Search results for: adaptive random testing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5991

Search results for: adaptive random testing

2781 Towards Expanding the Use of the Online Judge UnitJudge for Java Programming Exercises and Web Development Practices in Computer Science Education

Authors: Iván García-Magariño, Javier Bravo-Agapito, Marta López-Fernández

Abstract:

Online judges have proven their utility in partial auto-evaluation of programming short exercises in the last decades. UnitJudge online judge has the advantage of facilitating the evaluation of separate units to provide more segregate and meaningful feedback to students in complex exercises and practices. This paper discusses the use of UnitUdge in advanced Java object-oriented programming exercises and web development practices. This later usage has been proposed by means of the Selenium Java library and classes to provide the web address. Consequently, UnitJudge is an online judge system that can be applied in several subjects, and therefore, many other students would take advantage of self-testing their exercises. This paper presents the experiments with a Java programming exercise for learning Java object-oriented classes with a generic type. Considering 10 students who voluntarily used UnitJudge, 80% successfully learned this concept, passing the judge exercise with correct results.

Keywords: online judges, programming skills, computer science education, auto-evaluation

Procedia PDF Downloads 101
2780 Monitoring the Phenomenon of Black Sand in Hurghada’s Artificial Lakes from Sources of Groundwater and Removal Techniques

Authors: Ahmed M. Noureldin, Khaled M. Naguib

Abstract:

This experimental investigation tries to identify the root cause of the black sand issue in one of the man-made lakes in a well-known Hurghada resort. The lake is nourished by the underground wells' source, which continuously empties into the Red Sea. Chemical testing was done by looking at spots of stinky black sand beneath the sandy lake surface. The findings on samples taken from several locations (wells, lake bottom sand samples, and clean sand with exact specifications as bottom sand) indicated the existence of organic sulfur bacteria that are responsible for the phenomena of black sand. Approximately 39.139 mg/kg of sulfide in the form of hydrogen sulfide was present in the lake bottom sand, while 1.145 mg/kg, before usage, was in the bare sand. The study also involved modeling with the GPS-X program for cleaning bottom sand that uses hydro cyclones as a physical-mechanical treatment method. The modeling findings indicated a Total Organic Carbon (TOC) removal effectiveness of 0.65%. The research recommended using hydro cyclones to routinely mechanically clear the sand from lake bottoms.

Keywords: man-made lakes, organic sulfur bacteria, total organic carbon, hydro cyclone

Procedia PDF Downloads 72
2779 Interaction between Breathiness and Nasality: An Acoustic Analysis

Authors: Pamir Gogoi, Ratree Wayland

Abstract:

This study investigates the acoustic measures of breathiness when coarticulated with nasality. The acoustic correlates of breathiness and nasality that has already been well established after years of empirical research. Some of these acoustic parameters - like low frequency peaks and wider bandwidths- are common for both nasal and breathy voice. Therefore, it is likely that these parameters interact when a sound is coarticulated with breathiness and nasality. This leads to the hypothesis that the acoustic parameters, which usually act as robust cues in differentiating between breathy and modal voice, might not be reliable cues for differentiating between breathy and modal voice when breathiness is coarticulated with nasality. The effect of nasality on the perception of breathiness has been explored in earlier studies using synthesized speech. The results showed that perceptually, nasality and breathiness do interact. The current study investigates if a similar pattern is observed in natural speech. The study is conducted on Marathi, an Indo-Aryan language which has a three-way contrast between nasality and breathiness. That is, there is a phonemic distinction between nasals, breathy voice and breathy-nasals. Voice quality parameters like – H1-H2 (Difference between the amplitude of first and second harmonic), H1-A3 (Difference between the amplitude of first harmonic and third formant, CPP (Cepstral Peak Prominence), HNR (Harmonics to Noise ratio) and B1 (Bandwidth of first formant) were extracted. Statistical models like linear mixed effects regression and Random Forest classifiers show that measures that capture the noise component in the signal- like CPP and HNR- can classify breathy voice from modal voice better than spectral measures when breathy voice is coarticulated with nasality.

Keywords: breathiness, marathi, nasality, voice quality

Procedia PDF Downloads 96
2778 Deep Learning-Based Automated Structure Deterioration Detection for Building Structures: A Technological Advancement for Ensuring Structural Integrity

Authors: Kavita Bodke

Abstract:

Structural health monitoring (SHM) is experiencing growth, necessitating the development of distinct methodologies to address its expanding scope effectively. In this study, we developed automatic structure damage identification, which incorporates three unique types of a building’s structural integrity. The first pertains to the presence of fractures within the structure, the second relates to the issue of dampness within the structure, and the third involves corrosion inside the structure. This study employs image classification techniques to discern between intact and impaired structures within structural data. The aim of this research is to find automatic damage detection with the probability of each damage class being present in one image. Based on this probability, we know which class has a higher probability or is more affected than the other classes. Utilizing photographs captured by a mobile camera serves as the input for an image classification system. Image classification was employed in our study to perform multi-class and multi-label classification. The objective was to categorize structural data based on the presence of cracks, moisture, and corrosion. In the context of multi-class image classification, our study employed three distinct methodologies: Random Forest, Multilayer Perceptron, and CNN. For the task of multi-label image classification, the models employed were Rasnet, Xceptionet, and Inception.

Keywords: SHM, CNN, deep learning, multi-class classification, multi-label classification

Procedia PDF Downloads 36
2777 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach

Authors: Dongkwon Han, Sangho Kim, Sunil Kwon

Abstract:

Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.

Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance

Procedia PDF Downloads 196
2776 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework

Authors: Raymond Xu, Cindy Jingru Wang

Abstract:

Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.

Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis

Procedia PDF Downloads 254
2775 Experimental Parameters’ Effects on the Electrical Discharge Machining Performances

Authors: Asmae Tafraouti, Yasmina Layouni, Pascal Kleimann

Abstract:

The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, such as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, and the initial gap, has been studied. This analysis helps to improve the machining performances, such as the workpiece surface condition and the lateral crater's gap.

Keywords: craters, electrical discharges, micro-electrical discharge machining, microsystems

Procedia PDF Downloads 74
2774 Optimization of Palm Oil Plantation Revitalization in North Sumatera

Authors: Juliza Hidayati, Sukardi, Ani Suryani, Sugiharto, Anas M. Fauzi

Abstract:

The idea of making North Sumatera as a barometer of national oil palm industry requires efforts commodities and agro-industry development of oil palm. One effort that can be done is by successful execution plantation revitalization. The plantation Revitalization is an effort to accelerate the development of smallholder plantations, through expansion and replanting by help of palm Estate Company as business partner and bank financed plantation revitalization fund. Business partner agreement obliged and bound to make at least the same smallholder plantation productivity with business partners, so that the refund rate to banks become larger and prosperous people as a plantation owner. Generally low productivity of smallholder plantations under normal potential caused a lot of old and damaged plants with plant material at random. The purpose of revitalizing oil palm plantations is which are to increase their competitiveness through increased farm productivity. The research aims to identify potential criteria in influencing plantation productivity improvement priorities to be observed and followed up in order to improve the competitiveness of destinations and make North Sumatera barometer of national palm oil can be achieved. Research conducted with Analytical Network Process (ANP), to find the effect of dependency relationships between factors or criteria with the knowledge of the experts in order to produce an objective opinion and relevant depict the actual situation.

Keywords: palm barometer, acceleration of plantation development, productivity, revitalization

Procedia PDF Downloads 681
2773 Satisfaction Level of Teachers on the Human Resource Management Practices

Authors: Mark Anthony A. Catiil

Abstract:

Teachers are the principal actors in the delivery of quality education to the learners. Unfortunately, as time goes by, some of them got low motivation at work. Absenteeism, tardiness, under time, and non-compliance to school policies are some of the end results. There is, therefore, a need to review the different human resource management practices of the school that contribute to teachers’ work satisfaction and motivation. Hence, this study determined the level of satisfaction of teachers on the human resource management practices of Gingoog City Comprehensive National High School. This mixed-methodology research was focused on the 45 teachers chosen using a stratified random sampling technique. Reliability-tested questionnaires, interviews, and focus group discussions were used to gather the data. Results revealed that the majority of the respondents are female, Teacher I, with MA units and have served for 11-20 years. Likewise, among the human resource management practices of the school, the respondents rated the lowest satisfaction on recruitment and selection (mean=2.15; n=45). This could mean that most of the recruitment and selection practices of the school are not well communicated, disseminated, and implemented. On the other hand, retirement practices of the school were rated with the highest satisfaction among the respondents (mean=2.73; n=45). This could mean that most of the retirement practices of the school are communicated, disseminated, implemented, and functional. It was recommended that the existing human resource management practices on recruitment and selection be reviewed to find out its deficiencies and possible improvement. Moreover, future researchers may also conduct a study between private and public schools in Gingoog City on the same topic for comparison.

Keywords: education, human resource management practices, satisfaction, teachers

Procedia PDF Downloads 128
2772 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection

Authors: Muhammad Ali

Abstract:

Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.

Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection

Procedia PDF Downloads 125
2771 An Investigation into Problems Confronting Pre-Service Teachers of French in South-West Nigeria

Authors: Modupe Beatrice Adeyinka

Abstract:

French, as a foreign language in Nigeria, is pronounced to be the second official language and a compulsory subject in the primary school level; hence, colleges of education across the nation are saddled with the responsibility of training teachers for the subject. However, it has been observed that this policy has not been fully implemented, for French teachers in training, do face many challenges, of which translation is chief. In a bid to investigate the major cause of the perceived translation problem, this study examined French translation problems of pre-service teachers in selected colleges of education in the southwest, Nigeria. This study adopted a descriptive survey research design. The simple random sampling technique was used to select four colleges of education in the southwest, where 100 French students were randomly selected by selecting 25 from each school. The pre-service teachers’ French translation problems’ questionnaire (PTFTPQ) was used as an instrument while four research questions were answered and three null hypotheses were tested. Among others, the findings revealed that students do have problems with false friends, though mainly with its interpretation when attempting French-English translation and vice versa; majority of the students make use of French dictionary as a way out and found the material very useful for their understanding of false friends. Teachers were, therefore, urged to attend in-service training where they would be exposed to new and emerging strategies, approaches and methodologies of French language teaching that will make students overcome the challenge of translation in learning French.

Keywords: false friends, French language, pre-service teachers, source language, target language, translation

Procedia PDF Downloads 161
2770 Citizens’ Expectations, Motivations, and Evaluation of Participatory Use of Social Media Tools for Civic Engagement in Oman

Authors: Ali S. Al-Aufi, Ibrahim S. Al-Harthi, Yousuf S. AlHinai, Ali H.S. Al-Badi, Zahran S. Al-Salti

Abstract:

Social media tools have currently been leading a major change in the flow and use of information for different life aspects within people and between people and their governments. They represent powerful channels for direct exchanges of information, ideas, and suggestions for purposes of civic participation. The current study aims at investigating Omani citizens’ perceptions, expectations, and motivations of their uses of social media tools to interact with the government for civic participation. A quantitative methodology was used to collect data through self-administered questionnaires from a random sample of university students and staff drawn from Sultan Qaboos University, considering them as well-informed and typically active users of social media. The literature was comprehensively reviewed to retrieve relevant empirical studies that particularly investigated the use of social media for civic engagement which provided a basis for the construct of the questionnaire; taken into consideration the delineated dimensions of perceptions, expectations, and motivations. The findings of the study offer practical and useful recommendations for governmental units in Oman and similar contexts in the region to inform better and efficient use of social media tools to interact with citizens in issues related to civic engagement; particularly to make best use of these tools for improving services and developing existing and newer initiatives, and hence, encouraging and strengthening citizens’ involvement for civic engagement.

Keywords: social media, social networking sites, web 2.0, civic engagement, civic participation, oman

Procedia PDF Downloads 493
2769 The Effect of Sago Supplementation on Physiology and Performance in a Hot and Humid Environment

Authors: Che Jusoh, Mohd Rahimi, Toby Mundel

Abstract:

This study was designed to investigate the physiological and performance effects of a local Malaysian native starch (Metroxylin sago) on cycling in a hot (30°C) and humid (78% RH) environment. Eight male, non-heat acclimated, well-trained club cyclists (VO2max 65 ± 10 ml kg-1 min-1, peak aerobic power 397 ± 71 W) completed one familiarization and three experimental trials in our laboratory simulating cycling in environmental conditions of heat and humidity. Each trial consisted of 45 minutes at a fixed workload (55% VO2max) followed by a 15 minute time-trial (~75% VO2max). Sago in porridge form was consumed 1h before exercise (Pre), in gel form during exercise (Dur) and compared to a control trial (Con), using a random, cross-over design. Plasma glucose concentration did not differ between trials (P = 0.06) with an increase from 4.1 ± 0.6 to 6.1 ± 1.6 mmol-1 (Con), 4.8 ± 1.7 to 5.7 ± 0.4 mmol-1 (Pre) and 4.7 ± 0.8 to 6.9 ± 1.4 mmol-1 (Dur) from start to end of exercise. Plasma lactate increased (P = 0.02) from 1.6 ± 0.3 to 7.6 ± 2.2 mmol-1 (Con), 1.7 ± 0.5 to 7.3 ± 2.9 mmol-1 (Pre) and 1.6 ± 0.2 to 7.3 ± 1.8 mmol-1 (Dur) with no effect of trial (P = 0.74). No differences were found between trials for RER (P = 0.328) with values of 0.93 ± 0.05 (Con), 0.94 ± 0.04 (Pre) and 0.92 ± 0.04 (Dur). There were no differences between trials in rectal (P = 0.64) and skin (P = 0.56) temperatures; values reaching 39.1 ± 0.5°C (Con), 38.9 ± 0.4°C (Pre) and 39.1 ± 0.4°C (Dur) for rectal and 32.7 ± 1.2°C (Con), 32.8 ± 1.4°C (Pre) and 32.8 ± 1.8°C (Dur) for skin temperature, respectively. Heart rate (P = 0.07) also did not differ between trials but reached maximal values by the end of time-trial for all trials. Performance was unaffected by trial (P = 0.98) with the average work completed in 15 minutes being 221 ± 33 kJ (Con), 222 ± 31 kJ (Pre) and 219 ± 32 kJ (Dur), respectively. Therefore, the results of this investigation do not support consumption of sago, either before or during exercise, in altering the thermoregulatory, metabolic or performance responses in a hot and humid environment.

Keywords: hot and humid, physiology, time trial performance, thermoregulatory

Procedia PDF Downloads 409
2768 A Dynamic Solution Approach for Heart Disease Prediction

Authors: Walid Moudani

Abstract:

The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the coronary heart disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts’ knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.

Keywords: multi-classifier decisions tree, features reduction, dynamic programming, rough sets

Procedia PDF Downloads 410
2767 Analysis of Determinate and Indeterminate Structures: Applications of Non-Economic Structure

Authors: Toral Khalpada, Kanhai Joshi

Abstract:

Generally, constructions of structures built in India are indeterminate structures. The purpose of this study is to investigate the application of a structure that is proved to be non-economical. The testing practice involves the application of different types of loads on both, determinate and indeterminate structure by computing it on a software system named Staad and also inspecting them practically on the construction site, analyzing the most efficient structure and diagnosing the utilization of the structure which is not so beneficial as compared to other. Redundant structures (indeterminate structure) are found to be more reasonable. All types of loads were applied on the beams of both determinate and indeterminate structures parallelly on the software and the same was done on the site practically which proved that maximum stresses in statically indeterminate structures are generally lower than those in comparable determinate structures. These structures are found to have higher stiffness resulting in lesser deformations so indeterminate structures are economical and are better than determinate structures to use for construction. On the other hand, statically determinate structures have the benefit of not producing stresses because of temperature changes. Therefore, our study tells that indeterminate structure is more beneficial but determinate structure also has used as it can be used in many areas; it can be used for the construction of two hinged arch bridges where two supports are sufficient and where there is no need for expensive indeterminate structure. Further investigation is needed to contrive more implementation of the determinate structure.

Keywords: construction, determinate structure, indeterminate structure, stress

Procedia PDF Downloads 231
2766 Analysis of Nonlinear Dynamic Systems Excited by Combined Colored and White Noise Excitations

Authors: Siu-Siu Guo, Qingxuan Shi

Abstract:

In this paper, single-degree-of-freedom (SDOF) systems to white noise and colored noise excitations are investigated. By expressing colored noise excitation as a second-order filtered white noise process and introducing colored noise as an additional state variable, the equation of motion for SDOF system under colored noise is then transferred artificially to multi-degree-of-freedom (MDOF) system under white noise excitations. As a consequence, corresponding Fokker-Planck-Kolmogorov (FPK) equation governing the joint probabilistic density function (PDF) of state variables increases to 4-dimension (4-D). Solution procedure and computer programme become much more sophisticated. The exponential-polynomial closure (EPC) method, widely applied for cases of SDOF systems under white noise excitations, is developed and improved for cases of systems under colored noise excitations and for solving the complex 4-D FPK equation. On the other hand, Monte Carlo simulation (MCS) method is performed to test the approximate EPC solutions. Two examples associated with Gaussian and non-Gaussian colored noise excitations are considered. Corresponding band-limited power spectral densities (PSDs) for colored noise excitations are separately given. Numerical studies show that the developed EPC method provides relatively accurate estimates of the stationary probabilistic solutions. Moreover, statistical parameter of mean-up crossing rate (MCR) is taken into account, which is important for reliability and failure analysis.

Keywords: filtered noise, narrow-banded noise, nonlinear dynamic, random vibration

Procedia PDF Downloads 225
2765 2D Nanomaterials-Based Geopolymer as-Self-Sensing Buildings in Construction Industry

Authors: Maryam Kiani

Abstract:

The self-sensing capability opens up new possibilities for structural health monitoring, offering real-time information on the condition and performance of constructions. The synthesis and characterization of these functional 2D material geopolymers will be explored in this study. Various fabrication techniques, including mixing, dispersion, and coating methods, will be employed to ensure uniform distribution and integration of the 2D materials within the geopolymers. The resulting composite materials will be evaluated for their mechanical strength, electrical conductivity, and sensing capabilities through rigorous testing and analysis. The potential applications of these self-sensing geopolymers are vast. They can be used in infrastructure projects, such as bridges, tunnels, and buildings, to provide continuous monitoring and early detection of structural damage or degradation. This proactive approach to maintenance and safety can significantly improve the lifespan and efficiency of constructions, ultimately reducing maintenance costs and enhancing overall sustainability. In conclusion, the development of functional 2D material geopolymers as self-sensing materials presents an exciting advancement in the construction industry. By integrating these innovative materials into structures, we can create a new generation of intelligent, self-monitoring constructions that can adapt and respond to their environment.

Keywords: 2D materials, geopolymers, electrical properties, self-sensing

Procedia PDF Downloads 132
2764 AI-Powered Personalized Teacher Training for Enhancing Language Teaching Competence

Authors: Ororho Maureen Ekpelezie

Abstract:

This study investigates language educators' perceptions and experiences regarding AI-driven personalized teacher training modules in Awka South, Anambra State, Nigeria. Utilizing a stratified random sampling technique, 25 schools across various educational levels were selected to ensure a representative sample. A total of 1000 questionnaires were distributed among language teachers in these schools, focusing on assessing their perceptions and experiences related to AI-driven personalized teacher training. With an impressive response rate of 99.1%, the study garnered valuable insights into language teachers' attitudes towards AI-driven personalized teacher training and its effectiveness in enhancing language teaching competence. The quantitative analysis revealed predominantly positive perceptions towards AI-driven personalized training modules, indicating their efficacy in addressing individual learning needs. However, challenges were identified in the long-term retention and transfer of AI-enhanced skills, underscoring the necessity for further refinement of personalized training approaches. Recommendations stemming from these findings emphasize the need for continued refinement of training methodologies and the development of tailored professional development programs to alleviate educators' concerns. Overall, this research enriches discussions on the integration of AI technology in teacher training and professional development, with the aim of bolstering language teaching competence and effectiveness in educational settings.

Keywords: language teacher training, AI-driven personalized learning, professional development, language teaching competence, personalized teacher training

Procedia PDF Downloads 39
2763 Influences of Market Orientation and Supply Chain Management on Competitive Capability in Case of Automotive Parts Industry

Authors: Nattapong Techarattanased

Abstract:

The objectives of this research were to study the influence of market orientation and supply chain management on competitive capability in case of the automotive parts industry in Thailand. This study employed by survey research and questionnaire was used to collect the data from 400 entrepreneurs in the automotive parts industry in Thailand. The descriptive statistics and multiple regression analysis were used to analyze data. The results revealed that the overall dimensions of marketing orientation, namely, responsiveness, intelligence generation, and intelligence dissemination were rated at the high level. As well, the overall dimensions of supply chain management, namely, collaboration, communication, trust, and commitment were also rated at the high level. Furthermore, the hypothesis testing results showed that supply chain management and market orientation affected competitive capability of the automotive parts industry in Thailand which these two variables could be combined to predict competitive capability of the automotive parts industry in Thailand by 31.5 percent.

Keywords: automotive parts industry, competitive capability, market orientation, supply chain management

Procedia PDF Downloads 314
2762 The Use of Fractional Brownian Motion in the Generation of Bed Topography for Bodies of Water Coupled with the Lattice Boltzmann Method

Authors: Elysia Barker, Jian Guo Zhou, Ling Qian, Steve Decent

Abstract:

A method of modelling topography used in the simulation of riverbeds is proposed in this paper, which removes the need for datapoints and measurements of physical terrain. While complex scans of the contours of a surface can be achieved with other methods, this requires specialised tools, which the proposed method overcomes by using fractional Brownian motion (FBM) as a basis to estimate the real surface within a 15% margin of error while attempting to optimise algorithmic efficiency. This removes the need for complex, expensive equipment and reduces resources spent modelling bed topography. This method also accounts for the change in topography over time due to erosion, sediment transport, and other external factors which could affect the topography of the ground by updating its parameters and generating a new bed. The lattice Boltzmann method (LBM) is used to simulate both stationary and steady flow cases in a side-by-side comparison over the generated bed topography using the proposed method and a test case taken from an external source. The method, if successful, will be incorporated into the current LBM program used in the testing phase, which will allow an automatic generation of topography for the given situation in future research, removing the need for bed data to be specified.

Keywords: bed topography, FBM, LBM, shallow water, simulations

Procedia PDF Downloads 98
2761 Impact of Six-Minute Walk or Rest Break during Extended GamePlay on Executive Function in First Person Shooter Esport Players

Authors: Joanne DiFrancisco-Donoghue, Seth E. Jenny, Peter C. Douris, Sophia Ahmad, Kyle Yuen, Hillary Gan, Kenney Abraham, Amber Sousa

Abstract:

Background: Guidelines for the maintenance of health of esports players and the cognitive changes that accompany competitive gaming are understudied. Executive functioning is an important cognitive skill for an esports player. The relationship between executive functions and physical exercise has been well established. However, the effects of prolonged sitting regardless of physical activity level have not been established. Prolonged uninterrupted sitting reduces cerebral blood flow. Reduced cerebral blood flow is associated with lower cognitive function and fatigue. This decrease in cerebral blood flow has been shown to be offset by frequent and short walking breaks. These short breaks can be as little as 2 minutes at the 30-minute mark and 6 minutes following 60 minutes of prolonged sitting. The rationale is the increase in blood flow and the positive effects this has on metabolic responses. The primary purpose of this study was to evaluate executive function changes following 6-minute bouts of walking and complete rest mid-session, compared to no break, during prolonged gameplay in competitive first-person shooter (FPS) esports players. Methods: This study was conducted virtually due to the Covid-19 pandemic and was approved by the New York Institute of Technology IRB. Twelve competitive FPS participants signed written consent to participate in this randomized pilot study. All participants held a gold ranking or higher. Participants were asked to play for 2 hours on three separate days. Outcome measures to test executive function included the Color Stroop and the Tower of London tests which were administered online each day prior to gaming and at the completion of gaming. All participants completed the tests prior to testing for familiarization. One day of testing consisted of a 6-minute walk break after 60-75 minutes of play. The Rate of Perceived Exertion (RPE) was recorded. The participant continued to play for another 60-75 minutes and completed the tests again. Another day the participants repeated the same methods replacing the 6-minute walk with lying down and resting for 6 minutes. On the last day, the participant played continuously with no break for 2 hours and repeated the outcome tests pre and post-play. A Latin square was used to randomize the treatment order. Results: Using descriptive statistics, the largest change in mean reaction time incorrect congruent pre to post play was seen following the 6-minute walk (662.0 (609.6) ms pre to 602.8 (539.2) ms post), followed by the 6-minute rest group (681.7(618.1) ms pre to 666.3 (607.9) ms post), and with minimal change in the continuous group (594.0(534.1) ms pre to 589.6(552.9) ms post). The mean solution time was fastest in the resting condition (7774.6(6302.8)ms), followed by the walk condition (7929.4 (5992.8)ms), with the continuous condition being slowest (9337.3(7228.7)ms). the continuous group 9337.3(7228.7) ms; 7929.4 (5992.8 ) ms 774.6(6302.8) ms. Conclusion: Short walking breaks improve blood flow and reduce the risk of venous thromboembolism during prolonged sitting. This pilot study demonstrated that a low intensity 6 -minute walk break, following 60 minutes of play, may also improve executive function in FPS gamers.

Keywords: executive function, FPS, physical activity, prolonged sitting

Procedia PDF Downloads 228
2760 A Study of Generation Y's Career Attitude at Workplace

Authors: Supriadi Hardianto, Aditya Daniswara

Abstract:

Today's workplace, flooded by millennial Generation or known also as Generation Y. A common problem that faced by the company towards Gen Y is a high turnover rate, attitudes problem, communication style, and different work style than the older generation. This is common in private sector. The objective of this study is to get a better understanding of the Gen Y Career Attitude at the workplace. The subject of this study is focusing on 430 respondent of Gen Y which age between 20 – 35 years old who works for a private company. The Questionnaire as primary data source captured 9 aspects of career attitude based on Career Attitudes Strategy Inventory (CASI). This Survey distributes randomly among Gen Y in the IT Industry (125 Respondent) and Manufacture Company (305 Respondent). A Random deep interview was conducted to get the better understanding of the etiology of their primary obstacles. The study showed that most of Indonesia Gen Y have a moderate score on Job satisfaction but in the other aspects, Gen Y has the lowest score on Skill Development, Career Worries, Risk-Taking Style, Dominant Style, Work Involvement, Geographical Barrier, Interpersonal Abuse, and Family Commitment. The top 5 obstacles outside that 9 aspects that faced by Gen Y are 1. Lower communication & networking support; 2. Self-confidence issues; 3. Financial Problem; 4. Emotional issues; 5. Age. We also found that parent perspective toward the way they are nurturing their child are not aligned with their child’s real life. This research fundamentally helps the organization and other Gen Y’s Stakeholders to have a better understanding of Gen Y Career Attitude at the workplace.

Keywords: career attitudes, CASI, Gen Y, career attitude at workplace

Procedia PDF Downloads 158
2759 A Comparative Study to Evaluate Chronological Age and Dental Age in the North Indian Population Using Cameriere's Method

Authors: Ranjitkumar Patil

Abstract:

Age estimation has importance in forensic dentistry. Dental age estimation has emerged as an alternative to skeletal age determination. The methods based on stages of tooth formation, as appreciated on radiographs, seem to be more appropriate in the assessment of age than those based on skeletal development. The study was done to evaluate dental age in the north Indian population using Cameriere’s method. Aims/Objectives: The study was conducted to assess the dental age of North Indian children using Cameriere’s method and to compare the chronological age and dental age for validation of the Cameriere’s method in the north Indian population. A comparative study of 02-year duration on the OPG (using PLANMECA Promax 3D) data of 497 individuals with ages ranging from 5 to 15 years was done based on simple random technique ethical approval obtained from institutional ethical committee. The data was obtained based on inclusion and exclusion criteria and was analyzed by software for dental age estimation. Statistical analysis: The student’s t-test was used to compare the morphological variables of males with those of females and to compare observed age with estimated age. The regression formula was also calculated. Results: Present study was a comparative study of 497 subjects with a distribution between males and females, with their dental age assessed by using a Panoramic radiograph, following the method described by Cameriere, which is widely accepted. Statistical analysis in our study indicated that gender does not have a significant influence on age estimation. (R2= 0.787). Conclusion: This infers that Cameriere’s method can be effectively applied to the north Indian population.

Keywords: forensic, dental age, skeletal age, chronological age, Cameriere’s method

Procedia PDF Downloads 115
2758 Design Manufacture and Testing of a Combined Alpha-Beta Double Piston Stirling Engine

Authors: A. Calvin Antony, Sakthi Kumar Arul Prakash, V. R. Sanal Kumar

Abstract:

In this paper a unique alpha-beta double piston 'stirling engine' is designed, manufactured and conducted laboratory test to ameliorate the efficiency of the stirling engine. The paper focuses on alpha and beta type engines, capturing their benefits and eradicating their short comings; along with the output observed from the flywheel. In this model alpha engine is kinematically with a piston cylinder arrangement which works quite like a beta engine. The piston of the new cylinder is so designed that it replicates a glued displacer and power piston as similar to that of beta engine. The bigger part of the piston is the power piston, which has a gap around it, while the smaller part of the piston is tightly fit in the cylinder and acts like the displacer piston. We observed that the alpha-beta double piston stirling engine produces 25% increase in power compare to a conventional alpha stirling engine. This working model is a pointer towards for the design and development of an alpha-beta double piston Stirling engine for industrial applications for producing electricity from the heat producing exhaust gases.

Keywords: alpha-beta double piston stirling engine , alpha stirling engine , beta double piston stirling engine , electricity from stirling engine

Procedia PDF Downloads 533
2757 Effect of Blast Furnace Iron Slag on the Mechanical Performance of Hot Mix Asphalt (HMA)

Authors: Ayman M. Othman, Hassan Y. Ahmed

Abstract:

This paper discusses the effect of using blast furnace iron slag as a part of fine aggregate on the mechanical performance of hot mix asphalt (HMA). The mechanical performance was evaluated based on various mechanical properties that include; Marshall/stiffness, indirect tensile strength and unconfined compressive strength. The effect of iron slag content on the mechanical properties of the mixtures was also investigated. Four HMA with various iron slag contents, namely; 0%, 5%, 10% and 15% by weight of total mixture were studied. Laboratory testing has revealed an enhancement in the compressive strength of HMA when iron slag was used. Within the tested range of iron slag content, a considerable increase in the compressive strength of the mixtures was observed with the increase of slag content. No significant improvement on Marshall/stiffness and indirect tensile strength of the mixtures was observed when slag was used. Even so, blast furnace iron slag can still be used in asphalt paving for environmental advantages.

Keywords: blast furnace iron slag, compressive strength, HMA, indirect tensile strength, marshall/stiffness, mechanical performance, mechanical properties

Procedia PDF Downloads 438
2756 A Comparative Study of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and Extreme Value Theory (EVT) Model in Modeling Value-at-Risk (VaR)

Authors: Longqing Li

Abstract:

The paper addresses the inefficiency of the classical model in measuring the Value-at-Risk (VaR) using a normal distribution or a Student’s t distribution. Specifically, the paper focuses on the one day ahead Value-at-Risk (VaR) of major stock market’s daily returns in US, UK, China and Hong Kong in the most recent ten years under 95% confidence level. To improve the predictable power and search for the best performing model, the paper proposes using two leading alternatives, Extreme Value Theory (EVT) and a family of GARCH models, and compares the relative performance. The main contribution could be summarized in two aspects. First, the paper extends the GARCH family model by incorporating EGARCH and TGARCH to shed light on the difference between each in estimating one day ahead Value-at-Risk (VaR). Second, to account for the non-normality in the distribution of financial markets, the paper applies Generalized Error Distribution (GED), instead of the normal distribution, to govern the innovation term. A dynamic back-testing procedure is employed to assess the performance of each model, a family of GARCH and the conditional EVT. The conclusion is that Exponential GARCH yields the best estimate in out-of-sample one day ahead Value-at-Risk (VaR) forecasting. Moreover, the discrepancy of performance between the GARCH and the conditional EVT is indistinguishable.

Keywords: Value-at-Risk, Extreme Value Theory, conditional EVT, backtesting

Procedia PDF Downloads 321
2755 Binary Logistic Regression Model in Predicting the Employability of Senior High School Graduates

Authors: Cromwell F. Gopo, Joy L. Picar

Abstract:

This study aimed to predict the employability of senior high school graduates for S.Y. 2018- 2019 in the Davao del Norte Division through quantitative research design using the descriptive status and predictive approaches among the indicated parameters, namely gender, school type, academics, academic award recipient, skills, values, and strand. The respondents of the study were the 33 secondary schools offering senior high school programs identified through simple random sampling, which resulted in 1,530 cases of graduates’ secondary data, which were analyzed using frequency, percentage, mean, standard deviation, and binary logistic regression. Results showed that the majority of the senior high school graduates who come from large schools were females. Further, less than half of these graduates received any academic award in any semester. In general, the graduates’ performance in academics, skills, and values were proficient. Moreover, less than half of the graduates were not employed. Then, those who were employed were either contractual, casual, or part-time workers dominated by GAS graduates. Further, the predictors of employability were gender and the Information and Communications Technology (ICT) strand, while the remaining variables did not add significantly to the model. The null hypothesis had been rejected as the coefficients of the predictors in the binary logistic regression equation did not take the value of 0. After utilizing the model, it was concluded that Technical-Vocational-Livelihood (TVL) graduates except ICT had greater estimates of employability.

Keywords: employability, senior high school graduates, Davao del Norte, Philippines

Procedia PDF Downloads 152
2754 Adaptability of Steel-Framed Industrialized Building System In Post-Service Life

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

Existing buildings are permanently subjected to change, continuously renovated and repaired in their long service life. Old buildings are destroyed and their material and components are recycled or reused for constructing new ones. In this process, the importance of sustainability principles for building construction is obviously known and great significance must be attached to the consumption of resources, resulting effects on the environment and economic costs. Utilization strategies for extending buildings service life and delay in destroying have a positive effect on environment protection. In addition, simpler alterability or expandability of buildings’ structures and reducing energy and natural resources consumption have benefits for users, producers and the environment. To solve these problems, by applying theories of open building, structural components of some conventional building systems have been analyzed and then, a new geometry adaptive building system is developed which can transform and support different imposed loads. In order to achieve this goal, various research methods and tools such as professional and scientific literatures review, comparative analysis, case study and computer simulation were applied and data interpretation was implemented using descriptive statistics and logical arguments. Therefore, hypothesis and proposed strategies were evaluated and an adaptable and reusable 2-dimensional building system was presented which can respond appropriately to dwellers and end-users needs and provide reusability of structural components of building system in new construction or function. Investigations showed that this incremental building system can be successfully applied in achieving the architectural design objectives and by small modifications on components and joints, it is easy to obtain different and adaptable load-optimized component alternatives for flexible spaces.

Keywords: adaptability, durability, open building, service life, structural building system

Procedia PDF Downloads 435
2753 The Adsorption of Perfluorooctanoic Acid on Coconut Shell Activated Carbons

Authors: Premrudee Kanchanapiya, Supachai Songngam, Thanapol Tantisattayakul

Abstract:

Perfluorooctanoic acid (PFOA) is one of per- and polyfluoroalkyl substances (PFAS) that have increasingly attracted concerns due to their global distribution in environment, persistence, high bioaccumulation, and toxicity. It is important to study the effective treatment to remove PFOA from contaminated water. The feasibility of using commercial coconut shell activated carbon produced in Thailand to remove PFOA from water was investigated with regard to their adsorption kinetics and isotherms of powder activated carbon (PAC-325) and granular activated carbon (GAC-20x50). Adsorption kinetic results show that the adsorbent size significantly affected the adsorption rate of PFOA, and GAC-20x50 required at least 100 h to achieve the equilibrium, much longer than 3 h for PAC-325. Two kinetic models were fitted to the experimental data, and the pseudo-second-order model well described the adsorption of PFOA on both PAC-325 and GAC-20x50. PAC-325 trended to adsorb PFOA faster than GAC-20x50, and testing with the shortest adsorption times (5 min) still yielded substantial PFOA removal (~80% for PAC-325). The adsorption isotherms show that the adsorption capacity of PAC-325 was 0.80 mmol/g, which is 83 % higher than that for GAC-20x50 (0.13 mmol/g), according to the Langmuir fitting.

Keywords: perfluorooctanoic acid, PFOA, coconut shell activated carbons, adsorption, water treatment

Procedia PDF Downloads 143
2752 Design of Liquid Crystal Based Interface to Study the Interaction of Gram Negative Bacterial Endotoxin with Milk Protein Lactoferrin

Authors: Dibyendu Das, Santanu Kumar Pal

Abstract:

Milk protein lactoferrin (Lf) exhibits potent antibacterial activity due to its interaction with Gram-negative bacterial cell membrane component, lipopolysaccharide (LPS). This paper represents fabrication of new Liquid crystals (LCs) based biosensors to explore the interaction between Lf and LPS. LPS self-assembled at aqueous/LCs interface and orients interfacial nematic 4-cyano-4’- pentylbiphenyl (5CB) LCs in a homeotropic fashion (exhibiting dark optical image under polarized optical microscope). Interestingly, on the exposure of Lf on LPS decorated aqueous/LCs interface, an optical image of LCs changed from dark to bright indicating an ordering alteration of interfacial LCs from homeotropic to tilted/planar state. The ordering transition reflects strong binding between Lf and interfacial LPS that, in turn, perturbs the orientation of LCs. With the help of epifluorescence microscopy, we further affirmed the interfacial LPS-Lf binding event by imaging the presence of FITC tagged Lf at the LPS laden aqueous/LCs interface. Finally, we have investigated the conformational behavior of Lf in solution as well as in the presence of LPS using Circular Dichroism (CD) spectroscopy and further reconfirmed with Vibrational Circular Dichroism (VCD) spectroscopy where we found that Lf undergoes alpha-helix to random coil-like structure in the presence of LPS. As a whole the entire results described in this paper establish a robust approach to envisage the interaction between LPS and Lf through the ordering transitions of LCs at aqueous/LCs interface.

Keywords: endotoxin, interface, lactoferrin, lipopolysaccharide

Procedia PDF Downloads 266