Search results for: learning preferences
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7807

Search results for: learning preferences

4567 Association of Dietary Intake with the Nutrition Knowledge, Food Label Use, and Food Preferences of Adults in San Jose del Monte City, Bulacan, Philippines

Authors: Barby Jennette A. Florano

Abstract:

Dietary intake has been associated with the health and wellbeing of adults, and lifestyle related diseases. The aim of this study was to investigate whether nutrition knowledge, food label use, and food preference are associated with the dietary intake in a sample of San Jose Del Monte City, Bulacan (SJDM) adults. A sample of 148 adults, with a mean age of 20 years, completed a validated questionnaire related to their demographic, dietary intake, nutrition knowledge, food label use and food preference. Data were analyzed using Pearson correlation and there was no association between dietary intake and nutrition knowledge. However, there were positive relationships between dietary intake and food label use (r=0.1276, p<0.10), and dietary intake and food preference (r=0.1070, p<0.10). SJDM adults who use food label and have extensive food preference had better diet quality. This finding magnifies the role of nutrition education as a potential tool in health campaigns to promote healthy eating patterns and reading food labels among students and adults. Results of this study can give information for the design of future nutrition education intervention studies to assess the efficacy of nutrition knowledge and food label use among a similar sample population.

Keywords: dietary intake, nutrition knowledge, food preference, food label use

Procedia PDF Downloads 97
4566 Thermodynamic Analysis of Surface Seawater under Ocean Warming: An Integrated Approach Combining Experimental Measurements, Theoretical Modeling, Machine Learning Techniques, and Molecular Dynamics Simulation for Climate Change Assessment

Authors: Nishaben Desai Dholakiya, Anirban Roy, Ranjan Dey

Abstract:

Understanding ocean thermodynamics has become increasingly critical as Earth's oceans serve as the primary planetary heat regulator, absorbing approximately 93% of excess heat energy from anthropogenic greenhouse gas emissions. This investigation presents a comprehensive analysis of Arabian Sea surface seawater thermodynamics, focusing specifically on heat capacity (Cp) and thermal expansion coefficient (α) - parameters fundamental to global heat distribution patterns. Through high-precision experimental measurements of ultrasonic velocity and density across varying temperature (293.15-318.15K) and salinity (0.5-35 ppt) conditions, it characterize critical thermophysical parameters including specific heat capacity, thermal expansion, and isobaric and isothermal compressibility coefficients in natural seawater systems. The study employs advanced machine learning frameworks - Random Forest, Gradient Booster, Stacked Ensemble Machine Learning (SEML), and AdaBoost - with SEML achieving exceptional accuracy (R² > 0.99) in heat capacity predictions. the findings reveal significant temperature-dependent molecular restructuring: enhanced thermal energy disrupts hydrogen-bonded networks and ion-water interactions, manifesting as decreased heat capacity with increasing temperature (negative ∂Cp/∂T). This mechanism creates a positive feedback loop where reduced heat absorption capacity potentially accelerates oceanic warming cycles. These quantitative insights into seawater thermodynamics provide crucial parametric inputs for climate models and evidence-based environmental policy formulation, particularly addressing the critical knowledge gap in thermal expansion behavior of seawater under varying temperature-salinity conditions.

Keywords: climate change, arabian sea, thermodynamics, machine learning

Procedia PDF Downloads 25
4565 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station

Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner

Abstract:

A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.

Keywords: radio base station, maintenance, classification, detection, deep learning, automation

Procedia PDF Downloads 207
4564 A Computerized Tool for Predicting Future Reading Abilities in Pre-Readers Children

Authors: Stephanie Ducrot, Marie Vernet, Eve Meiss, Yves Chaix

Abstract:

Learning to read is a key topic of debate today, both in terms of its implications on school failure and illiteracy and regarding what are the best teaching methods to develop. It is estimated today that four to six percent of school-age children suffer from specific developmental disorders that impair learning. The findings from people with dyslexia and typically developing readers suggest that the problems children experience in learning to read are related to the preliteracy skills that they bring with them from kindergarten. Most tools available to professionals are designed for the evaluation of child language problems. In comparison, there are very few tools for assessing the relations between visual skills and the process of learning to read. Recent literature reports that visual-motor skills and visual-spatial attention in preschoolers are important predictors of reading development — the main goal of this study aimed at improving screening for future reading difficulties in preschool children. We used a prospective, longitudinal approach where oculomotor processes (assessed with the DiagLECT test) were measured in pre-readers, and the impact of these skills on future reading development was explored. The dialect test specifically measures the online time taken to name numbers arranged irregularly in horizontal rows (horizontal time, HT), and the time taken to name numbers arranged in vertical columns (vertical time, VT). A total of 131 preschoolers took part in this study. At Time 0 (kindergarten), the mean VT, HT, errors were recorded. One year later, at Time 1, the reading level of the same children was evaluated. Firstly, this study allowed us to provide normative data for a standardized evaluation of the oculomotor skills in 5- and 6-year-old children. The data also revealed that 25% of our sample of preschoolers showed oculomotor impairments (without any clinical complaints). Finally, the results of this study assessed the validity of the DiagLECT test for predicting reading outcomes; the better a child's oculomotor skills are, the better his/her reading abilities will be.

Keywords: vision, attention, oculomotor processes, reading, preschoolers

Procedia PDF Downloads 149
4563 Use of Artificial Intelligence in Teaching Practices: A Meta-Analysis

Authors: Azmat Farooq Ahmad Khurram, Sadaf Aslam

Abstract:

This meta-analysis systematically examines the use of artificial intelligence (AI) in instructional methods across diverse educational settings through a thorough analysis of empirical research encompassing various disciplines, educational levels, and regions. This study aims to assess the effects of AI integration on teaching methodologies, classroom dynamics, teachers' roles, and student engagement. Various research methods were used to gather data, including literature reviews, surveys, interviews, and focus group discussions. Findings indicate paradigm shifts in teaching and education, identify emerging trends, practices, and the application of artificial intelligence in learning, and provide educators, policymakers, and stakeholders with guidelines and recommendations for effectively integrating AI in educational contexts. The study concludes by suggesting future research directions and practical considerations for maximizing AI's positive influence on pedagogical practices.

Keywords: artificial intelligence, teaching practices, meta-analysis, teaching-learning

Procedia PDF Downloads 83
4562 Small-Group Case-Based Teaching: Effects on Student Achievement, Critical Thinking, and Attitude toward Chemistry

Authors: Reynante E. Autida, Maria Ana T. Quimbo

Abstract:

The chemistry education curriculum provides an excellent avenue where students learn the principles and concepts in chemistry and at the same time, as a central science, better understand related fields. However, the teaching approach used by teachers affects student learning. Cased-based teaching (CBT) is one of the various forms of inductive method. The teacher starts with specifics then proceeds to the general principles. The students’ role in inductive learning shifts from being passive in the traditional approach to being active in learning. In this paper, the effects of Small-Group Case-Based Teaching (SGCBT) on college chemistry students’ achievement, critical thinking, and attitude toward chemistry including the relationships between each of these variables were determined. A quasi-experimental counterbalanced design with pre-post control group was used to determine the effects of SGCBT on Engineering students of four intact classes (two treatment groups and two control groups) in one of the State Universities in Mindanao. The independent variables are the type of teaching approach (SGCBT versus pure lecture-discussion teaching or PLDT) while the dependent variables are chemistry achievement (exam scores) and scores in critical thinking and chemistry attitude. Both Analysis of Covariance (ANCOVA) and t-tests (within and between groups and gain scores) were used to compare the effects of SGCBT versus PLDT on students’ chemistry achievement, critical thinking, and attitude toward chemistry, while Pearson product-moment correlation coefficients were calculated to determine the relationships between each of the variables. Results show that the use of SGCBT fosters positive attitude toward chemistry and provides some indications as well on improved chemistry achievement of students compared with PLDT. Meanwhile, the effects of PLDT and SGCBT on critical thinking are comparable. Furthermore, correlational analysis and focus group interviews indicate that the use of SGCBT not only supports development of positive attitude towards chemistry but also improves chemistry achievement of students. Implications are provided in view of the recent findings on SGCBT and topics for further research are presented as well.

Keywords: case-based teaching, small-group learning, chemistry cases, chemistry achievement, critical thinking, chemistry attitude

Procedia PDF Downloads 301
4561 Fund Seekers’ Deception in Peer-to-Peer Lending in Times of COVID

Authors: Olivier Mesly

Abstract:

This article examines the likelihood of deception on the part of borrowers wishing to obtain credit from institutional or private lenders. In our first study, we identify five explanatory variables that account for nearly forty percent of the propensity to act deceitfully: a poor credit history, debt, risky behavior, and to a much lesser degree, irrational behavior and disconnection from the bundle of needs, goals, and preferences. For the second study, we remodeled the initial questionnaire to adapt it to the needs of institutional bankers and borrowers, especially those that engage in money on-line peer-to-peer lending, a growing business fueled by the COVID pandemic. We find that the three key psychological variables that help to indirectly predict the likelihood of deceitful behaviors and possible default on loan reimbursement, i.e., risky behaviors, ir-rationality, and dis-connection, interact with each other to form a loop. This study presents two benefits: first, we provide evidence that it is to some degree possible to tighten control over lending practices. Second, we offer a pragmatic tool: a questionnaire, that lenders can use or adapt to gauge potential borrowers’ deceit, notably by combining their results with standard hard-data measures of risk.

Keywords: bundle of needs, default, debt, deception, risk, peer-to-peer lending

Procedia PDF Downloads 135
4560 Micro-Rest: Extremely Short Breaks in Post-Learning Interference Support Memory Retention over the Long Term

Authors: R. Marhenke, M. Martini

Abstract:

The distraction of attentional resources after learning hinders long-term memory consolidation compared to several minutes of post-encoding inactivity in form of wakeful resting. We tested whether an 8-minute period of wakeful resting, compared to performing an adapted version of the d2 test of attention after learning, supports memory retention. Participants encoded and immediately recalled a word list followed by either an 8 minute period of wakeful resting (eyes closed, relaxed) or by performing an adapted version of the d2 test of attention (scanning and selecting specific characters while ignoring others). At the end of the experimental session (after 12-24 min) and again after 7 days, participants were required to complete a surprise free recall test of both word lists. Our results showed no significant difference in memory retention between the experimental conditions. However, we found that participants who completed the first lines of the d2 test in less than the given time limit of 20 seconds and thus had short unfilled intervals before switching to the next test line, remembered more words over the 12-24 minute and over the 7 days retention interval than participants who did not complete the first lines. This interaction occurred only for the first test lines, with the highest temporal proximity to the encoding task and not for later test lines. Differences in retention scores between groups (completed first line vs. did not complete) seem to be widely independent of the general performance in the d2 test. Implications and limitations of these exploratory findings are discussed.

Keywords: long-term memory, retroactive interference, attention, forgetting

Procedia PDF Downloads 136
4559 The Impact of Hosting an On-Site Vocal Concert in Preschool on Music Inspiration and Learning Among Preschoolers

Authors: Meiying Liao, Poya Huang

Abstract:

The aesthetic domain is one of the six major domains in the Taiwanese preschool curriculum, encompassing visual arts, music, and dramatic play. Its primary objective is to cultivate children’s abilities in exploration and awareness, expression and creation, and response and appreciation. The purpose of this study was to explore the effects of hosting a vocal music concert on aesthetic inspiration and learning among preschoolers in a preschool setting. The primary research method employed was a case study focusing on a private preschool in Northern Taiwan that organized a school-wide event featuring two vocalists. The concert repertoires included children’s songs, folk songs, and arias performed in Mandarin, Hakka, English, German, and Italian. In addition to professional performances, preschool teachers actively participated by presenting a children’s song. A total of 5 classes, comprising approximately 150 preschoolers, along with 16 teachers and staff, participated in the event. Data collection methods included observation, interviews, and documents. Results indicated that both teachers and children thoroughly enjoyed the concert, with high levels of acceptance when the program was appropriately designed and hosted. Teachers reported that post-concert discussions with children revealed the latter’s ability to recall people, events, and elements observed during the performance, expressing their impressions of the most memorable segments. The concert effectively achieved the goals of the aesthetic domain, particularly in fostering response and appreciation. It also inspired preschoolers’ interest in music. Many teachers noted an increased desire for performance among preschoolers after exposure to the concert, with children imitating the performers and their expressions. Remarkably, one class extended this experience by incorporating it into the curriculum, autonomously organizing a high-quality concert in the music learning center. Parents also reported that preschoolers enthusiastically shared their concert experiences at home. In conclusion, despite being a single event, the positive responses from preschoolers towards the music performance suggest a meaningful impact. These experiences extended into the curriculum, as firsthand exposure to performances allowed teachers to deepen related topics, fostering a habit of autonomous learning in the designated learning centers.

Keywords: concert, early childhood music education, aesthetic education, music develpment

Procedia PDF Downloads 51
4558 The Design and Development of Online Infertility Prevention Education in the Frame of Mayer's Multimedia Learning Theory

Authors: B. Baran, S. N. Kaptanoglu, M. Ocal, Y. Kagnici, E. Esen, E. Siyez, D. M. Siyez

Abstract:

Infertility is the fact that couples cannot have children despite 1 year of unprotected sexual life. Infertility can be considered as an important problem affecting not only sexual life but also social and psychological conditions of couples. Learning about information about preventable factors related to infertility during university years plays an important role in preventing a possible infertility case in older ages. The possibility to facilitate access to information with the internet has provided the opportunity to reach a broad audience in the diverse learning environments and educational environment. Moreover, the internet has become a basic resource for the 21st-century learners. Providing information about infertility over the internet will enable more people to reach in a short time. When studies conducted abroad about infertility are examined, interactive websites and online education programs come to the fore. In Turkey, while there is no comprehensive online education program for university students, it seems that existing studies are aimed to make more advertisements for doctors or hospitals. In this study, it was aimed to design and develop online infertility prevention education for university students. Mayer’s Multimedia Learning Theory made up the framework for the online learning environment in this study. The results of the needs analysis collected from the university students in Turkey who were selected with sampling to represent the audience for online learning contributed to the design phase. In this study, an infertility prevention online education environment designed as a 4-week education was developed by explaining the theoretical basis and needs analysis results. As a result; in the development of the online environment, different kind of visual aids that will increase teaching were used in the environment of online education according to Mayer’s principles of extraneous processing (coherence, signaling, spatial contiguity, temporal contiguity, redundancy, expectation principles), essential processing (segmenting, pre-training, modality principles) and generative processing (multimedia, personalization, voice principles). For example, the important points in reproductive systems’ expression were emphasized by visuals in order to draw learners’ attention, and the presentation of the information was also supported by the human voice. In addition, because of the limited knowledge of university students in the subject, the issue of female reproductive and male reproductive systems was taught before preventable factors related to infertility. Furthermore, 3D video and augmented reality application were developed in order to embody female and male reproductive systems. In conclusion, this study aims to develop an interactive Online Infertility Prevention Education in which university students can easily access reliable information and evaluate their own level of knowledge about the subject. It is believed that the study will also guide the researchers who want to develop online education in this area as it contains design-stage decisions of interactive online infertility prevention education for university students.

Keywords: infertility, multimedia learning theory, online education, reproductive health

Procedia PDF Downloads 175
4557 Implementation of a Program of Orientation for Travel Nursing Staff Based on Nurse-Identified Learning Needs

Authors: Olga C. Rodrigue

Abstract:

Long-term care and skilled nursing facilities experience ebbs and flows of nursing staffing, a problem compounded by the perception of the facilities as undesirable workplaces and competition for staff from other healthcare entities. Travel nurses are contracted to fill staffing needs due to increased admissions, increased and unexpected attrition of nurses, or facility expansion of services. Prior to beginning the contracted assignment, the travel nurse must meet industry, company, and regulatory requirements (The Joint Commission and CMS) for skills and knowledge. Travel nurses, however, inconsistently receive the pre-assignment orientation needed to work at the contracted facility, if any information is given at all. When performance expectations are not met, travel nurses may subsequently choose to leave the position without completing the terms of the contract, and some facilities may choose to terminate the contract prior to the expected end date. The overarching goal of the Doctor of Nursing Practice evidence-based practice improvement project is to provide travel nurses with the basic and necessary information to prepare them to begin a long-term and skilled nursing assignment. The project involves the identification of travel nurse learning needs through a survey and the development and provision of web-based learning modules to address those needs prior to arrival for a long-term and skilled nursing assignment.

Keywords: nurse staffing, travel nurse, travel staff, contract staff, contracted assignment, long-term care, skilled nursing, onboarding, orientation, staff development, supplemental staff

Procedia PDF Downloads 171
4556 Integration, a Tool to Develop Critical Thinking Skills of Undergraduate Veterinary Students

Authors: M. L. W. P. De Silva, R. A. C. Rabel, N. Smith, L. McIntyre, T. J Parkinson, K. A. N. Wijayawardhane

Abstract:

Curricular integration is an important concept in medical education for developing students’ ability to create connections between different medical disciplines. Problem-Based Learning (PBL) is one of the vehicles through which such integration can be achieved. During the recent review of the veterinary curriculum at the University of Peradeniya, a series of courses in Integrative Veterinary Science (IVS) were introduced, in which PBL was the primary teaching methodology. The objectives of this study were to evaluate students’ opinions on PBL as a teaching method: it should be noted that, within the context of secondary and tertiary education in Sri Lanka, this would be an entirely novel learning experience for the students. Opinions were sought at the conclusion of IVS sessions where students of semesters 2, 4, 6, and 7 (of an 8-semester program) were exposed to a two, 2-hour PBL-based case scenario. The PBL-based case scenario in semesters 2, 4, and 7 were delivered using material previously developed by an experienced PBL practitioner, whilst material for semester 6 was prepared de novo by a less experienced practitioner. Each student (semesters 2: n=38, 4: n=37, 6: n=55, and 7: n=40) completed a questionnaire which asked whether: (i) the course had improved their critical thinking skills; (ii) the learning environment was sufficiently comfortable to express/share student’s opinion; (iii) there was sufficient facilitator guidance; (iv) the online study environment enhanced learning; and (v) the students were overall satisfied with the PBL approach and IVS concept. Responses were given on a 5-point Likert-scale (strongly agree (SA), agree (A), neutral (N), disagree (D), and strongly disagree (SD)). SA and A responses were summed to provide an overall ‘satisfactory’ response. Results were subjected to frequency-distribution statistical analysis. A total of 88.5% of students gave SA+A scores to their overall satisfaction. The proportion of SA+A scores differed between different semesters, such that 95% of semester 2, 4, and 7 students gave SA+A scores, whereas only 69% of semester 6 students did so for their respective sessions. Overall, 96% of the students gave SA+A scores to the question relating to the improvement of critical thinking skills: semester 6 students’ scores were marginally, but not significantly, lower (91% SA+A) than those in other semesters. The difference of scores between semester 6 and the other semesters may be attributed to the different PBL-material used and/or the different experience levels of the practitioners that developed the study material. The use of PBL as a means of teaching IVS curriculum-integration courses was well-received by the students in terms of their overall satisfaction and their perceptions of improved critical thinking skills. Importantly, this was achieved in the face of a methodology that was entirely novel to the students. Finally, the delivery of the PBL medium was readily mastered by the practitioner to whom it was also a novel methodology.

Keywords: critical thinking skills, integration, problem based learning, veterinary education

Procedia PDF Downloads 137
4555 The Good Form of a Sustainable Creative Learning City Based on “The Theory of a Good City Form“ by Kevin Lynch

Authors: Fatemeh Moosavi, Tumelo Franck Nkoshwane

Abstract:

Peter Drucker the renowned management guru once said, “The best way to predict the future is to create it.” Mr. Drucker is also the man who placed human capital as the most vital resource of any institution. As such any institution bent on creating a better future, requires a competent human capital, one that is able to execute with efficiency and effectiveness the objective a society aspires to. Technology today is accelerating the rate at which many societies transition to knowledge based societies. In this accelerated paradigm, it is imperative that those in leadership establish a platform capable of sustaining the planned future; intellectual capital. The capitalist economy going into the future will not just be sustained by dollars and cents, but by individuals who possess the creativity to enterprise, innovate and create wealth from ideas. This calls for cities of the future, to have this premise at the heart of their future plan, if the objective of designing sustainable and liveable future cities will be realised. The knowledge economy, now transitioning to the creative economy, requires cities of the future to be ‘gardens’ of inspiration, to be places where knowledge, creativity, and innovation can thrive as these instruments are becoming critical assets for creating wealth in the new economic system. Developing nations must accept that learning is a lifelong process that requires keeping abreast with change and should invest in teaching people how to keep learning. The need to continuously update one’s knowledge, turn these cities into vibrant societies, where new ideas create knowledge and in turn enriches the quality of life of the residents. Cities of the future must have as one of their objectives, the ability to motivate their citizens to learn, share knowledge, evaluate the knowledge and use it to create wealth for a just society. The five functional factors suggested by Kevin Lynch;-vitality, meaning/sense, adaptability, access, control, and monitoring should form the basis on which policy makers and urban designers base their plans for future cities. The authors of this paper believe that developing nations “creative economy clusters”, cities where creative industries drive the need for constant new knowledge creating sustainable learning creative cities. Obviously the form, shape and size of these districts should be cognisant of the environmental, cultural and economic characteristics of each locale. Gaborone city in the republic of Botswana is presented as the case study for this paper.

Keywords: learning city, sustainable creative city, creative industry, good city form

Procedia PDF Downloads 314
4554 A Survey of Response Generation of Dialogue Systems

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years.

Keywords: deep learning, generative, knowledge, response generation, retrieval

Procedia PDF Downloads 138
4553 The Impact of Using Technology Tools on Preparing English Language Learners for the 21st Century

Authors: Ozlem Kaya

Abstract:

21st-century learners are energetic and tech-savvy, and the skills and the knowledge required in this century are complex and challenging. Therefore, teachers need to find new ways to appeal to the needs and interests of their students and meet the demands of the 21st century at the same time. One way to do so in English language learning has been to incorporate various technology tools into classroom practices. Although teachers think these practices are effective and their students enjoy them, students may have different perceptions. To find out what students think about the use of technology tools in terms of developing 21st-century skills and knowledge, this study was conducted at Anadolu University School of Foreign Languages. A questionnaire was administered to 40 students at elementary level. Afterward, semi-structured interviews were held with 8 students to provide deeper insight into their perceptions. The details of the findings of the study will be presented and discussed during the presentation.

Keywords: 21st century skills, technology tools, perception, English Language Learning

Procedia PDF Downloads 299
4552 Supporting International Student’s Acculturation Through Chatbot Technology: A Proposed Study

Authors: Sylvie Studente

Abstract:

Despite the increase in international students migrating to the UK, the transition from home environment to a host institution abroad can be overwhelming for many students due to acculturative stressors. These stressors are reported to peak within the first six months of transitioning into study abroad which has determinantal impacts for Higher Education Institutions. These impacts include; increased drop-out rates and overall decreases in academic performance. Research suggests that belongingness can negate acculturative stressors through providing opportunities for students to form necessary social connections. In response to this universities have focussed on utilising technology to create learning communities with the most commonly deployed being social media, blogs, and discussion forums. Despite these attempts, the application of technology in supporting international students is still ambiguous. With the reported growing popularity of mobile devices among students and accelerations in learning technology owing to the COVID-19 pandemic, the potential is recognised to address this challenge via the use of chatbot technology. Whilst traditionally, chatbots were deployed as conversational agents in business domains, they have since been applied to the field of education. Within this emerging area of research, a gap exists in addressing the educational value of chatbots over and above the traditional service orientation categorisation. The proposed study seeks to extend upon current understandings by investigating the challenges faced by international students in studying abroad and exploring the potential of chatbots as a solution to assist students’ acculturation. There has been growing interest in the application of chatbot technology to education accelerated by the shift to online learning during the COVID-19 pandemic. Although interest in educational chatbots has surged, there is a lack of consistency in the research area in terms of guidance on the design to support international students in HE. This gap is widened when considering the additional challenge of supporting multicultural international students with diverse. Diversification in education is rising due to increases in migration trends for international study. As global opportunities for education increase, so does the need for multiculturally inclusive learning support.

Keywords: chatbots, education, international students, acculturation

Procedia PDF Downloads 49
4551 Radio Frequency Identification Chips in Colour Preference Tracking

Authors: A. Ballard

Abstract:

The ability to track goods and products en route in the delivery system, in the warehouse, and on the top floor is a huge advantage to shippers and retailers. Recently the emergence of radio frequency identification (RFID) technology has enabled this better than ever before. However, a significant problem exists in that RFID technology depends on the quality of the information stored for each tagged product. Because of the profusion of names for colours, it is very difficult to ascertain that stored values are recognised by all users who view the product visually. This paper reports the findings of a study in which 50 consumers and 50 logistics workers were shown colour swatches and asked to choose the name of the colour from a multiple choice list. They were then asked to match consumer products, including toasters, jumpers, and toothbrushes, with the identifying inventory information available for each one. The findings show that the ability to match colours was significantly stronger with the color swatches than with the consumer products and that while logistics professionals made more frequent correct identification than the consumers, their results were still unsatisfactorily low. Based on these findings, a proposed universal model of colour identification numbers has been developed.

Keywords: consumer preferences, supply chain logistics, radio frequency identification, RFID, colour preference

Procedia PDF Downloads 125
4550 The Impact of Professional Development in the Area of Technology Enhanced Learning on Higher Education Teaching Practices Across Atlantic Technological University - Research Methodology and Preliminary Findings

Authors: Annette Cosgrove, Carina Ginty, Tony Hall, Cornelia Connolly

Abstract:

The objectives of this research study is to examine the impact of professional development in Technology Enhanced Learning (TEL) and the digitization of learning in teaching communities across multiple higher education sites in the ATU (Atlantic Technological University *) ( 2020-2025), including the proposal of an evidence-based digital teaching model for use in a future pandemic. The research strategy undertaken for this study is a multi-site study using mixed methods. Qualitative & quantitative methods are being used in the study to collect data. A pilot study was carried out initially, feedback was collected and the research instrument was edited to reflect this feedback before being administered. The purpose of the staff questionnaire is to evaluate the impact of professional development in the area of TEL, and to capture the practitioner's views on the perceived impact on their teaching practice in the higher education sector across ATU (West of Ireland – 5 Higher education locations ). The phenomenon being explored is ‘ the impact of professional development in the area of technology-enhanced learning and on teaching practice in a higher education institution. The research methodology chosen for this study is an Action based Research Study. The researcher has chosen this approach as it is a prime strategy for developing educational theory and enhancing educational practice. This study includes quantitative and qualitative methods to elicit data that will quantify the impact that continuous professional development in the area of digital teaching practice and technologies has on the practitioner’s teaching practice in higher education. The research instruments/data collection tools for this study include a lecturer survey with a targeted TEL Practice group ( Pre and post covid experience) and semi-structured interviews with lecturers. This research is currently being conducted across the ATU multi-site campus and targeting Higher education lecturers that have completed formal CPD in the area of digital teaching. ATU, a West of Ireland university, is the focus of the study. The research questionnaire has been deployed, with 75 respondents to date across the ATU - the primary questionnaire and semi-formal interviews are ongoing currently – the purpose being to evaluate the impact of formal professional development in the area of TEL and its perceived impact on the practitioners teaching practice in the area of digital teaching and learning. This paper will present initial findings, reflections and data from this ongoing research study.

Keywords: TEL, technology, digital, education

Procedia PDF Downloads 85
4549 Machine Learning Approach for Automating Electronic Component Error Classification and Detection

Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski

Abstract:

The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.

Keywords: augmented reality, machine learning, object recognition, virtual laboratories

Procedia PDF Downloads 142
4548 Deep Neural Network Approach for Navigation of Autonomous Vehicles

Authors: Mayank Raj, V. G. Narendra

Abstract:

Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.

Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence

Procedia PDF Downloads 164
4547 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: building energy management, machine learning, operation planning, simulation-based optimization

Procedia PDF Downloads 327
4546 A Supervised Goal Directed Algorithm in Economical Choice Behaviour: An Actor-Critic Approach

Authors: Keyvanl Yahya

Abstract:

This paper aims to find a algorithmic structure that affords to predict and explain economic choice behaviour particularly under uncertainty (random policies) by manipulating the prevalent Actor-Critic learning method that complies with the requirements we have been entrusted ever since the field of neuroeconomics dawned on us. Whilst skimming some basics of neuroeconomics that might be relevant to our discussion, we will try to outline some of the important works which have so far been done to simulate choice making processes. Concerning neurological findings that suggest the existence of two specific functions that are executed through Basal Ganglia all the way down to sub-cortical areas, namely 'rewards' and 'beliefs', we will offer a modified version of actor/critic algorithm to shed a light on the relation between these functions and most importantly resolve what is referred to as a challenge for actor-critic algorithms, that is lack of inheritance or hierarchy which avoids the system being evolved in continuous time tasks whence the convergence might not emerge.

Keywords: neuroeconomics, choice behaviour, decision making, reinforcement learning, actor-critic algorithm

Procedia PDF Downloads 399
4545 Learning Fashion Construction and Manufacturing Methods from the Past: Cultural History and Genealogy at the Middle Tennessee State University Historic Clothing Collection

Authors: Teresa B. King

Abstract:

In the millennial age, with more students desiring a fashion major yet fewer having sewing and manufacturing knowledge, this increases demand on academicians to adequately educate. While fashion museums have a prominent place for historical preservation, the need for apparel education via working collections of handmade or mass manufactured apparel is lacking in most universities in the United States, especially in the Southern region. Created in 1988, Middle Tennessee State University’s historic clothing collection provides opportunities to study apparel construction methods throughout history, to compare and apply to today’s construction and manufacturing methods, as well as to learn the cyclical nature/importance of historic styles on current and upcoming fashion. In 2019, a class exercise experiment was implemented for which students researched their family genealogy using Ancestry.com, identified the oldest visual media (photographs, etc.) available, and analyzed the garment represented in said media. The student then located a comparable garment in the historic collection and evaluated the construction methods of the ancestor’s time period. A class 'fashion' genealogy tree was created and mounted for public viewing/education. Results of this exercise indicated that student learning increased due to the 'personal/familial connection' as it triggered more interest in historical garments as related to the student’s own personal culture. Students better identified garments regarding the historical time period, fiber content, fabric, and construction methods utilized, thus increasing learning and retention. Students also developed increased learning and recognition of custom construction methods versus current mass manufacturing techniques, which impact today’s fashion industry. A longitudinal effort will continue with the growth of the historic collection and as students continue to utilize the historic clothing collection.

Keywords: ancestry, clothing history, fashion history, genealogy, historic fashion museum collection

Procedia PDF Downloads 140
4544 Prevention of Student Radicalism in School through Civic Education

Authors: Triyanto

Abstract:

Radicalism poses a real threat to Indonesia's future. The target of radicalism is the youth of Indonesia. This is proven by the majority of terrorists are young people. Radicalization is not only a repressive act but also requires educational action. One of the educational efforts is civic education. This study discusses the prevention of radicalism for students through civic education and its constraints. This is qualitative research. Data were collected through literature studies, observations and in-depth interviews. Data were validated by triangulation. The sample of this research is 30 high school students in Surakarta. Data were analyzed by the interactive model of analysis from Miles & Huberman. The results show that (1) civic education can be a way of preventing student radicalism in schools in the form of cultivating the values of education through learning in the classroom and outside the classroom; (2) The obstacles encountered include the lack of learning facilities, the limited ability of teachers and the low attention of students to the civic education.

Keywords: prevention, radicalism, senior high school student, civic education

Procedia PDF Downloads 236
4543 Factors Influencing the Enjoyment and Performance of Students in Statistics Service Courses: A Mixed-Method Study

Authors: Wilma Coetzee

Abstract:

Statistics lecturers experience that many students who are taking a service course in statistics do not like statistics. Students in these courses tend to struggle and do not perform well. This research takes a look at the student’s perspective, with the aim to determine how to change the teaching of statistics so that students will enjoy it more and perform better. Questionnaires were used to determine the perspectives of first year service statistics students at a South African university. Factors addressed included motivation to study, attitude toward statistics, statistical anxiety, mathematical abilities and tendency to procrastinate. Logistic regression was used to determine what contributes to students performing badly in statistics. The results show that the factors that contribute the most to students performing badly are: statistical anxiety, not being motivated and having had mathematical literacy instead of mathematics in secondary school. Two open ended questions were included in the questionnaire: 'I will enjoy statistics more if…' and 'I will perform better in statistics if…'. The answers to these questions were analyzed using qualitative methods. Frequent themes were identified for each of the questions. A simulation study incorporating bootstrapping was done to determine the saturation of the themes. The majority of the students indicated that they would perform better in statistics if they studied more, managed their time better, had a flare for mathematics and if the lecturer was able to explain difficult concepts better. They also want more active learning. To ensure that students enjoy statistics more, they want an active learning experience. They want fun activities, more interaction with the lecturer and with one another, more computer based problems, and more challenges. They want a better understanding of the subject, want to understand the relevance of statistics to their future career and want excellent lecturers. These findings can be used to direct the improvement of the tuition of statistics.

Keywords: active learning, performance in statistics, statistical anxiety, statistics education

Procedia PDF Downloads 150
4542 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea

Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro

Abstract:

Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.

Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting

Procedia PDF Downloads 141
4541 Exploration of Competitive Athletes’ Superstition in Taiwan: “Miracle” and “Coincidence”

Authors: Shieh Shiow-Fang

Abstract:

Superstitious thoughts or actions often occur during athletic competitions. Often "superstitious rituals" have a positive impact on the performance of competitive athletes. Athletes affirm the many psychological benefits of religious beliefs mostly in a positive way. Method: By snowball sampling, we recruited 10 experienced competitive athletes as participants. We used in-person and online one-to-one in-depth interviews to collect their experiences about sports superstition. The total interview time was 795 minutes. We analyzed the raw data with the grounded theory processes suggested by Strauss and Corbin (1990). Results: The factors affecting athlete performance are ritual beliefs, taboo awareness, learning norms, and spontaneous attribution behaviors. Conclusion: We concluded that sports superstition reflects several psychological implications. The analysis results of this paper can provide another research perspective for the future study of sports superstition behavior.

Keywords: superstition, taboo awarences, competitive athlete, learning norms

Procedia PDF Downloads 80
4540 TimeTune: Personalized Study Plans Generation with Google Calendar Integration

Authors: Chevon Fernando, Banuka Athuraliya

Abstract:

The purpose of this research is to provide a solution to the students’ time management, which usually becomes an issue because students must study and manage their personal commitments. "TimeTune," an AI-based study planner that provides an opportunity to maneuver study timeframes by incorporating modern machine learning algorithms with calendar applications, is unveiled as the ideal solution. The research is focused on the development of LSTM models that connect to the Google Calendar API in the process of developing learning paths that would be fit for a unique student's daily life experience and study history. A key finding of this research is the success in building the LSTM model to predict optimal study times, which, integrating with the real-time data of Google Calendar, will generate the timetables automatically in a personalized and customized manner. The methodology encompasses Agile development practices and Object-Oriented Analysis and Design (OOAD) principles, focusing on user-centric design and iterative development. By adopting this method, students can significantly reduce the tension associated with poor study habits and time management. In conclusion, "TimeTune" displays an advanced step in personalized education technology. The fact that its application of ML algorithms and calendar integration is quite innovative is slowly and steadily revolutionizing the lives of students. The excellence of maintaining a balanced academic and personal life is stress reduction, which the applications promise to provide for students when it comes to managing their studies.

Keywords: personalized learning, study planner, time management, calendar integration

Procedia PDF Downloads 53
4539 Training 'Green Ambassadors' in the Community-Action Learning Course

Authors: Friman Hen, Banner Ifaa, Shalom-Tuchin Bosmat, Einav Yulia

Abstract:

The action learning course is an academic course which involves academic learning and social activities. The courses deal with processes and social challenges, reveal different ideologies, and develop critical thinking and pragmatic ideas. Students receive course credits and a grade for being part of such courses. Participating students enroll in courses that involve action and activities to engage in the experiential learning process, thereby creating a dialogue and cross-fertilization between being taught in the classroom and experiencing the reality in the real world. A learning experience includes meeting with social organizations, institutions, and state authorities and carrying out practical work with diverse populations. Through experience, students strengthen their academic skills, formulate ethical attitudes toward reality, develop professional and civilian perspectives, and realize how they can influence their surrounding in the present and the hereafter. Under the guidance and supervision of Dr. Hen Friman, H.I.T. has built an innovative course that combines action and activities to increase the awareness and accessibility of the community in an experiential way. The end goal is to create Green Ambassadors—children with a high level of environmental awareness. This course is divided into two parts. The first part, focused on frontal teaching, delivers knowledge from extensive environmental fields to students. These areas include introduction to ecology, the process of electricity generation, air pollution, renewable energy, water economy, waste and recycling, and energy efficiency (first stage). In addition to the professional content in the environment field, students learn the method of effective and experiential teaching to younger learners (4 to 8 years old). With the attainment of knowledge, students are divided into operating groups. The second part of the course shows how the theory becomes practical and concrete. At this stage, students are asked to introduce to the first- and second-graders of ‘Revivim’ School in Holon a lesson of 90 minutes focused on presenting the issues and their importance during the course (second stage). This course is the beginning of a paradigm shift regarding energy usage in the modern society in Israel. The objective of the course is to expand worldwide and train the first and second-graders, and even pre-schoolers, in a wide scope to increase population awareness rate, both in Israel and all over the world, for a green future.

Keywords: air pollution, green ambassador, recycling, renewable energy

Procedia PDF Downloads 245
4538 Towards a Balancing Medical Database by Using the Least Mean Square Algorithm

Authors: Kamel Belammi, Houria Fatrim

Abstract:

imbalanced data set, a problem often found in real world application, can cause seriously negative effect on classification performance of machine learning algorithms. There have been many attempts at dealing with classification of imbalanced data sets. In medical diagnosis classification, we often face the imbalanced number of data samples between the classes in which there are not enough samples in rare classes. In this paper, we proposed a learning method based on a cost sensitive extension of Least Mean Square (LMS) algorithm that penalizes errors of different samples with different weight and some rules of thumb to determine those weights. After the balancing phase, we applythe different classifiers (support vector machine (SVM), k- nearest neighbor (KNN) and multilayer neuronal networks (MNN)) for balanced data set. We have also compared the obtained results before and after balancing method.

Keywords: multilayer neural networks, k- nearest neighbor, support vector machine, imbalanced medical data, least mean square algorithm, diabetes

Procedia PDF Downloads 536