons perceived the most competent in a certain issue. Theoretical arguments that the non-hierarchical concept better supports innovation than bureaucracy have been supported by empirical research. These prior studies either focus on the structure and general functioning of non-hierarchical organizations or on their innovativeness, that means innovation as an outcome. Complementing classic innovation management approaches, this work aims to shed light on how innovations are initiated and realized in heterarchies in order to identify alternative solutions practiced under conditions of the post-bureaucratic organization. Through an initial individual case study, which is part of a multiple-case project, the innovation practices of an innovative and highly heterarchical medium-sized company in the German fire engineering industry are investigated. In a pragmatic mixed methods approach media resonance, company documents, and workspace architecture are analyzed, in addition to qualitative interviews with the CEO and employees of the case company, as well as a quantitative survey aiming to characterize the company along five scaled dimensions of a heterarchy spectrum. The analysis reveals some similarities and striking differences to approaches suggested by classic innovation management. The studied heterarchy has no predefined innovation strategy guiding new product and service development. Instead, strategic direction is provided by the CEO, described as visionary and creative. Procedures for innovation are hardly formalized, with new product ideas being evaluated on the basis of gut feeling and flexible, rather general criteria. Employees still being hesitant to take responsibility and make decisions, hierarchical influence is still prominent. Described as open-minded and collaborative, culture and leadership were found largely congruent with definitions of innovation culture. Overall, innovation efforts at the case company tend to be coordinated more through cultural than through formal organizational mechanisms. To better enable innovation in mainstream organizations, responsible practitioners are recommended not to limit changes to reducing the central elements of the bureaucratic organization, formalization, and centralization. The freedoms this entails need to be sustained through cultural coordination mechanisms, with personal initiative and responsibility by employees as well as common innovation-supportive norms and values. These allow to integrate diverse competencies, opinions, and activities and, thus, to guide innovation efforts.Keywords: bureaucracy, heterarchy, innovation management, values
Procedia PDF Downloads 18915 The Plight of the Rohingyas: Design Guidelines to Accommodate Displaced People in Bangladesh
Authors: Nazia Roushan, Maria Kipti
Abstract:
The sensitive issue of a large-scale entry of Rohingya refugees to Bangladesh has arisen again since August of 2017. Incited by ethnic and religious conflict, the Rohingyas—an ethnic group concentrated in the north-west state of Rakhine in Myanmar—have been fleeing to what is now Bangladesh from as early as the late 1700s in four main exoduses. This long-standing persecution has recently escalated, and accommodating the recent wave of exodus has been especially challenging due to the sheer volume of a million refugees concentrated in refugee camps in two small administrative units (upazilas) in the south-east of the country: the host area. This drastic change in the host area’s social fabric is putting a lot of strain on the country’s economic, demographic and environmental stability, and security. Although Bangladesh’s long-term experience with disaster management has enabled it to respond rapidly to the crisis, the government is failing to cope with this enormous problem and has taken insufficient steps towards improving the living conditions to inhibit the inflow of more refugees. On top of that, the absence of a comprehensive national refugee policy, and the density of the structures of the camps are constricting the upgrading of the shelters to international standards. As of December 2016, the combined number of internally displaced persons (IDPs) due to conflict and violence (stock), and new displacements due to disasters (flow) in Bangladesh had exceeded 1 million. These numbers have increased dramatically in the last few months. Moreover, by 2050, Bangladesh will have as much as 25 million climate refugees just from its coastal districts. To enhance the resilience of the vulnerable, it is crucial to methodically factorize further interventions between Disaster Risk Reduction for Resilience (DRR) and the concept of Building Back Better (BBB) in the rehabilitation-reconstruction period. Considering these points, this paper provides a palette of options for design guidelines related to the living spaces and infrastructures for refugees. This will encourage the development of national standards for refugee camps, and the national and local level rehabilitation-reconstruction practices. Unhygienic living conditions, vulnerability, and the general lack of control over life are pervasive throughout the camps. This paper, therefore, proposes site-specific strategic and physical planning and design for shelters for refugees in Bangladesh that will lead to sustainable living environments through the following: a) site survey of existing two registered and one makeshift unregistered refugee camps to document and study their physical conditions, b) questionnaires and semi-structured focus group discussions carried out among the refugees and stakeholders to understand what the lived experiences and needs are; and c) combining the findings with international minimum standards for shelter and settlement from International Federation of Red Cross and Red Crescent (IFRC), Médecins Sans Frontières (MSF), United Nations High Commissioner for Refugees (UNHCR). These proposals include temporary shelter solutions that balance between lived spaces and regimented, repetitive plans using readily available and cheap materials, erosion control and slope stabilization strategies, and most importantly, coping mechanisms for the refugees to be self-reliant and resilient.Keywords: architecture, Bangladesh, refugee camp, resilience, Rohingya
Procedia PDF Downloads 23714 An E-Maintenance IoT Sensor Node Designed for Fleets of Diverse Heavy-Duty Vehicles
Authors: George Charkoftakis, Panagiotis Liosatos, Nicolas-Alexander Tatlas, Dimitrios Goustouridis, Stelios M. Potirakis
Abstract:
E-maintenance is a relatively new concept, generally referring to maintenance management by monitoring assets over the Internet. One of the key links in the chain of an e-maintenance system is data acquisition and transmission. Specifically for the case of a fleet of heavy-duty vehicles, where the main challenge is the diversity of the vehicles and vehicle-embedded self-diagnostic/reporting technologies, the design of the data acquisition and transmission unit is a demanding task. This clear if one takes into account that a heavy-vehicles fleet assortment may range from vehicles with only a limited number of analog sensors monitored by dashboard light indicators and gauges to vehicles with plethora of sensors monitored by a vehicle computer producing digital reporting. The present work proposes an adaptable internet of things (IoT) sensor node that is capable of addressing this challenge. The proposed sensor node architecture is based on the increasingly popular single-board computer – expansion boards approach. In the proposed solution, the expansion boards undertake the tasks of position identification by means of a global navigation satellite system (GNSS), cellular connectivity by means of 3G/long-term evolution (LTE) modem, connectivity to on-board diagnostics (OBD), and connectivity to analog and digital sensors by means of a novel design of expansion board. Specifically, the later provides eight analog plus three digital sensor channels, as well as one on-board temperature / relative humidity sensor. The specific device offers a number of adaptability features based on appropriate zero-ohm resistor placement and appropriate value selection for limited number of passive components. For example, although in the standard configuration four voltage analog channels with constant voltage sources for the power supply of the corresponding sensors are available, up to two of these voltage channels can be converted to provide power to the connected sensors by means of corresponding constant current source circuits, whereas all parameters of analog sensor power supply and matching circuits are fully configurable offering the advantage of covering a wide variety of industrial sensors. Note that a key feature of the proposed sensor node, ensuring the reliable operation of the connected sensors, is the appropriate supply of external power to the connected sensors and their proper matching to the IoT sensor node. In standard mode, the IoT sensor node communicates to the data center through 3G/LTE, transmitting all digital/digitized sensor data, IoT device identity, and position. Moreover, the proposed IoT sensor node offers WiFi connectivity to mobile devices (smartphones, tablets) equipped with an appropriate application for the manual registration of vehicle- and driver-specific information, and these data are also forwarded to the data center. All control and communication tasks of the IoT sensor node are performed by dedicated firmware. It is programmed with a high-level language (Python) on top of a modern operating system (Linux). Acknowledgment: This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH—CREATE—INNOVATE (project code: T1EDK- 01359, IntelligentLogger).Keywords: IoT sensor nodes, e-maintenance, single-board computers, sensor expansion boards, on-board diagnostics
Procedia PDF Downloads 15413 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography
Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai
Abstract:
Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics
Procedia PDF Downloads 9712 Rationally Designed Dual PARP-HDAC Inhibitor Elicits Striking Anti-leukemic Effects
Authors: Amandeep Thakur, Yi-Hsuan Chu, Chun-Hsu Pan, Kunal Nepali
Abstract:
The transfer of ADP-ribose residues onto target substrates from nicotinamide adenine dinucleotide (NAD) (PARylation) is catalyzed by Poly (ADP-ribose) polymerases (PARPs). Amongst the PARP family members, the DNA damage response in cancer is majorly regulated by PARP1 and PARP2. The blockade of DNA repair by PARP inhibitors leads to the progression of DNA single-strand breaks (induced by some triggering factors) to double-strand breaks. Notably, PARP inhibitors are remarkably effective in cancers with defective homologous recombination repair (HRR). In particular, cancer cells with BRCA mutations are responsive to therapy with PARP inhibitors. The aforementioned requirement for PARP inhibitors to be effective confers a narrow activity spectrum to PARP inhibitors, which hinders their clinical applicability. Thus, the quest to expand the application horizons of PARP inhibitors beyond BRCA mutations is the need of the hour. Literature precedents reveal that HDAC inhibition induces BRCAness in cancer cells and can broaden the therapeutic scope of PARP inhibitors. Driven by such disclosures, dual inhibitors targeting both PARP and HDAC enzymes were designed by our research group to extend the efficacy of PARP inhibitors beyond BRCA-mutated cancers to cancers with induced BRCAness. The design strategy involved the installation of Veliparib, an investigational PARP inhibitor, as a surface recognition part in the HDAC inhibitor pharmacophore model. The chemical architecture of veliparib was deemed appropriate as a starting point for the generation of dual inhibitors by virtue of its size and structural flexibility. A validatory docking study was conducted at the outset to predict the binding mode of the designed dual modulatory chemical architectures. Subsequently, the designed chemical architectures were synthesized via a multistep synthetic route and evaluated for antitumor efficacy. Delightfully, one compound manifested impressive anti-leukemic effects (HL-60 cell lines) mediated via dual inhibition of PARP and class I HDACs. The outcome of the western blot analysis revealed that the compound could downregulate the expression levels of PARP1 and PARP2 and the HDAC isoforms (HDAC1, 2, and 3). Also, the dual PARP-HDAC inhibitor upregulated the protein expression of the acetyl histone H3, confirming its abrogation potential for class I HDACs. In addition, the dual modulator could arrest the cell cycle at the G0/G1 phase and induce autophagy. Further, polymer-based nanoformulation of the dual inhibitor was furnished to afford targeted delivery of the dual inhibitor at the cancer site. Transmission electron microscopy (TEM) results indicate that the nanoparticles were monodispersed and spherical. Moreover, the polymeric nanoformulation exhibited an appropriate particle size. Delightfully, pH-sensitive behavior was manifested by the polymeric nanoformulation that led to selective antitumor effects towards the HL-60 cell lines. In light of the magnificent anti-leukemic profile of the identified dual PARP-HDAC inhibitor, in-vivo studies (pharmacokinetics and pharmacodynamics) are currently being conducted. Notably, the optimistic findings of the aforementioned study have spurred our research group to initiate several medicinal chemistry campaigns to create bifunctional small molecule inhibitors addressing PARP as the primary target.Keywords: PARP inhibitors, HDAC inhibitors, BRCA mutations, leukemia
Procedia PDF Downloads 2411 An Innovation Decision Process View in an Adoption of Total Laboratory Automation
Authors: Chia-Jung Chen, Yu-Chi Hsu, June-Dong Lin, Kun-Chen Chan, Chieh-Tien Wang, Li-Ching Wu, Chung-Feng Liu
Abstract:
With fast advances in healthcare technology, various total laboratory automation (TLA) processes have been proposed. However, adopting TLA needs quite high funding. This study explores an early adoption experience by Taiwan’s large-scale hospital group, the Chimei Hospital Group (CMG), which owns three branch hospitals (Yongkang, Liouying and Chiali, in order by service scale), based on the five stages of Everett Rogers’ Diffusion Decision Process. 1.Knowledge stage: Over the years, two weaknesses exists in laboratory department of CMG: 1) only a few examination categories (e.g., sugar testing and HbA1c) can now be completed and reported within a day during an outpatient clinical visit; 2) the Yongkang Hospital laboratory space is dispersed across three buildings, resulting in duplicated investment in analysis instruments and inconvenient artificial specimen transportation. Thus, the senior management of the department raised a crucial question, was it time to process the redesign of the laboratory department? 2.Persuasion stage: At the end of 2013, Yongkang Hospital’s new building and restructuring project created a great opportunity for the redesign of the laboratory department. However, not all laboratory colleagues had the consensus for change. Thus, the top managers arranged a series of benchmark visits to stimulate colleagues into being aware of and accepting TLA. Later, the director of the department proposed a formal report to the top management of CMG with the results of the benchmark visits, preliminary feasibility analysis, potential benefits and so on. 3.Decision stage: This TLA suggestion was well-supported by the top management of CMG and, finally, they made a decision to carry out the project with an instrument-leasing strategy. After the announcement of a request for proposal and several vendor briefings, CMG confirmed their laboratory automation architecture and finally completed the contracts. At the same time, a cross-department project team was formed and the laboratory department assigned a section leader to the National Taiwan University Hospital for one month of relevant training. 4.Implementation stage: During the implementation, the project team called for regular meetings to review the results of the operations and to offer an immediate response to the adjustment. The main project tasks included: 1) completion of the preparatory work for beginning the automation procedures; 2) ensuring information security and privacy protection; 3) formulating automated examination process protocols; 4) evaluating the performance of new instruments and the instrument connectivity; 5)ensuring good integration with hospital information systems (HIS)/laboratory information systems (LIS); and 6) ensuring continued compliance with ISO 15189 certification. 5.Confirmation stage: In short, the core process changes include: 1) cancellation of signature seals on the specimen tubes; 2) transfer of daily examination reports to a data warehouse; 3) routine pre-admission blood drawing and formal inpatient morning blood drawing can be incorporated into an automatically-prepared tube mechanism. The study summarizes below the continuous improvement orientations: (1) Flexible reference range set-up for new instruments in LIS. (2) Restructure of the specimen category. (3) Continuous review and improvements to the examination process. (4) Whether installing the tube (specimen) delivery tracks need further evaluation.Keywords: innovation decision process, total laboratory automation, health care
Procedia PDF Downloads 41910 Sinhala Sign Language to Grammatically Correct Sentences using NLP
Authors: Anjalika Fernando, Banuka Athuraliya
Abstract:
This paper presents a comprehensive approach for converting Sinhala Sign Language (SSL) into grammatically correct sentences using Natural Language Processing (NLP) techniques in real-time. While previous studies have explored various aspects of SSL translation, the research gap lies in the absence of grammar checking for SSL. This work aims to bridge this gap by proposing a two-stage methodology that leverages deep learning models to detect signs and translate them into coherent sentences, ensuring grammatical accuracy. The first stage of the approach involves the utilization of a Long Short-Term Memory (LSTM) deep learning model to recognize and interpret SSL signs. By training the LSTM model on a dataset of SSL gestures, it learns to accurately classify and translate these signs into textual representations. The LSTM model achieves a commendable accuracy rate of 94%, demonstrating its effectiveness in accurately recognizing and translating SSL gestures. Building upon the successful recognition and translation of SSL signs, the second stage of the methodology focuses on improving the grammatical correctness of the translated sentences. The project employs a Neural Machine Translation (NMT) architecture, consisting of an encoder and decoder with LSTM components, to enhance the syntactical structure of the generated sentences. By training the NMT model on a parallel corpus of Sinhala wrong sentences and their corresponding grammatically correct translations, it learns to generate coherent and grammatically accurate sentences. The NMT model achieves an impressive accuracy rate of 98%, affirming its capability to produce linguistically sound translations. The proposed approach offers significant contributions to the field of SSL translation and grammar correction. Addressing the critical issue of grammar checking, it enhances the usability and reliability of SSL translation systems, facilitating effective communication between hearing-impaired and non-sign language users. Furthermore, the integration of deep learning techniques, such as LSTM and NMT, ensures the accuracy and robustness of the translation process. This research holds great potential for practical applications, including educational platforms, accessibility tools, and communication aids for the hearing-impaired. Furthermore, it lays the foundation for future advancements in SSL translation systems, fostering inclusive and equal opportunities for the deaf community. Future work includes expanding the existing datasets to further improve the accuracy and generalization of the SSL translation system. Additionally, the development of a dedicated mobile application would enhance the accessibility and convenience of SSL translation on handheld devices. Furthermore, efforts will be made to enhance the current application for educational purposes, enabling individuals to learn and practice SSL more effectively. Another area of future exploration involves enabling two-way communication, allowing seamless interaction between sign-language users and non-sign-language users.In conclusion, this paper presents a novel approach for converting Sinhala Sign Language gestures into grammatically correct sentences using NLP techniques in real time. The two-stage methodology, comprising an LSTM model for sign detection and translation and an NMT model for grammar correction, achieves high accuracy rates of 94% and 98%, respectively. By addressing the lack of grammar checking in existing SSL translation research, this work contributes significantly to the development of more accurate and reliable SSL translation systems, thereby fostering effective communication and inclusivity for the hearing-impaired communityKeywords: Sinhala sign language, sign Language, NLP, LSTM, NMT
Procedia PDF Downloads 1079 ARGO: An Open Designed Unmanned Surface Vehicle Mapping Autonomous Platform
Authors: Papakonstantinou Apostolos, Argyrios Moustakas, Panagiotis Zervos, Dimitrios Stefanakis, Manolis Tsapakis, Nektarios Spyridakis, Mary Paspaliari, Christos Kontos, Antonis Legakis, Sarantis Houzouris, Konstantinos Topouzelis
Abstract:
For years unmanned and remotely operated robots have been used as tools in industry research and education. The rapid development and miniaturization of sensors that can be attached to remotely operated vehicles in recent years allowed industry leaders and researchers to utilize them as an affordable means for data acquisition in air, land, and sea. Despite the recent developments in the ground and unmanned airborne vehicles, a small number of Unmanned Surface Vehicle (USV) platforms are targeted for mapping and monitoring environmental parameters for research and industry purposes. The ARGO project is developed an open-design USV equipped with multi-level control hardware architecture and state-of-the-art sensors and payloads for the autonomous monitoring of environmental parameters in large sea areas. The proposed USV is a catamaran-type USV controlled over a wireless radio link (5G) for long-range mapping capabilities and control for a ground-based control station. The ARGO USV has a propulsion control using 2x fully redundant electric trolling motors with active vector thrust for omnidirectional movement, navigation with opensource autopilot system with high accuracy GNSS device, and communication with the 2.4Ghz digital link able to provide 20km of Line of Sight (Los) range distance. The 3-meter dual hull design and composite structure offer well above 80kg of usable payload capacity. Furthermore, sun and friction energy harvesting methods provide clean energy to the propulsion system. The design is highly modular, where each component or payload can be replaced or modified according to the desired task (industrial or research). The system can be equipped with Multiparameter Sonde, measuring up to 20 water parameters simultaneously, such as conductivity, salinity, turbidity, dissolved oxygen, etc. Furthermore, a high-end multibeam echo sounder can be installed in a specific boat datum for shallow water high-resolution seabed mapping. The system is designed to operate in the Aegean Sea. The developed USV is planned to be utilized as a system for autonomous data acquisition, mapping, and monitoring bathymetry and various environmental parameters. ARGO USV can operate in small or large ports with high maneuverability and endurance to map large geographical extends at sea. The system presents state of the art solutions in the following areas i) the on-board/real-time data processing/analysis capabilities, ii) the energy-independent and environmentally friendly platform entirely made using the latest aeronautical and marine materials, iii) the integration of advanced technology sensors, all in one system (photogrammetric and radiometric footprint, as well as its connection with various environmental and inertial sensors) and iv) the information management application. The ARGO web-based application enables the system to depict the results of the data acquisition process in near real-time. All the recorded environmental variables and indices are presented, allowing users to remotely access all the raw and processed information using the implemented web-based GIS application.Keywords: monitor marine environment, unmanned surface vehicle, mapping bythometry, sea environmental monitoring
Procedia PDF Downloads 1428 Metal-Organic Frameworks-Based Materials for Volatile Organic Compounds Sensing Applications: Strategies to Improve Sensing Performances
Authors: Claudio Clemente, Valentina Gargiulo, Alessio Occhicone, Giovanni Piero Pepe, Giovanni Ausanio, Michela Alfè
Abstract:
Volatile organic compound (VOC) emissions represent a serious risk to human health and the integrity of the ecosystems, especially at high concentrations. For this reason, it is very important to continuously monitor environmental quality and develop fast and reliable portable sensors to allow analysis on site. Chemiresistors have become promising candidates for VOC sensing as their ease of fabrication, variety of suitable sensitive materials, and simple sensing data. A chemoresistive gas sensor is a transducer that allows to measure the concentration of an analyte in the gas phase because the changes in resistance are proportional to the amount of the analyte present. The selection of the sensitive material, which interacts with the target analyte, is very important for the sensor performance. The most used VOC detection materials are metal oxides (MOx) for their rapid recovery, high sensitivity to various gas molecules, easy fabrication. Their sensing performance can be improved in terms of operating temperature, selectivity, and detection limit. Metal-organic frameworks (MOFs) have attracted a lot of attention also in the field of gas sensing due to their high porosity, high surface area, tunable morphologies, structural variety. MOFs are generated by the self-assembly of multidentate organic ligands connecting with adjacent multivalent metal nodes via strong coordination interactions, producing stable and highly ordered crystalline porous materials with well-designed structures. However, most MOFs intrinsically exhibit low electrical conductivity. To improve this property, MOFs can be combined with organic and inorganic materials in a hybrid fashion to produce composite materials or can be transformed into more stable structures. MOFs, indeed, can be employed as the precursors of metal oxides with well-designed architectures via the calcination method. The MOF-derived MOx partially preserved the original structure with high surface area and intrinsic open pores, which act as trapping centers for gas molecules, and showed a higher electrical conductivity. Core-shell heterostructures, in which the surface of a metal oxide core is completely coated by a MOF shell, forming a junction at the core-shell heterointerface, can also be synthesized. Also, nanocomposite in which MOF structures are intercalated with graphene related materials can also be produced, and the conductivity increases thanks to the high mobility of electrons of carbon materials. As MOF structures, zinc-based MOFs belonging to the ZIF family were selected in this work. Several Zn-based materials based and/or derived from MOFs were produced, structurally characterized, and arranged in a chemo resistive architecture, also exploring the potentiality of different approaches of sensing layer deposition based on PLD (pulsed laser deposition) and, in case of thermally labile materials, MAPLE (Matrix Assisted Pulsed Laser Evaporation) to enhance the adhesion to the support. The sensors were tested in a controlled humidity chamber, allowing for the possibility of varying the concentration of ethanol, a typical analyte chosen among the VOCs for a first survey. The effect of heating the chemiresistor to improve sensing performances was also explored. Future research will focus on exploring new manufacturing processes for MOF-based gas sensors with the aim to improve sensitivity, selectivity and reduce operating temperatures.Keywords: chemiresistors, gas sensors, graphene related materials, laser deposition, MAPLE, metal-organic frameworks, metal oxides, nanocomposites, sensing performance, transduction mechanism, volatile organic compounds
Procedia PDF Downloads 647 Synthetic Method of Contextual Knowledge Extraction
Authors: Olga Kononova, Sergey Lyapin
Abstract:
Global information society requirements are transparency and reliability of data, as well as ability to manage information resources independently; particularly to search, to analyze, to evaluate information, thereby obtaining new expertise. Moreover, it is satisfying the society information needs that increases the efficiency of the enterprise management and public administration. The study of structurally organized thematic and semantic contexts of different types, automatically extracted from unstructured data, is one of the important tasks for the application of information technologies in education, science, culture, governance and business. The objectives of this study are the contextual knowledge typologization, selection or creation of effective tools for extracting and analyzing contextual knowledge. Explication of various kinds and forms of the contextual knowledge involves the development and use full-text search information systems. For the implementation purposes, the authors use an e-library 'Humanitariana' services such as the contextual search, different types of queries (paragraph-oriented query, frequency-ranked query), automatic extraction of knowledge from the scientific texts. The multifunctional e-library «Humanitariana» is realized in the Internet-architecture in WWS-configuration (Web-browser / Web-server / SQL-server). Advantage of use 'Humanitariana' is in the possibility of combining the resources of several organizations. Scholars and research groups may work in a local network mode and in distributed IT environments with ability to appeal to resources of any participating organizations servers. Paper discusses some specific cases of the contextual knowledge explication with the use of the e-library services and focuses on possibilities of new types of the contextual knowledge. Experimental research base are science texts about 'e-government' and 'computer games'. An analysis of the subject-themed texts trends allowed to propose the content analysis methodology, that combines a full-text search with automatic construction of 'terminogramma' and expert analysis of the selected contexts. 'Terminogramma' is made out as a table that contains a column with a frequency-ranked list of words (nouns), as well as columns with an indication of the absolute frequency (number) and the relative frequency of occurrence of the word (in %% ppm). The analysis of 'e-government' materials showed, that the state takes a dominant position in the processes of the electronic interaction between the authorities and society in modern Russia. The media credited the main role in these processes to the government, which provided public services through specialized portals. Factor analysis revealed two factors statistically describing the used terms: human interaction (the user) and the state (government, processes organizer); interaction management (public officer, processes performer) and technology (infrastructure). Isolation of these factors will lead to changes in the model of electronic interaction between government and society. In this study, the dominant social problems and the prevalence of different categories of subjects of computer gaming in science papers from 2005 to 2015 were identified. Therefore, there is an evident identification of several types of contextual knowledge: micro context; macro context; dynamic context; thematic collection of queries (interactive contextual knowledge expanding a composition of e-library information resources); multimodal context (functional integration of iconographic and full-text resources through hybrid quasi-semantic algorithm of search). Further studies can be pursued both in terms of expanding the resource base on which they are held, and in terms of the development of appropriate tools.Keywords: contextual knowledge, contextual search, e-library services, frequency-ranked query, paragraph-oriented query, technologies of the contextual knowledge extraction
Procedia PDF Downloads 3606 Strategies for Implementing Climate-Resilient Urban Public Spaces: Key Principles of Public Space Design based on People-Centred and Climate-Responsive
Authors: Abimanyu S. Aji, Ima Yusmanita, R. A .Retno Hastijanti, Yudha Utama
Abstract:
The impacts of climate change are increasingly affecting major cities around the world. In April 2024, floods paralyzed Dubai, while in May of the same year, the city of Sao Leopoldo in southern Brazil, Rio Grande do Sul, experienced significant flooding that resulted in hundreds of casualties. In Europe, extreme weather along the Czech-Polish border caused rivers to overflow, carrying debris that destroyed historic cities and bridges and damaged homes. By the end of October 2024, further torrential flooding in Valencia, Spain, led to fatalities. Meanwhile, Southeast Asian cities, particularly Jakarta, are also highly vulnerable to the impacts of climate change and face the threat of being submerged due to rising sea levels. In response, the Indonesian government plans to relocate the capital to East Kalimantan, as Jakarta is no longer suitable as the capital city due to major urban problems and the impact of climate change. Given these circumstances, urgent action is needed to develop climate-resilient urban mitigation and adaptation strategies. One promising approach involves developing public space infrastructure that serves multiple functions, enhances resilience, and improves community welfare. Current urban design trends that adapt to climate change can create a new typology of spaces that respond to present or future climatic conditions. Small-scale interventions, such as designing and developing climate-resilient public spaces strategically located within spatial planning, can drive large-scale changes by transforming the urban context and enhancing the city's resilience to climate change. Public spaces represent the identity of a city, and functional public spaces that consider natural elements foster a harmonious interaction between the city and its environment. Additionally, the environmental design of these public spaces can help reduce hot temperatures in densely populated urban areas. The objective of this research is to identify suitable public spaces for transformation that can address climate adaptation challenges. Strategies for creating climate-resilient urban public spaces are categorized into two main aspects: tangible and intangible. Intangible strategies focus on community engagement and incorporate the ‘Penta Helix’ model, which includes five key elements: government, community, academia, business, and media. Tangible strategies encompass infrastructure design that adapts to climate change and adheres to several key principles: community co-creation, community health and welfare, learning through local themes, encouraging behavior change and new habits, fostering green entrepreneurship, enhancing environmental resilience, and promoting ecosystem integration. The outcome of these strategies is to create distinctive and inclusive public space architecture, including biophilic design elements. The methodologies employed in this study include both quantitative and qualitative approaches. The result of this study is a strategic concept that outlines key principles for designing community-centered and climate-responsive public spaces. By identifying the vital role of public spaces, this strategy can serve as a foundation for city-level climate adaptation efforts and raise awareness about the urgency of urban resilience, leveraging existing infrastructure opportunities. Furthermore, this research contributes to the global understanding of resilient urban design, offering valuable insights for other regions facing similar challenges.Keywords: climate adaptation, city resilience, urban public space, community engagement
Procedia PDF Downloads 75 Large-scale GWAS Investigating Genetic Contributions to Queerness Will Decrease Stigma Against LGBTQ+ Communities
Authors: Paul J. McKay
Abstract:
Large-scale genome-wide association studies (GWAS) investigating genetic contributions to sexual orientation and gender identity are largely lacking and may reduce stigma experienced in the LGBTQ+ community by providing an underlying biological explanation for queerness. While there is a growing consensus within the scientific community that genetic makeup contributes – at least in part – to sexual orientation and gender identity, there is a marked lack of genomics research exploring polygenic contributions to queerness. Based on recent (2019) findings from a large-scale GWAS investigating the genetic architecture of same-sex sexual behavior, and various additional peer-reviewed publications detailing novel insights into the molecular mechanisms of sexual orientation and gender identity, we hypothesize that sexual orientation and gender identity are complex, multifactorial, and polygenic; meaning that many genetic factors contribute to these phenomena, and environmental factors play a possible role through epigenetic modulation. In recent years, large-scale GWAS studies have been paramount to our modern understanding of many other complex human traits, such as in the case of autism spectrum disorder (ASD). Despite possible benefits of such research, including reduced stigma towards queer people, improved outcomes for LGBTQ+ in familial, socio-cultural, and political contexts, and improved access to healthcare (particularly for trans populations); important risks and considerations remain surrounding this type of research. To mitigate possibilities such as invalidation of the queer identities of existing LGBTQ+ individuals, genetic discrimination, or the possibility of euthanasia of embryos with a genetic predisposition to queerness (through reproductive technologies like IVF and/or gene-editing in utero), we propose a community-engaged research (CER) framework which emphasizes the privacy and confidentiality of research participants. Importantly, the historical legacy of scientific research attempting to pathologize queerness (in particular, falsely equating gender variance to mental illness) must be acknowledged to ensure any future research conducted in this realm does not propagate notions of homophobia, transphobia or stigma against queer people. Ultimately, in a world where same-sex sexual activity is criminalized in 69 UN member states, with 67 of these states imposing imprisonment, 8 imposing public flogging, 6 (Brunei, Iran, Mauritania, Nigeria, Saudi Arabia, Yemen) invoking the death penalty, and another 5 (Afghanistan, Pakistan, Qatar, Somalia, United Arab Emirates) possibly invoking the death penalty, the importance of this research cannot be understated, as finding a biological basis for queerness would directly oppose the harmful rhetoric that “being LGBTQ+ is a choice.” Anti-trans legislation is similarly widespread: In the United States in 2022 alone (as of Oct. 13), 155 anti-trans bills have been introduced preventing trans girls and women from playing on female sports teams, barring trans youth from using bathrooms and locker rooms that align with their gender identity, banning access to gender affirming medical care (e.g., hormone-replacement therapy, gender-affirming surgeries), and imposing legal restrictions on name changes. Understanding that a general lack of knowledge about the biological basis of queerness may be a contributing factor to the societal stigma faced by gender and sexual orientation minorities, we propose the initiation of large-scale GWAS studies investigating the genetic basis of gender identity and sexual orientation.Keywords: genome-wide association studies (GWAS), sexual and gender minorities (SGM), polygenicity, community-engaged research (CER)
Procedia PDF Downloads 704 Developing a Cloud Intelligence-Based Energy Management Architecture Facilitated with Embedded Edge Analytics for Energy Conservation in Demand-Side Management
Authors: Yu-Hsiu Lin, Wen-Chun Lin, Yen-Chang Cheng, Chia-Ju Yeh, Yu-Chuan Chen, Tai-You Li
Abstract:
Demand-Side Management (DSM) has the potential to reduce electricity costs and carbon emission, which are associated with electricity used in the modern society. A home Energy Management System (EMS) commonly used by residential consumers in a down-stream sector of a smart grid to monitor, control, and optimize energy efficiency to domestic appliances is a system of computer-aided functionalities as an energy audit for residential DSM. Implementing fault detection and classification to domestic appliances monitored, controlled, and optimized is one of the most important steps to realize preventive maintenance, such as residential air conditioning and heating preventative maintenance in residential/industrial DSM. In this study, a cloud intelligence-based green EMS that comes up with an Internet of Things (IoT) technology stack for residential DSM is developed. In the EMS, Arduino MEGA Ethernet communication-based smart sockets that module a Real Time Clock chip to keep track of current time as timestamps via Network Time Protocol are designed and implemented for readings of load phenomena reflecting on voltage and current signals sensed. Also, a Network-Attached Storage providing data access to a heterogeneous group of IoT clients via Hypertext Transfer Protocol (HTTP) methods is configured to data stores of parsed sensor readings. Lastly, a desktop computer with a WAMP software bundle (the Microsoft® Windows operating system, Apache HTTP Server, MySQL relational database management system, and PHP programming language) serves as a data science analytics engine for dynamic Web APP/REpresentational State Transfer-ful web service of the residential DSM having globally-Advanced Internet of Artificial Intelligence (AI)/Computational Intelligence. Where, an abstract computing machine, Java Virtual Machine, enables the desktop computer to run Java programs, and a mash-up of Java, R language, and Python is well-suited and -configured for AI in this study. Having the ability of sending real-time push notifications to IoT clients, the desktop computer implements Google-maintained Firebase Cloud Messaging to engage IoT clients across Android/iOS devices and provide mobile notification service to residential/industrial DSM. In this study, in order to realize edge intelligence that edge devices avoiding network latency and much-needed connectivity of Internet connections for Internet of Services can support secure access to data stores and provide immediate analytical and real-time actionable insights at the edge of the network, we upgrade the designed and implemented smart sockets to be embedded AI Arduino ones (called embedded AIduino). With the realization of edge analytics by the proposed embedded AIduino for data analytics, an Arduino Ethernet shield WizNet W5100 having a micro SD card connector is conducted and used. The SD library is included for reading parsed data from and writing parsed data to an SD card. And, an Artificial Neural Network library, ArduinoANN, for Arduino MEGA is imported and used for locally-embedded AI implementation. The embedded AIduino in this study can be developed for further applications in manufacturing industry energy management and sustainable energy management, wherein in sustainable energy management rotating machinery diagnostics works to identify energy loss from gross misalignment and unbalance of rotating machines in power plants as an example.Keywords: demand-side management, edge intelligence, energy management system, fault detection and classification
Procedia PDF Downloads 2513 Blockchain Based Hydrogen Market (BBH₂): A Paradigm-Shifting Innovative Solution for Climate-Friendly and Sustainable Structural Change
Authors: Volker Wannack
Abstract:
Regional, national, and international strategies focusing on hydrogen (H₂) and blockchain are driving significant advancements in hydrogen and blockchain technology worldwide. These strategies lay the foundation for the groundbreaking "Blockchain Based Hydrogen Market (BBH₂)" project. The primary goal of this project is to develop a functional Blockchain Minimum Viable Product (B-MVP) for the hydrogen market. The B-MVP will leverage blockchain as an enabling technology with a common database and platform, facilitating secure and automated transactions through smart contracts. This innovation will revolutionize logistics, trading, and transactions within the hydrogen market. The B-MVP has transformative potential across various sectors. It benefits renewable energy producers, surplus energy-based hydrogen producers, hydrogen transport and distribution grid operators, and hydrogen consumers. By implementing standardized, automated, and tamper-proof processes, the B-MVP enhances cost efficiency and enables transparent and traceable transactions. Its key objective is to establish the verifiable integrity of climate-friendly "green" hydrogen by tracing its supply chain from renewable energy producers to end users. This emphasis on transparency and accountability promotes economic, ecological, and social sustainability while fostering a secure and transparent market environment. A notable feature of the B-MVP is its cross-border operability, eliminating the need for country-specific data storage and expanding its global applicability. This flexibility not only broadens its reach but also creates opportunities for long-term job creation through the establishment of a dedicated blockchain operating company. By attracting skilled workers and supporting their training, the B-MVP strengthens the workforce in the growing hydrogen sector. Moreover, it drives the emergence of innovative business models that attract additional company establishments and startups and contributes to long-term job creation. For instance, data evaluation can be utilized to develop customized tariffs and provide demand-oriented network capacities to producers and network operators, benefitting redistributors and end customers with tamper-proof pricing options. The B-MVP not only brings technological and economic advancements but also enhances the visibility of national and international standard-setting efforts. Regions implementing the B-MVP become pioneers in climate-friendly, sustainable, and forward-thinking practices, generating interest beyond their geographic boundaries. Additionally, the B-MVP serves as a catalyst for research and development, facilitating knowledge transfer between universities and companies. This collaborative environment fosters scientific progress, aligns with strategic innovation management, and cultivates an innovation culture within the hydrogen market. Through the integration of blockchain and hydrogen technologies, the B-MVP promotes holistic innovation and contributes to a sustainable future in the hydrogen industry. The implementation process involves evaluating and mapping suitable blockchain technology and architecture, developing and implementing the blockchain, smart contracts, and depositing certificates of origin. It also includes creating interfaces to existing systems such as nomination, portfolio management, trading, and billing systems, testing the scalability of the B-MVP to other markets and user groups, developing data formats for process-relevant data exchange, and conducting field studies to validate the B-MVP. BBH₂ is part of the "Technology Offensive Hydrogen" funding call within the research funding of the Federal Ministry of Economics and Climate Protection in the 7th Energy Research Programme of the Federal Government.Keywords: hydrogen, blockchain, sustainability, innovation, structural change
Procedia PDF Downloads 172