Search results for: relay of sensing data
22838 Data Quality and Associated Factors on Regular Immunization Programme at Ararso District: Somali Region- Ethiopia
Authors: Eyob Seife, Molla Alemayaehu, Tesfalem Teshome, Bereket Seyoum, Behailu Getachew
Abstract:
Globally, immunization averts between 2 and 3 million deaths yearly, but Vaccine-Preventable Diseases still account for more in Sub-Saharan African countries and takes the majority of under-five deaths yearly, which indicates the need for consistent and on-time information to have evidence-based decision so as to save lives of these vulnerable groups. However, ensuring data of sufficient quality and promoting an information-use culture at the point of collection remains critical and challenging, especially in remote areas where the Ararso district is selected based on a hypothesis of there is a difference in reported and recounted immunization data consistency. Data quality is dependent on different factors where organizational, behavioral, technical and contextual factors are the mentioned ones. A cross-sectional quantitative study was conducted on September 2022 in the Ararso district. The study used the world health organization (WHO) recommended data quality self-assessment (DQS) tools. Immunization tally sheets, registers and reporting documents were reviewed at 4 health facilities (1 health center and 3 health posts) of primary health care units for one fiscal year (12 months) to determine the accuracy ratio, availability and timeliness of reports. The data was collected by trained DQS assessors to explore the quality of monitoring systems at health posts, health centers, and at the district health office. A quality index (QI), availability and timeliness of reports were assessed. Accuracy ratios formulated were: the first and third doses of pentavalent vaccines, fully immunized (FI), TT2+ and the first dose of measles-containing vaccines (MCV). In this study, facility-level results showed poor timeliness at all levels and both over-reporting and under-reporting were observed at all levels when computing the accuracy ratio of registration to health post reports found at health centers for almost all antigens verified. A quality index (QI) of all facilities also showed poor results. Most of the verified immunization data accuracy ratios were found to be relatively better than that of quality index and timeliness of reports. So attention should be given to improving the capacity of staff, timeliness of reports and quality of monitoring system components, namely recording, reporting, archiving, data analysis and using information for decisions at all levels, especially in remote and areas.Keywords: accuracy ratio, ararso district, quality of monitoring system, regular immunization program, timeliness of reports, Somali region-Ethiopia
Procedia PDF Downloads 7722837 Study on the Demolition Waste Management in Malaysia Construction Industry
Authors: Gunalan Vasudevan
Abstract:
The Malaysia construction industry generates a large quantity of construction and demolition waste nowadays. In the handbook for demolition work only comprised small portion of demolition waste management. It is important to study and determine the ways to provide a practical guide for the professional in the building industry about handling the demolition waste. In general, demolition defined as tearing down or wrecking of structural work or architectural work of the building and other infrastructures work such as road, bridge and etc. It’s a common misconception that demolition is nothing more than taking down a structure and carrying the debris to a landfill. On many projects, 80-90% of the structure is kept for reuse or recycling which help the owner to save cost. Demolition contractors required a lot of knowledge and experience to minimize the impact of demolition work to the existing surrounding area. For data collecting method, postal questionnaires and interviews have been selected to collect data. Questionnaires have distributed to 80 respondents from the construction industry in Klang Valley. 67 of 80 respondents have replied the questionnaire while 4 people have interviewed. Microsoft Excel and Statistical Package for Social Science version 17.0 were used to analyze the data collected.Keywords: demolition, waste management, construction material, Malaysia
Procedia PDF Downloads 44622836 MLOps Scaling Machine Learning Lifecycle in an Industrial Setting
Authors: Yizhen Zhao, Adam S. Z. Belloum, Goncalo Maia Da Costa, Zhiming Zhao
Abstract:
Machine learning has evolved from an area of academic research to a real-word applied field. This change comes with challenges, gaps and differences exist between common practices in academic environments and the ones in production environments. Following continuous integration, development and delivery practices in software engineering, similar trends have happened in machine learning (ML) systems, called MLOps. In this paper we propose a framework that helps to streamline and introduce best practices that facilitate the ML lifecycle in an industrial setting. This framework can be used as a template that can be customized to implement various machine learning experiment. The proposed framework is modular and can be recomposed to be adapted to various use cases (e.g. data versioning, remote training on cloud). The framework inherits practices from DevOps and introduces other practices that are unique to the machine learning system (e.g.data versioning). Our MLOps practices automate the entire machine learning lifecycle, bridge the gap between development and operation.Keywords: cloud computing, continuous development, data versioning, DevOps, industrial setting, MLOps
Procedia PDF Downloads 27122835 LTE Performance Analysis in the City of Bogota Northern Zone for Two Different Mobile Broadband Operators over Qualipoc
Authors: Víctor D. Rodríguez, Edith P. Estupiñán, Juan C. Martínez
Abstract:
The evolution in mobile broadband technologies has allowed to increase the download rates in users considering the current services. The evaluation of technical parameters at the link level is of vital importance to validate the quality and veracity of the connection, thus avoiding large losses of data, time and productivity. Some of these failures may occur between the eNodeB (Evolved Node B) and the user equipment (UE), so the link between the end device and the base station can be observed. LTE (Long Term Evolution) is considered one of the IP-oriented mobile broadband technologies that work stably for data and VoIP (Voice Over IP) for those devices that have that feature. This research presents a technical analysis of the connection and channeling processes between UE and eNodeB with the TAC (Tracking Area Code) variables, and analysis of performance variables (Throughput, Signal to Interference and Noise Ratio (SINR)). Three measurement scenarios were proposed in the city of Bogotá using QualiPoc, where two operators were evaluated (Operator 1 and Operator 2). Once the data were obtained, an analysis of the variables was performed determining that the data obtained in transmission modes vary depending on the parameters BLER (Block Error Rate), performance and SNR (Signal-to-Noise Ratio). In the case of both operators, differences in transmission modes are detected and this is reflected in the quality of the signal. In addition, due to the fact that both operators work in different frequencies, it can be seen that Operator 1, despite having spectrum in Band 7 (2600 MHz), together with Operator 2, is reassigning to another frequency, a lower band, which is AWS (1700 MHz), but the difference in signal quality with respect to the establishment with data by the provider Operator 2 and the difference found in the transmission modes determined by the eNodeB in Operator 1 is remarkable.Keywords: BLER, LTE, network, qualipoc, SNR.
Procedia PDF Downloads 11922834 Management and Marketing Implications of Tourism Gravity Models
Authors: Clive L. Morley
Abstract:
Gravity models and panel data modelling of tourism flows are receiving renewed attention, after decades of general neglect. Such models have quite different underpinnings from conventional demand models derived from micro-economic theory. They operate at a different level of data and with different theoretical bases. These differences have important consequences for the interpretation of the results and their policy and managerial implications. This review compares and contrasts the two model forms, clarifying the distinguishing features and the estimation requirements of each. In general, gravity models are not recommended for use to address specific management and marketing purposes.Keywords: gravity models, micro-economics, demand models, marketing
Procedia PDF Downloads 44522833 The Forensic Swing of Things: The Current Legal and Technical Challenges of IoT Forensics
Authors: Pantaleon Lutta, Mohamed Sedky, Mohamed Hassan
Abstract:
The inability of organizations to put in place management control measures for Internet of Things (IoT) complexities persists to be a risk concern. Policy makers have been left to scamper in finding measures to combat these security and privacy concerns. IoT forensics is a cumbersome process as there is no standardization of the IoT products, no or limited historical data are stored on the devices. This paper highlights why IoT forensics is a unique adventure and brought out the legal challenges encountered in the investigation process. A quadrant model is presented to study the conflicting aspects in IoT forensics. The model analyses the effectiveness of forensic investigation process versus the admissibility of the evidence integrity; taking into account the user privacy and the providers’ compliance with the laws and regulations. Our analysis concludes that a semi-automated forensic process using machine learning, could eliminate the human factor from the profiling and surveillance processes, and hence resolves the issues of data protection (privacy and confidentiality).Keywords: cloud forensics, data protection Laws, GDPR, IoT forensics, machine Learning
Procedia PDF Downloads 15422832 Internal and External Overpressure Calculation for Vented Gas Explosion by Using a Combined Computational Fluid Dynamics Approach
Abstract:
Recent oil and gas accidents have reminded us the severe consequences of gas explosion on structure damage and financial loss. In order to protect the structures and personnel, engineers and researchers have been working on numerous different explosion mitigation methods. Amongst, venting is the most economical approach to mitigate gas explosion overpressure. In this paper, venting is used as the overpressure alleviation method. A theoretical method and a numerical technique are presented to predict the internal and external pressure from vented gas explosion in a large enclosure. Under idealized conditions, a number of experiments are used to calibrate the accuracy of the theoretically calculated data. A good agreement between the theoretical results and experimental data is seen. However, for realistic scenarios, the theoretical method over-estimates internal pressures and is incapable of predicting external pressures. Therefore, a CFD simulation procedure is proposed in this study to estimate both the internal and external overpressure from a large-scale vented explosion. Satisfactory agreement between CFD simulation results and experimental data is achieved.Keywords: vented gas explosion, internal pressure, external pressure, CFD simulation, FLACS, ANSYS Fluent
Procedia PDF Downloads 16422831 Pervasive Computing: Model to Increase Arable Crop Yield through Detection Intrusion System (IDS)
Authors: Idowu Olugbenga Adewumi, Foluke Iyabo Oluwatoyinbo
Abstract:
Presently, there are several discussions on the food security with increase in yield of arable crop throughout the world. This article, briefly present research efforts to create digital interfaces to nature, in particular to area of crop production in agriculture with increase in yield with interest on pervasive computing. The approach goes beyond the use of sensor networks for environmental monitoring but also by emphasizing the development of a system architecture that detect intruder (Intrusion Process) which reduce the yield of the farmer at the end of the planting/harvesting period. The objective of the work is to set a model for setting up the hand held or portable device for increasing the quality and quantity of arable crop. This process incorporates the use of infrared motion image sensor with security alarm system which can send a noise signal to intruder on the farm. This model of the portable image sensing device in monitoring or scaring human, rodent, birds and even pests activities will reduce post harvest loss which will increase the yield on farm. The nano intelligence technology was proposed to combat and minimize intrusion process that usually leads to low quality and quantity of produce from farm. Intranet system will be in place with wireless radio (WLAN), router, server, and client computer system or hand held device e.g PDAs or mobile phone. This approach enables the development of hybrid systems which will be effective as a security measure on farm. Since, precision agriculture has developed with the computerization of agricultural production systems and the networking of computerized control systems. In the intelligent plant production system of controlled greenhouses, information on plant responses, measured by sensors, is used to optimize the system. Further work must be carry out on modeling using pervasive computing environment to solve problems of agriculture, as the use of electronics in agriculture will attracts more youth involvement in the industry.Keywords: pervasive computing, intrusion detection, precision agriculture, security, arable crop
Procedia PDF Downloads 40922830 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning
Procedia PDF Downloads 25122829 A Study of Various Ontology Learning Systems from Text and a Look into Future
Authors: Fatima Al-Aswadi, Chan Yong
Abstract:
With the large volume of unstructured data that increases day by day on the web, the motivation of representing the knowledge in this data in the machine processable form is increased. Ontology is one of the major cornerstones of representing the information in a more meaningful way on the semantic Web. The goal of Ontology learning from text is to elicit and represent domain knowledge in the machine readable form. This paper aims to give a follow-up review on the ontology learning systems from text and some of their defects. Furthermore, it discusses how far the ontology learning process will enhance in the future.Keywords: concept discovery, deep learning, ontology learning, semantic relation, semantic web
Procedia PDF Downloads 52922828 Stature Prediction from Anthropometry of Extremities among Jordanians
Authors: Amal A. Mashali, Omar Eltaweel, Elerian Ekladious
Abstract:
Stature of an individual has an important role in identification, which is often required in medico-legal practice. The estimation of stature is an important step in the identification of dismembered remains or when only a part of a skeleton is only available as in major disasters or with mutilation. There is no published data on anthropological data among Jordanian population. The present study was designed in order to find out relationship of stature to some anthropometric measures among a sample of Jordanian population and to determine the most accurate and reliable one in predicting the stature of an individual. A cross sectional study was conducted on 336 adult healthy volunteers , free of bone diseases, nutritional diseases and abnormalities in the extremities after taking their consent. Students of Faculty of Medicine, Mutah University helped in collecting the data. The anthropometric measurements (anatomically defined) were stature, humerus length, hand length and breadth, foot length and breadth, foot index and knee height on both right and left sides of the body. The measurements were typical on both sides of the bodies of the studied samples. All the anthropologic data showed significant relation with age except the knee height. There was a significant difference between male and female measurements except for the foot index where F= 0.269. There was a significant positive correlation between the different measures and the stature of the individuals. Three equations were developed for estimation of stature. The most sensitive measure for prediction of a stature was found to be the humerus length.Keywords: foot index, foot length, hand length, humerus length, stature
Procedia PDF Downloads 30722827 Internalizing and Externalizing Problems as Predictors of Student Wellbeing
Authors: Nai-Jiin Yang, Tyler Renshaw
Abstract:
Prior research has suggested that youth internalizing and externalizing problems significantly correlate with student subjective wellbeing (SSW) and achievement problems (SAP). Yet, only a few studies have used data from mental health screener based on the dual-factor model to explore the empirical relationships among internalizing problems, externalizing problems, academic problems, and student wellbeing. This study was conducted through a secondary analysis of previously collected data in school-wide mental health screening activities across secondary schools within a suburban school district in the western United States. The data set included 1880 student responses from a total of two schools. Findings suggest that both internalizing and externalizing problems are substantial predictors of both student wellbeing and academic problems. However, compared to internalizing problems, externalizing problems were a much stronger predictor of academic problems. Moreover, this study did not support academic problems that moderate the relationship between SSW and youth internalizing problems (YIP) and between youth externalizing problems (YEP) and SSW. Lastly, SAP is the strongest predictor of SSW than YIP and YEP.Keywords: academic problems, externalizing problems, internalizing problems, school mental health, student wellbeing, universal mental health screening
Procedia PDF Downloads 8922826 A Generative Adversarial Framework for Bounding Confounded Causal Effects
Authors: Yaowei Hu, Yongkai Wu, Lu Zhang, Xintao Wu
Abstract:
Causal inference from observational data is receiving wide applications in many fields. However, unidentifiable situations, where causal effects cannot be uniquely computed from observational data, pose critical barriers to applying causal inference to complicated real applications. In this paper, we develop a bounding method for estimating the average causal effect (ACE) under unidentifiable situations due to hidden confounders. We propose to parameterize the unknown exogenous random variables and structural equations of a causal model using neural networks and implicit generative models. Then, with an adversarial learning framework, we search the parameter space to explicitly traverse causal models that agree with the given observational distribution and find those that minimize or maximize the ACE to obtain its lower and upper bounds. The proposed method does not make any assumption about the data generating process and the type of the variables. Experiments using both synthetic and real-world datasets show the effectiveness of the method.Keywords: average causal effect, hidden confounding, bound estimation, generative adversarial learning
Procedia PDF Downloads 19722825 Measurement of Operational and Environmental Performance of the Coal-Fired Power Plants in India by Using Data Envelopment Analysis
Authors: Vijay Kumar Bajpai, Sudhir Kumar Singh
Abstract:
In this study, the performance analyses of the twenty five coal-fired power plants (CFPPs) used for electricity generation are carried out through various data envelopment analysis (DEA) models. Three efficiency indices are defined and pursued. During the calculation of the operational performance, energy and non-energy variables are used as input, and net electricity produced is used as desired output. CO2 emitted to the environment is used as the undesired output in the computation of the pure environmental performance while in Model-3 CO2 emissions is considered as detrimental input in the calculation of operational and environmental performance. Empirical results show that most of the plants are operating in increasing returns to scale region and Mettur plant is efficient one with regards to energy use and environment. The result also indicates that the undesirable output effect is insignificant in the research sample. The present study will provide clues to plant operators towards raising the operational and environmental performance of CFPPs.Keywords: coal fired power plants, environmental performance, data envelopment analysis, operational performance
Procedia PDF Downloads 45822824 Affective Robots: Evaluation of Automatic Emotion Recognition Approaches on a Humanoid Robot towards Emotionally Intelligent Machines
Authors: Silvia Santano Guillén, Luigi Lo Iacono, Christian Meder
Abstract:
One of the main aims of current social robotic research is to improve the robots’ abilities to interact with humans. In order to achieve an interaction similar to that among humans, robots should be able to communicate in an intuitive and natural way and appropriately interpret human affects during social interactions. Similarly to how humans are able to recognize emotions in other humans, machines are capable of extracting information from the various ways humans convey emotions—including facial expression, speech, gesture or text—and using this information for improved human computer interaction. This can be described as Affective Computing, an interdisciplinary field that expands into otherwise unrelated fields like psychology and cognitive science and involves the research and development of systems that can recognize and interpret human affects. To leverage these emotional capabilities by embedding them in humanoid robots is the foundation of the concept Affective Robots, which has the objective of making robots capable of sensing the user’s current mood and personality traits and adapt their behavior in the most appropriate manner based on that. In this paper, the emotion recognition capabilities of the humanoid robot Pepper are experimentally explored, based on the facial expressions for the so-called basic emotions, as well as how it performs in contrast to other state-of-the-art approaches with both expression databases compiled in academic environments and real subjects showing posed expressions as well as spontaneous emotional reactions. The experiments’ results show that the detection accuracy amongst the evaluated approaches differs substantially. The introduced experiments offer a general structure and approach for conducting such experimental evaluations. The paper further suggests that the most meaningful results are obtained by conducting experiments with real subjects expressing the emotions as spontaneous reactions.Keywords: affective computing, emotion recognition, humanoid robot, human-robot-interaction (HRI), social robots
Procedia PDF Downloads 23522823 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour
Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.Keywords: artificial neural network, back-propagation, tide data, training algorithm
Procedia PDF Downloads 48722822 Algorithm Development of Individual Lumped Parameter Modelling for Blood Circulatory System: An Optimization Study
Authors: Bao Li, Aike Qiao, Gaoyang Li, Youjun Liu
Abstract:
Background: Lumped parameter model (LPM) is a common numerical model for hemodynamic calculation. LPM uses circuit elements to simulate the human blood circulatory system. Physiological indicators and characteristics can be acquired through the model. However, due to the different physiological indicators of each individual, parameters in LPM should be personalized in order for convincing calculated results, which can reflect the individual physiological information. This study aimed to develop an automatic and effective optimization method to personalize the parameters in LPM of the blood circulatory system, which is of great significance to the numerical simulation of individual hemodynamics. Methods: A closed-loop LPM of the human blood circulatory system that is applicable for most persons were established based on the anatomical structures and physiological parameters. The patient-specific physiological data of 5 volunteers were non-invasively collected as personalized objectives of individual LPM. In this study, the blood pressure and flow rate of heart, brain, and limbs were the main concerns. The collected systolic blood pressure, diastolic blood pressure, cardiac output, and heart rate were set as objective data, and the waveforms of carotid artery flow and ankle pressure were set as objective waveforms. Aiming at the collected data and waveforms, sensitivity analysis of each parameter in LPM was conducted to determine the sensitive parameters that have an obvious influence on the objectives. Simulated annealing was adopted to iteratively optimize the sensitive parameters, and the objective function during optimization was the root mean square error between the collected waveforms and data and simulated waveforms and data. Each parameter in LPM was optimized 500 times. Results: In this study, the sensitive parameters in LPM were optimized according to the collected data of 5 individuals. Results show a slight error between collected and simulated data. The average relative root mean square error of all optimization objectives of 5 samples were 2.21%, 3.59%, 4.75%, 4.24%, and 3.56%, respectively. Conclusions: Slight error demonstrated good effects of optimization. The individual modeling algorithm developed in this study can effectively achieve the individualization of LPM for the blood circulatory system. LPM with individual parameters can output the individual physiological indicators after optimization, which are applicable for the numerical simulation of patient-specific hemodynamics.Keywords: blood circulatory system, individual physiological indicators, lumped parameter model, optimization algorithm
Procedia PDF Downloads 14122821 Estimating Water Balance at Beterou Watershed, Benin Using Soil and Water Assessment Tool (SWAT) Model
Authors: Ella Sèdé Maforikan
Abstract:
Sustained water management requires quantitative information and the knowledge of spatiotemporal dynamics of hydrological system within the basin. This can be achieved through the research. Several studies have investigated both surface water and groundwater in Beterou catchment. However, there are few published papers on the application of the SWAT modeling in Beterou catchment. The objective of this study was to evaluate the performance of SWAT to simulate the water balance within the watershed. The inputs data consist of digital elevation model, land use maps, soil map, climatic data and discharge records. The model was calibrated and validated using the Sequential Uncertainty Fitting (SUFI2) approach. The calibrated started from 1989 to 2006 with four years warming up period (1985-1988); and validation was from 2007 to 2020. The goodness of the model was assessed using five indices, i.e., Nash–Sutcliffe efficiency (NSE), the ratio of the root means square error to the standard deviation of measured data (RSR), percent bias (PBIAS), the coefficient of determination (R²), and Kling Gupta efficiency (KGE). Results showed that SWAT model successfully simulated river flow in Beterou catchment with NSE = 0.79, R2 = 0.80 and KGE= 0.83 for the calibration process against validation process that provides NSE = 0.78, R2 = 0.78 and KGE= 0.85 using site-based streamflow data. The relative error (PBIAS) ranges from -12.2% to 3.1%. The parameters runoff curve number (CN2), Moist Bulk Density (SOL_BD), Base Flow Alpha Factor (ALPHA_BF), and the available water capacity of the soil layer (SOL_AWC) were the most sensitive parameter. The study provides further research with uncertainty analysis and recommendations for model improvement and provision of an efficient means to improve rainfall and discharges measurement data.Keywords: watershed, water balance, SWAT modeling, Beterou
Procedia PDF Downloads 6022820 BER Estimate of WCDMA Systems with MATLAB Simulation Model
Authors: Suyeb Ahmed Khan, Mahmood Mian
Abstract:
Simulation plays an important role during all phases of the design and engineering of communications systems, from early stages of conceptual design through the various stages of implementation, testing, and fielding of the system. In the present paper, a simulation model has been constructed for the WCDMA system in order to evaluate the performance. This model describes multiusers effects and calculation of BER (Bit Error Rate) in 3G mobile systems using Simulink MATLAB 7.1. Gaussian Approximation defines the multi-user effect on system performance. BER has been analyzed with comparison between transmitting data and receiving data.Keywords: WCDMA, simulations, BER, MATLAB
Procedia PDF Downloads 59422819 Uncertainty Quantification of Corrosion Anomaly Length of Oil and Gas Steel Pipelines Based on Inline Inspection and Field Data
Authors: Tammeen Siraj, Wenxing Zhou, Terry Huang, Mohammad Al-Amin
Abstract:
The high resolution inline inspection (ILI) tool is used extensively in the pipeline industry to identify, locate, and measure metal-loss corrosion anomalies on buried oil and gas steel pipelines. Corrosion anomalies may occur singly (i.e. individual anomalies) or as clusters (i.e. a colony of corrosion anomalies). Although the ILI technology has advanced immensely, there are measurement errors associated with the sizes of corrosion anomalies reported by ILI tools due limitations of the tools and associated sizing algorithms, and detection threshold of the tools (i.e. the minimum detectable feature dimension). Quantifying the measurement error in the ILI data is crucial for corrosion management and developing maintenance strategies that satisfy the safety and economic constraints. Studies on the measurement error associated with the length of the corrosion anomalies (in the longitudinal direction of the pipeline) has been scarcely reported in the literature and will be investigated in the present study. Limitations in the ILI tool and clustering process can sometimes cause clustering error, which is defined as the error introduced during the clustering process by including or excluding a single or group of anomalies in or from a cluster. Clustering error has been found to be one of the biggest contributory factors for relatively high uncertainties associated with ILI reported anomaly length. As such, this study focuses on developing a consistent and comprehensive framework to quantify the measurement errors in the ILI-reported anomaly length by comparing the ILI data and corresponding field measurements for individual and clustered corrosion anomalies. The analysis carried out in this study is based on the ILI and field measurement data for a set of anomalies collected from two segments of a buried natural gas pipeline currently in service in Alberta, Canada. Data analyses showed that the measurement error associated with the ILI-reported length of the anomalies without clustering error, denoted as Type I anomalies is markedly less than that for anomalies with clustering error, denoted as Type II anomalies. A methodology employing data mining techniques is further proposed to classify the Type I and Type II anomalies based on the ILI-reported corrosion anomaly information.Keywords: clustered corrosion anomaly, corrosion anomaly assessment, corrosion anomaly length, individual corrosion anomaly, metal-loss corrosion, oil and gas steel pipeline
Procedia PDF Downloads 31122818 The Impact of Transformational Leadership on Individual Attributes
Authors: Bilal Liaqat, Muhammad Umar, Zara Bashir, Hassan Rafique, Mohsin Abbasi, Zarak Khan
Abstract:
Transformational leadership is one of the most studied topics in the organization sciences. However, the impact of transformational leadership on employee’s individual attributes have not yet been studied. Purpose: This research aims to discover the relationship between transformational leadership and employee motivation, performance and creativity. Moreover, the study will also investigate the influence of transformational leadership on employee performance through employee motivation and employee creativity. Design-Methodology-Approach: The data was collected from employees in different organization. This cross-sectional study collected data from employees and the methodology used includes survey data that were collected from employees in organizations. Structured interviews were also conducted to explain the outcomes from the survey. Findings: The results of this study reveal that transformational leadership has a positive impact on employee’s individual attributes. Research Implications: Although this study expands our knowledge about the role of learning orientation between transformational leadership and employee motivation, performance and creativity, the prospects for further research are still present.Keywords: employee creativity, employee motivation, employee performance, transformational leadership
Procedia PDF Downloads 23322817 Proposal Method of Prediction of the Early Stages of Dementia Using IoT and Magnet Sensors
Authors: João Filipe Papel, Tatsuji Munaka
Abstract:
With society's aging and the number of elderly with dementia rising, researchers have been actively studying how to support the elderly in the early stages of dementia with the objective of allowing them to have a better life quality and as much as possible independence. To make this possible, most researchers in this field are using the Internet Of Things to monitor the elderly activities and assist them in performing them. The most common sensor used to monitor the elderly activities is the Camera sensor due to its easy installation and configuration. The other commonly used sensor is the sound sensor. However, we need to consider privacy when using these sensors. This research aims to develop a system capable of predicting the early stages of dementia based on monitoring and controlling the elderly activities of daily living. To make this system possible, some issues need to be addressed. First, the issue related to elderly privacy when trying to detect their Activities of Daily Living. Privacy when performing detection and monitoring Activities of Daily Living it's a serious concern. One of the purposes of this research is to achieve this detection and monitoring without putting the privacy of the elderly at risk. To make this possible, the study focuses on using an approach based on using Magnet Sensors to collect binary data. The second is to use the data collected by monitoring Activities of Daily Living to predict the early stages of Dementia. To make this possible, the research team suggests developing a proprietary ontology combined with both data-driven and knowledge-driven.Keywords: dementia, activity recognition, magnet sensors, ontology, data driven and knowledge driven, IoT, activities of daily living
Procedia PDF Downloads 10822816 Identifying Factors Contributing to the Spread of Lyme Disease: A Regression Analysis of Virginia’s Data
Authors: Fatemeh Valizadeh Gamchi, Edward L. Boone
Abstract:
This research focuses on Lyme disease, a widespread infectious condition in the United States caused by the bacterium Borrelia burgdorferi sensu stricto. It is critical to identify environmental and economic elements that are contributing to the spread of the disease. This study examined data from Virginia to identify a subset of explanatory variables significant for Lyme disease case numbers. To identify relevant variables and avoid overfitting, linear poisson, and regularization regression methods such as a ridge, lasso, and elastic net penalty were employed. Cross-validation was performed to acquire tuning parameters. The methods proposed can automatically identify relevant disease count covariates. The efficacy of the techniques was assessed using four criteria on three simulated datasets. Finally, using the Virginia Department of Health’s Lyme disease data set, the study successfully identified key factors, and the results were consistent with previous studies.Keywords: lyme disease, Poisson generalized linear model, ridge regression, lasso regression, elastic net regression
Procedia PDF Downloads 14422815 Graph-Based Semantical Extractive Text Analysis
Authors: Mina Samizadeh
Abstract:
In the past few decades, there has been an explosion in the amount of available data produced from various sources with different topics. The availability of this enormous data necessitates us to adopt effective computational tools to explore the data. This leads to an intense growing interest in the research community to develop computational methods focused on processing this text data. A line of study focused on condensing the text so that we are able to get a higher level of understanding in a shorter time. The two important tasks to do this are keyword extraction and text summarization. In keyword extraction, we are interested in finding the key important words from a text. This makes us familiar with the general topic of a text. In text summarization, we are interested in producing a short-length text which includes important information about the document. The TextRank algorithm, an unsupervised learning method that is an extension of the PageRank (algorithm which is the base algorithm of Google search engine for searching pages and ranking them), has shown its efficacy in large-scale text mining, especially for text summarization and keyword extraction. This algorithm can automatically extract the important parts of a text (keywords or sentences) and declare them as a result. However, this algorithm neglects the semantic similarity between the different parts. In this work, we improved the results of the TextRank algorithm by incorporating the semantic similarity between parts of the text. Aside from keyword extraction and text summarization, we develop a topic clustering algorithm based on our framework, which can be used individually or as a part of generating the summary to overcome coverage problems.Keywords: keyword extraction, n-gram extraction, text summarization, topic clustering, semantic analysis
Procedia PDF Downloads 7622814 One of the Missing Pieces of Inclusive Education: Sexual Orientations
Authors: Sıla Uzkul
Abstract:
As a requirement of human rights and children's rights, the basic condition of inclusive education is that it covers all children. However, the reforms made in the context of education in Turkey and around the world include a limited level of inclusiveness. Generally, the inclusiveness mentioned is for individuals who need special education. Educational reforms superficially state that differences are tolerated, but these differences are extremely limited and often do not include sexual orientation. When we look at the education modules of the Ministry of National Education within the scope of inclusive education in Turkey, there are children with special needs, bilingual children, children exposed to violence, children under temporary protection, children affected by migration and terrorism, and children affected by natural disasters. No training modules or inclusion terms regarding sexual orientations could be found. This research aimed to understand the perspectives of research assistants working in the preschool education department regarding sexual orientations within the scope of inclusive education. Six research assistants working in the preschool teaching department at a public university in Ankara (Turkey) participated in this qualitative research study. Participants were determined by typical case sampling, which is one of the purposeful sampling methods. The data of this research was obtained through a "survey consisting of open-ended questions". Raw data from the surveys were analyzed and interpreted using the "content analysis technique" (Yıldırım & Şimşek, 2005). During the data analysis process, the data from the participants were first numbered, then all the data were read, and content analysis was performed, and possible themes, categories, and codes were extracted. The opinions of the participants in the research regarding sexual orientations in inclusive education are presented under three main headings within the scope of the research questions. These are: (a) their views on inclusive education, (b) their views on sexual orientations (c) their views on sexual orientations in the preschool period.Keywords: sexual orientation, inclusive education, child rights, preschool education
Procedia PDF Downloads 6722813 Optimizing DWDM Networks with Zero-Touch Provisioning for High-Capacity Data Transmission
Authors: Saqib Warsi
Abstract:
The evolution of optical communication technologies is pivotal in meeting the growing data demand driven by emerging technologies such as 5G, IoT, and upcoming 6G networks. This paper presents advancements in Dense Wavelength Division Multiplexing (DWDM) systems, focusing on the integration of Zero Touch Provisioning (ZTP) for simplified deployment and the ability to scale data transmission over single fiber pairs. The proposed methodology leverages high-capacity DWDM channels capable of supporting data rates exceeding 800G, ensuring future-proof solutions for both residential and enterprise communication infrastructures. Moreover, this paper examines the impact of these technologies on operational efficiency by minimizing the need for manual configuration, leading to reduced costs and faster deployment timelines. We also explore how the integration of optical amplifiers, Optical Line Amplifier (OLA) alternatives, and optical control plane protocols (such as ASON, GMPLS, OpenFlow, and SDN) play a critical role in enhancing the flexibility, scalability, and energy efficiency of optical networks. By focusing on optical solutions, this paper seeks to address the future challenges of reducing fiber pair consumption and improving network performance without compromising on capacity or reliability.Keywords: zero-touch provisioning (ZTP), dense wavelength division multiplexing (DWDM), optical networks, optical control plane (ASON, GMPLS, OpenFlow, SDN)
Procedia PDF Downloads 1022812 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques
Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo
Abstract:
Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.Keywords: air pollution, air quality modelling, data mining, particulate matter
Procedia PDF Downloads 26122811 Comparative Analysis of Effecting Factors on Fertility by Birth Order: A Hierarchical Approach
Authors: Ali Hesari, Arezoo Esmaeeli
Abstract:
Regarding to dramatic changes of fertility and higher order births during recent decades in Iran, access to knowledge about affecting factors on different birth orders has crucial importance. In this study, According to hierarchical structure of many of social sciences data and the effect of variables of different levels of social phenomena that determine different birth orders in 365 days ending to 1390 census have been explored by multilevel approach. In this paper, 2% individual row data for 1390 census is analyzed by HLM software. Three different hierarchical linear regression models are estimated for data analysis of the first and second, third, fourth and more birth order. Research results displays different outcomes for three models. Individual level variables entered in equation are; region of residence (rural/urban), age, educational level and labor participation status and province level variable is GDP per capita. Results show that individual level variables have different effects in these three models and in second level we have different random and fixed effects in these models.Keywords: fertility, birth order, hierarchical approach, fixe effects, random effects
Procedia PDF Downloads 34222810 Axial Load Capacity of Drilled Shafts from In-Situ Test Data at Semani Site, in Albania
Authors: Neritan Shkodrani, Klearta Rrushi, Anxhela Shaha
Abstract:
Generally, the design of axial load capacity of deep foundations is based on the data provided from field tests, such as SPT (Standard Penetration Test) and CPT (Cone Penetration Test) tests. This paper reports the results of axial load capacity analysis of drilled shafts at a construction site at Semani, in Fier county, Fier prefecture in Albania. In this case, the axial load capacity analyses are based on the data of 416 SPT tests and 12 CPTU tests, which are carried out in this site construction using 12 boreholes (10 borings of a depth 30.0 m and 2 borings of a depth of 80.0m). The considered foundation widths range from 0.5m to 2.5 m and foundation embedment lengths is fixed at a value of 25m. SPT – based analytical methods from the Japanese practice of design (Building Standard Law of Japan) and CPT – based analytical Eslami and Fellenius methods are used for obtaining axial ultimate load capacity of drilled shafts. The considered drilled shaft (25m long and 0.5m - 2.5m in diameter) is analyzed for the soil conditions of each borehole. The values obtained from sets of calculations are shown in different charts. Then the reported axial load capacity values acquired from SPT and CPTU data are compared and some conclusions are found related to the mentioned methods of calculations.Keywords: deep foundations, drilled shafts, axial load capacity, ultimate load capacity, allowable load capacity, SPT test, CPTU test
Procedia PDF Downloads 10922809 A Grounded Theory on Marist Spirituality/Charism from the Perspective of the Lay Marists in the Philippines
Authors: Nino M. Pizarro
Abstract:
To the author’s knowledge, despite the written documents about Marist spirituality/charism, nothing has been done concerning a clear theoretical framework that highlights Marist spirituality/charism from the perspective or lived experience of the lay Marists of St. Marcellin Champagnat. The participants of the study are the lay Marist - educators who are from Marist Schools in the Philippines. Since the study would like to find out the respondents’ own concepts and meanings about Marist spirituality/charism, qualitative methodology is considered the approach to be used in the study. In particular, the study will use the qualitative methods of Barney Glaser. The theory will be generated systematically from data collection, coding and analyzing through memoing, theoretical sampling, sorting and writing and using the constant comparative method. The data collection method that will be employed in this grounded theory research is the in-depth interview that is semi-structured and participant driven. Data collection will be done through snowball sampling that is purposive. The study is considering to come up with a theoretical framework that will help the lay Marists to deepen their understanding of the Marist spirituality/charism and their vocation as lay partners of the Marist Brothers of the Schools.Keywords: grounded theory, Lay Marists, lived experience, Marist spirituality/charism
Procedia PDF Downloads 314