Search results for: optimum learning outcomes
8567 AI-based Digital Healthcare Application to Assess and Reduce Fall Risks in Residents of Nursing Homes in Germany
Authors: Knol Hester, Müller Swantje, Danchenko Natalya
Abstract:
Objective: Falls in older people cause an autonomy loss and result in an economic burden. LCare is an AI-based application to manage fall risks. The study's aim was to assess the effect of LCare use on patient outcomes in nursing homes in Germany. Methods: LCare identifies and monitors fall risks through a 3D-gait analysis and a digital questionnaire, resulting in tailored recommendations on fall prevention. A study was conducted with AOK Baden-Württemberg (01.09.2019- 31.05.2021) in 16 care facilities. Assessments at baseline and follow-up included: a fall risk score; falls (baseline: fall history in the past 12 months; follow-up: a fall record since the last analysis); fall-related injuries and hospitalizations; gait speed; fear of falling; psychological stress; nurses experience on app use. Results: 94 seniors were aged 65-99 years at the initial analysis (average 84±7 years); 566 mobility analyses were carried out in total. On average, the fall risk was reduced by 17.8 % as compared to the baseline (p<0.05). The risk of falling decreased across all subgroups, including a trend in dementia patients (p=0.06), constituting 43% of analyzed patients, and patients with walking aids (p<0.05), constituting 76% of analyzed patients. There was a trend (p<0.1) towards fewer falls and fall-related injuries and hospitalizations (baseline: 23 seniors who fell, 13 injury consequences, 9 hospitalizations; follow-up: 14 seniors who fell, 2 injury consequences, 0 hospitalizations). There was a 16% improvement in gait speed (p<0.05). Residents reported less fear of falling and psychological stress by 38% in both outcomes (p<0.05). 81% of nurses found LCare effective. Conclusions: In the presented study, the use of LCare app was associated with a reduction of fall risk among nursing home residents, improvement of health-related outcomes, and a trend toward reduction in injuries and hospitalizations. LCare may help to improve senior resident care and save healthcare costs.Keywords: falls, digital healthcare, falls prevention, nursing homes, seniors, AI, digital assessment
Procedia PDF Downloads 1318566 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.Keywords: classification, achine learning, predictive quality, feature selection
Procedia PDF Downloads 1628565 Robot-Assisted Learning for Communication-Care in Autism Intervention
Authors: Syamimi Shamsuddin, Hanafiah Yussof, Fazah Akhtar Hanapiah, Salina Mohamed, Nur Farah Farhan Jamil, Farhana Wan Yunus
Abstract:
Robot-based intervention for children with autism is an evolving research niche in human-robot interaction (HRI). Recent studies in this area mostly covered the role of robots in the clinical and experimental setting. Our previous work had shown that interaction with a robot pose no adverse effects on the children. Also, the presence of the robot, together with specific modules of interaction was associated with less autistic behavior. Extending this impact on school-going children, interactions that are in-tune with special education lessons are needed. This methodological paper focuses on how a robot can be incorporated in a current learning environment for autistic children. Six interaction scenarios had been designed based on the existing syllabus to teach communication skills, using the Applied Behavior Analysis (ABA) technique as the framework. Development of the robotic experience in class also covers the required set-up involving participation from teachers. The actual research conduct involving autistic children, teachers and robot shall take place in the next phase.Keywords: autism spectrum disorder, ASD, humanoid robot, communication skills, robot-assisted learning
Procedia PDF Downloads 3678564 Predicting Success and Failure in Drug Development Using Text Analysis
Authors: Zhi Hao Chow, Cian Mulligan, Jack Walsh, Antonio Garzon Vico, Dimitar Krastev
Abstract:
Drug development is resource-intensive, time-consuming, and increasingly expensive with each developmental stage. The success rates of drug development are also relatively low, and the resources committed are wasted with each failed candidate. As such, a reliable method of predicting the success of drug development is in demand. The hypothesis was that some examples of failed drug candidates are pushed through developmental pipelines based on false confidence and may possess common linguistic features identifiable through sentiment analysis. Here, the concept of using text analysis to discover such features in research publications and investor reports as predictors of success was explored. R studios were used to perform text mining and lexicon-based sentiment analysis to identify affective phrases and determine their frequency in each document, then using SPSS to determine the relationship between our defined variables and the accuracy of predicting outcomes. A total of 161 publications were collected and categorised into 4 groups: (i) Cancer treatment, (ii) Neurodegenerative disease treatment, (iii) Vaccines, and (iv) Others (containing all other drugs that do not fit into the 3 categories). Text analysis was then performed on each document using 2 separate datasets (BING and AFINN) in R within the category of drugs to determine the frequency of positive or negative phrases in each document. A relative positivity and negativity value were then calculated by dividing the frequency of phrases with the word count of each document. Regression analysis was then performed with SPSS statistical software on each dataset (values from using BING or AFINN dataset during text analysis) using a random selection of 61 documents to construct a model. The remaining documents were then used to determine the predictive power of the models. Model constructed from BING predicts the outcome of drug performance in clinical trials with an overall percentage of 65.3%. AFINN model had a lower accuracy at predicting outcomes compared to the BING model at 62.5% but was not effective at predicting the failure of drugs in clinical trials. Overall, the study did not show significant efficacy of the model at predicting outcomes of drugs in development. Many improvements may need to be made to later iterations of the model to sufficiently increase the accuracy.Keywords: data analysis, drug development, sentiment analysis, text-mining
Procedia PDF Downloads 1578563 Individualized Emotion Recognition Through Dual-Representations and Ground-Established Ground Truth
Authors: Valentina Zhang
Abstract:
While facial expression is a complex and individualized behavior, all facial emotion recognition (FER) systems known to us rely on a single facial representation and are trained on universal data. We conjecture that: (i) different facial representations can provide different, sometimes complementing views of emotions; (ii) when employed collectively in a discussion group setting, they enable more accurate emotion reading which is highly desirable in autism care and other applications context sensitive to errors. In this paper, we first study FER using pixel-based DL vs semantics-based DL in the context of deepfake videos. Our experiment indicates that while the semantics-trained model performs better with articulated facial feature changes, the pixel-trained model outperforms on subtle or rare facial expressions. Armed with these findings, we have constructed an adaptive FER system learning from both types of models for dyadic or small interacting groups and further leveraging the synthesized group emotions as the ground truth for individualized FER training. Using a collection of group conversation videos, we demonstrate that FER accuracy and personalization can benefit from such an approach.Keywords: neurodivergence care, facial emotion recognition, deep learning, ground truth for supervised learning
Procedia PDF Downloads 1478562 Independent Directors and Board Decisions
Authors: Shital Jhunjhunwala, Shweta Saraf
Abstract:
Research Question: The study, based on a survey, empirically tests the impact of the board’s engagement in the decision-making process on firm outcomes. It also examines the moderating effect of board leadership and board independence on the relationship. Research Findings: Boards’ engagement in the decision-making process is found to be vital for firm performance, wherein effective monitoring by the board outperforms their strategic guidance role in achieving desired outcomes. The separation of CEO and Chairman positively moderates the board’s engagement in protecting stakeholders’ interests, but lack of independence and passive behaviour of independent directors raises concern on the efficacy of independent directors. Theoretical Implications: The study provides the framework for process-oriented corporate governance research, where investigation of boards’ behaviour inside the boardroom develops a deeper understanding of board processes. Practitioner Implications: The study highlights the necessity of developing boards’ focus in a company on monitoring managerial actions. It suggests the need to separate the position of CEO and Chairman for addressing the interest of all stakeholders. It recommends policymakers review the existing mandate on board independence and create alternate monitoring mechanisms for addressing agency conflict.Keywords: board, decision-making process, engagement, independence, leadership, innovation, stakeholders, firm performance, qualitative, India
Procedia PDF Downloads 1098561 Lessons Learnt from Tutors’ Perspectives on Online Tutorial’s Policies in Open and Distance Education Institution
Authors: Durri Andriani, Irsan Tahar, Lilian Sarah Hiariey
Abstract:
Every institution has to develop, implement, and control its policies to ensure the effectiveness of the institution. In doing so, all related stakeholders have to be involved to maximize the benefit of the policies and minimize the potential constraints and resistances. Open and distance education (ODE) institution is no different. As an education institution, ODE institution has to focus their attention to fulfilling academic needs of their students through open and distance measures. One of them is quality learning support system. Significant stakeholders in learning support system are tutors since they are the ones who directly communicate with students. Tutors are commonly seen as objects whose main responsibility is limited to implementing policies decided by management in ODE institutions. Nonetheless, tutors’ perceptions of tutorials are believed to influence tutors’ performances in facilitating learning support. It is therefore important to analyze tutors’ perception on various aspects of learning support. This paper presents analysis of tutors’ perceptions on policies of tutoriala in ODE institution using Policy Analysis Framework (PAF) modified by King, Nugent, Russell, and Lacy. Focus of this paper is on on-line tutors, those who provide tutorials via Internet. On-line tutors were chosen to stress the increasingly important used of Internet in ODE system. The research was conducted in Universitas Terbuka (UT), Indonesia. UT is purposely selected because of its large number (1,234) of courses offered and large area coverage (6000 inhabited islands). These posed UT in a unique position where learning support system has, to some extent, to be standardized while at the same time it has to be able to cater the needs of different courses in different places for students with different backgrounds. All 598 listed on-line tutors were sent the research questionnaires. Around 20% of the email addresses could not be reached. Tutors were asked to fill out open-ended questionnaires on their perceptions on definition of on-line tutorial, roles of tutors and students in on-line tutorials, requirement for on-line tutors, learning materials, and student evaluation in on-line tutorial. Data analyzed was gathered from 40 on-line tutors who sent back filled-out questionnaires. Data were analyzed qualitatively using content analysis from all 40 tutors. The results showed that using PAF as entry point in choosing learning support services as area of policy with delivery learning materials as the issue at UT has been able to provide new insights of aspects need to be consider in formulating policies in online tutorial and in learning support services. Involving tutors as source of information could be proven to be productive. In general, tutors had clear understanding about definition of online tutorial, roles of tutors and roles of students, and requirement of tutor. Tutors just need to be more involved in the policy formulation since they could provide data on students and problem faced in online tutorial. However, tutors need an adjustment in student evaluation which according tutors too focus on administrative aspects and subjective.Keywords: distance education, on-line tutorial, tutorial policy, tutors’ perspectives
Procedia PDF Downloads 2538560 Image Ranking to Assist Object Labeling for Training Detection Models
Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman
Abstract:
Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.Keywords: computer vision, deep learning, object detection, semiconductor
Procedia PDF Downloads 1368559 Culturally Responsive Teaching for Learner Diversity in Czech Schools: A Literature Review
Authors: Ntite Orji Kalu, Martina Kurowski
Abstract:
Until recently, the Czech Republic had an educational system dominated by indigenous people, who accounted for 95% of the school population. With the increasing influx of migrants and foreign students, especially from outside European Union, came a great disparity among the quality of learners and their learning needs and consideration for the challenges associated with being a minority and living within a foreign culture. This has prompted the research into ways of tailoring the educational system to meet the rising demand of learning styles and needs for the diverse learners in the Czech classrooms. Literature is reviewed regarding the various ways to accommodate the international students considering racial differences, focusing on theoretical approach and pedagogical principles. This study examines the compulsory educational system of the Czech Republic and the position and responsibility of the teacher in fostering a culturally sensitive and inclusive learning environment. Descriptive and content analysis is relied upon for this study. Recommendations are made for stakeholders to imbibe a more responsive environment that enhances the cultural and social integration of all learners.Keywords: culturally responsive teaching, cultural competence, diversity, learners, inclusive education, Czech schools
Procedia PDF Downloads 1468558 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs
Authors: Agastya Pratap Singh
Abstract:
This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications
Procedia PDF Downloads 268557 Determinants of Utilization of Information and Communication Technology by Lecturers at Kenya Medical Training College, Nairobi
Authors: Agnes Anyango Andollo, Jane Achieng Achola
Abstract:
The use of Information and Communication Technologies (ICTs) has become one of the driving forces in facilitation of learning in most colleges. The ability to effectively harness the technology varies from college to college. The study objective was to determine the lecturers’, institutional attributes and policies that influence the utilization of ICT by the lecturers’. A cross sectional survey design was employed in order to empirically investigate the extent to which lecturers’ personal, institutional attributes and policies influence the utilization of ICT to facilitate learning. The target population of the study was 295 lecturers who facilitate learning at KMTC-Nairobi. Structured self-administered questionnaire was given to the lecturers. Quantitative data was scrutinized for completeness, accuracy and uniformity then coded. Data were analyzed in frequencies and percentages using Statistical Package for Social Sciences (SPSS) version 19, this was a reliable tool for quantitative data analysis. A total of 155 completed questionnaires administered were obtained from the respondents for the study that were subjected to analysis. The study found out that 93 (60%) of the respondents were male while 62 (40%) of the respondents were female. Individual’s educational level, age, gender and educational experience had the greatest impact on use of ICT. Lecturers’ own beliefs, values, ideas and thinking had moderate impact on use of ICT. And that institutional support by provision of resources for ICT related training such as internet, computers, laptops and projectors had moderate impact (p = 0.049) at 5% significant level on use of ICT. The study concluded that institutional attributes and ICT policy were keys to utilization of ICT by lecturers at KMTC Nairobi also mandatory policy on use of ICT by lecturers to facilitate learning was key. It recommended that policies should be put in place for Technical support to lecturers when in problem during utilization of ICT and also a mechanism should be put in place to make the use of ICT in teaching and learning mandatory.Keywords: policy, computers education, medical training institutions, ICTs
Procedia PDF Downloads 3588556 Integrating Distributed Architectures in Highly Modular Reinforcement Learning Libraries
Authors: Albert Bou, Sebastian Dittert, Gianni de Fabritiis
Abstract:
Advancing reinforcement learning (RL) requires tools that are flexible enough to easily prototype new methods while avoiding impractically slow experimental turnaround times. To match the first requirement, the most popular RL libraries advocate for highly modular agent composability, which facilitates experimentation and development. To solve challenging environments within reasonable time frames, scaling RL to large sampling and computing resources has proved a successful strategy. However, this capability has been so far difficult to combine with modularity. In this work, we explore design choices to allow agent composability both at a local and distributed level of execution. We propose a versatile approach that allows the definition of RL agents at different scales through independent, reusable components. We demonstrate experimentally that our design choices allow us to reproduce classical benchmarks, explore multiple distributed architectures, and solve novel and complex environments while giving full control to the user in the agent definition and training scheme definition. We believe this work can provide useful insights to the next generation of RL libraries.Keywords: deep reinforcement learning, Python, PyTorch, distributed training, modularity, library
Procedia PDF Downloads 838555 Age and Gender Differences in Positive Solitude Preferences
Authors: Sharon Ost Mor, Yuval Palgi, Ddikla Segel-Karpas
Abstract:
Solitude and positive solitude (PS) are used in literature interchangeably, yet they have different attributes and effects. While solitude might have devastating outcomes such as depression or health deterioration, PS has beneficial outcomes. Yet, both solitude and PS have no clear unanimous definition. Most researches focus on solitude, while the phenomenon of PS is somewhat neglected. Most research deals with young people and adults, while the current research is interested in PS concepts especially in old age. A qualitative study, with 124 participants was performed in order to understand the essence of PS in different age groups. The findings revealed seven categories related to PS, including: Quietness, religious and spiritual experience, escapism, experience in nature or abroad, controlling stress or thoughts, facilitation achievements and recreation-hobbies-routines. Moreover, three meta-themes emerged: PS is a matter of choice, it is meaningful and enjoyable. One stand alone category was found: PS preconditions. Differences between younger and older adults were found in several categories and in PS preconditions, while the meta-themes were equally mentioned by all participants. Based on the participant's reflections and descriptions a new PS paradigm was built and will be presented as well as a new definition of PS. PS was renamed as 'Soulitude' in order to emphasize its' positive nature. Conclusions: PS serves well most people, yet it has different attributes in different ages. By giving PS a unanimous definition and by understanding its' contribution for the elderly, PS might be addressed as a legitimate, stand alone phenomenon. The paradigm might serve theory as well as clinicians for further PS research.Keywords: old-old, positive solitude, solitude, soulitude
Procedia PDF Downloads 1328554 Enhancing the Recruitment Process through Machine Learning: An Automated CV Screening System
Authors: Kaoutar Ben Azzou, Hanaa Talei
Abstract:
Human resources is an important department in each organization as it manages the life cycle of employees from recruitment training to retirement or termination of contracts. The recruitment process starts with a job opening, followed by a selection of the best-fit candidates from all applicants. Matching the best profile for a job position requires a manual way of looking at many CVs, which requires hours of work that can sometimes lead to choosing not the best profile. The work presented in this paper aims at reducing the workload of HR personnel by automating the preliminary stages of the candidate screening process, thereby fostering a more streamlined recruitment workflow. This tool introduces an automated system designed to help with the recruitment process by scanning candidates' CVs, extracting pertinent features, and employing machine learning algorithms to decide the most fitting job profile for each candidate. Our work employs natural language processing (NLP) techniques to identify and extract key features from unstructured text extracted from a CV, such as education, work experience, and skills. Subsequently, the system utilizes these features to match candidates with job profiles, leveraging the power of classification algorithms.Keywords: automated recruitment, candidate screening, machine learning, human resources management
Procedia PDF Downloads 568553 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method
Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri
Abstract:
Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method
Procedia PDF Downloads 5028552 Exploring Goal Setting by Foreign Language Learners in Virtual Exchange
Authors: Suzi M. S. Cavalari, Tim Lewis
Abstract:
Teletandem is a bilingual model of virtual exchange in which two partners from different countries( and speak different languages) meet synchronously and regularly over a period of 8 weeks to learn each other’s mother tongue (or the language of proficiency). At São Paulo State University (UNESP), participants should answer a questionnaire before starting the exchanges in which one of the questions refers to setting a goal to be accomplished with the help of the teletandem partner. In this context, the present presentation aims to examine the goal-setting activity of 79 Brazilians who participated in Portuguese-English teletandem exchanges over a period of four years (2012-2015). The theoretical background is based on goal setting and self-regulated learning theories that propose that appropriate efficient goals are focused on the learning process (not on the product) and are specific, proximal (short-term) and moderately difficult. The data set used was 79 initial questionnaires retrieved from the MulTeC (Multimodal Teletandem Corpus). Results show that only approximately 10% of goals can be considered appropriate. Features of these goals are described in relation to specificities of the teletandem context. Based on the results, three mechanisms that can help learners to set attainable goals are discussed.Keywords: foreign language learning, goal setting, teletandem, virtual exchange
Procedia PDF Downloads 1848551 Effect of Psychosocial, Behavioural and Disease Characteristics on Health-Related Quality of Life after Breast Cancer Surgery: A Cross-Sectional Study of a Regional Australian Population
Authors: Lakmali Anthony, Madeline Gillies
Abstract:
Background Breast cancer (BC) is usually managed with surgical resection. Many outcomes traditionally used to define successful operative management, such as resection margin, do not adequately reflect patients’ experience. Patient-reported outcomes (PRO) such as Health-Related Quality of life (HRQoL) provide a means by which the impact of surgery for cancer can be reported in a patient-centered way. This exploratory cross-sectional study aims to; (1) describe postoperative HRQoL in patients who underwent primary resection in a regional Australian hospital; (2) describe the prevalence of anxiety, depression and clinically significant fear of cancer recurrence (FCR) in this population; and (3) identify demographic, psychosocial, disease and treatment factors associated with poorer self-reported HRQoL. Methods Patients who had resection of BC in a regional Australian hospital between 2015 and 2022 were eligible. Participants were asked to complete a survey designed to assess HRQoL, as well as validated instruments that assess several other psychosocial PROs hypothesized to be associated with HRQoL; emotional distress, fear of cancer recurrence, social support, dispositional optimism, body image and spirituality. Results Forty-six patients completed the survey. Clinically significant levels of FCR and emotional distress were present in this group. Many domains of HRQoL were significantly worse than an Australian reference population for BC. Demographic and disease factors associated with poor HRQoL included smoking and ongoing adjuvant systemic therapy. The primary operation was not associated with HRQoL for breast cancer. All psychosocial factors measured were associated with HRQoL. Conclusion HRQoL is an important outcome in surgery for both research and clinical practice. This study provides an overview of the quality of life in a regional Australian population of postoperative breast cancer patients and the factors that affect it. Understanding HRQoL and awareness of patients particularly vulnerable to poor outcomes should be used to aid the informed consent and shared decision-making process between surgeon and patient.Keywords: breast cancer, surgery, quality of life, regional population
Procedia PDF Downloads 658550 A Development of Science Instructional Model Based on Stem Education Approach to Enhance Scientific Mind and Problem Solving Skills for Primary Students
Authors: Prasita Sooksamran, Wareerat Kaewurai
Abstract:
STEM is an integrated teaching approach promoted by the Ministry of Education in Thailand. STEM Education is an integrated approach to teaching Science, Technology, Engineering, and Mathematics. It has been questioned by Thai teachers on the grounds of how to integrate STEM into the classroom. Therefore, the main objective of this study is to develop a science instructional model based on the STEM approach to enhance scientific mind and problem-solving skills for primary students. This study is participatory action research, and follows the following steps: 1) develop a model 2) seek the advice of experts regarding the teaching model. Developing the instructional model began with the collection and synthesis of information from relevant documents, related research and other sources in order to create prototype instructional model. 2) The examination of the validity and relevance of instructional model by a panel of nine experts. The findings were as follows: 1. The developed instructional model comprised of principles, objective, content, operational procedures and learning evaluation. There were 4 principles: 1) Learning based on the natural curiosity of primary school level children leading to knowledge inquiry, understanding and knowledge construction, 2) Learning based on the interrelation between people and environment, 3) Learning that is based on concrete learning experiences, exploration and the seeking of knowledge, 4) Learning based on the self-construction of knowledge, creativity, innovation and 5) relating their findings to real life and the solving of real-life problems. The objective of this construction model is to enhance scientific mind and problem-solving skills. Children will be evaluated according to their achievements. Lesson content is based on science as a core subject which is integrated with technology and mathematics at grade 6 level according to The Basic Education Core Curriculum 2008 guidelines. The operational procedures consisted of 6 steps: 1) Curiosity 2) Collection of data 3) Collaborative planning 4) Creativity and Innovation 5) Criticism and 6) Communication and Service. The learning evaluation is an authentic assessment based on continuous evaluation of all the material taught. 2. The experts agreed that the Science Instructional Model based on the STEM Education Approach had an excellent level of validity and relevance (4.67 S.D. 0.50).Keywords: instructional model, STEM education, scientific mind, problem solving
Procedia PDF Downloads 1928549 Task Evoked Pupillary Response for Surgical Task Difficulty Prediction via Multitask Learning
Authors: Beilei Xu, Wencheng Wu, Lei Lin, Rachel Melnyk, Ahmed Ghazi
Abstract:
In operating rooms, excessive cognitive stress can impede the performance of a surgeon, while low engagement can lead to unavoidable mistakes due to complacency. As a consequence, there is a strong desire in the surgical community to be able to monitor and quantify the cognitive stress of a surgeon while performing surgical procedures. Quantitative cognitiveload-based feedback can also provide valuable insights during surgical training to optimize training efficiency and effectiveness. Various physiological measures have been evaluated for quantifying cognitive stress for different mental challenges. In this paper, we present a study using the cognitive stress measured by the task evoked pupillary response extracted from the time series eye-tracking measurements to predict task difficulties in a virtual reality based robotic surgery training environment. In particular, we proposed a differential-task-difficulty scale, utilized a comprehensive feature extraction approach, and implemented a multitask learning framework and compared the regression accuracy between the conventional single-task-based and three multitask approaches across subjects.Keywords: surgical metric, task evoked pupillary response, multitask learning, TSFresh
Procedia PDF Downloads 1468548 Language Learning Motivation in Mozambique: A Quantitative Study of University Students
Authors: Simao E. Luis
Abstract:
From the 1960s to the 1990s, the social-psychological framework of language attitudes that emerged from the Canadian research tradition was very influential. Integrativeness was one of the main variables in Gardner’s theory because refugees and immigrants were motivated to learn English and French to integrate into the Canadian community. Second language (L2) scholars have expressed concerns over integrativeness because it cannot explain the motivation of L2 learners in global contexts. This study aims to investigate student motivation to learn English as a foreign language in Mozambique, and to contribute to the ongoing validation of the L2 Motivational Self System theory in an under-researched country. One hundred thirty-seven (N=137) university students completed a well-established motivation questionnaire. The data were analyzed with SPSS, and descriptive statistics, correlations, multiple regressions, and MANOVA were conducted. Results show that many variables contribute to motivated learning behavior, particularly the L2 learning experience and attitudes towards the English language. Statistically significant differences were found between males and females, with males expressing more motivation to learn the English language for personal interests. Statistically significant differences were found between older and younger students, with older students reporting more vivid images of themselves as future English language users. These findings have pedagogical implications because motivational strategies are positively correlated with student motivated learning behavior. Therefore, teachers should design L2 tasks that can help students to develop their future L2 selves.Keywords: English as a foreign language, L2 motivational self system, Mozambique, university students
Procedia PDF Downloads 1198547 Animation: A Footpath for Enhanced Awareness Creation on Malaria Prevention in Rural Communities
Authors: Stephen Osei Akyiaw, Divine Kwabena Atta Kyere-Owusu
Abstract:
Malaria has been a worldwide menace of a health condition to human beings for several decades with majority of people on the African continent with most causalities where Ghana is no exception. Therefore, this study employed the use of animation to enhance awareness creation on the spread and prevention of Malaria in Effutu Communities in the Central Region of Ghana. Working with the interpretivist paradigm, this study adopted Art-Based Research, where the AIDA Model and Cognitive Theory of Multimedia Learning (CTML) served as the theories underpinning the study. Purposive and convenience sampling techniques were employed in selecting sample for the study. The data collection instruments included document review and interviews. Besides, the study developed an animation using the local language of the people as the voice over to foster proper understanding by the rural community folks. Also, indigenous characters were used for the animation for the purpose of familiarization with the local folks. The animation was publicized at Health Town Halls within the communities. The outcomes of the study demonstrated that the use of animation was effective in enhancing the awareness creation for preventing and controlling malaria disease in rural communities in Effutu Communities in the Central Region of Ghana. Health officers and community folks expressed interest and desire to practice the preventive measures outlined in the animation to help reduce the spread of Malaria in their communities. The study, therefore, recommended that animation could be used to curtail the spread and enhanced the prevention of Malaria.Keywords: malaria, animation, prevention, communities
Procedia PDF Downloads 878546 How Students Use WhatsApp to Access News
Authors: Emmanuel Habiyakare
Abstract:
The COVID-19 pandemic has highlighted the significance of educational technologies in teaching and learning. The global pandemic led to the closure of educational institutions worldwide, prompting the widespread implementation of online learning as a substitute method for delivering curricula. The communication platform is known as WhatsApp has gained widespread adoption and extensive utilisation within the realm of education. The primary aims of this literature review are to examine the utilisation patterns and obstacles linked to the implementation of WhatsApp in the realm of education, assess the advantages and possibilities that students and facilitators can derive from utilising this platform for educational purposes, and comprehend the hindrances and restrictions that arise when employing WhatsApp in an academic environment. The literature was acquired through the utilisation of keywords that are linked to both WhatsApp and education from diverse databases. Having a thorough comprehension of current trends, potential advantages, obstacles, and gains linked to the use of WhatsApp is imperative for lecturers and administrators. Scholarly investigations have revealed a noticeable trend of lecturers and students increasingly utilising WhatsApp as a means of communication and collaboration. The objective of this literature review is to make a noteworthy contribution to the domain of education and technology through an investigation of the potential of WhatsApp as a learning tool. Additionally, this review seeks to offer valuable insights on how to effectively incorporate WhatsApp into pedagogical practices. The article underscores the significance of taking into account privacy and security concerns while utilising WhatsApp for educational objectives and puts forth recommendations for additional investigation.Keywords: tool, COVID-19, opportunities, challenges, learning, WhatsApp
Procedia PDF Downloads 258545 Boredom in the Classroom: Sentiment Analysis on Teaching Practices and Related Outcomes
Authors: Elisa Santana-Monagas, Juan L. Núñez, Jaime León, Samuel Falcón, Celia Fernández, Rocío P. Solís
Abstract:
Students’ emotional experiences have been a widely discussed theme among researchers, proving a central role on students’ outcomes. Yet, up to now, far too little attention has been paid to teaching practices that negatively relate with students’ negative emotions in the higher education. The present work aims to examine the relationship between teachers’ teaching practices (i.e., students’ evaluations of teaching and autonomy support), the students’ feelings of boredom and agentic engagement and motivation in the higher education context. To do so, the present study incorporates one of the most popular tools in natural processing language to address students’ evaluations of teaching: sentiment analysis. Whereas most research has focused on the creation of SA models and assessing students’ satisfaction regarding teachers and courses to the author’s best knowledge, no research before has included results from SA into an explanatory model. A total of 225 university students (Mean age = 26.16, SD = 7.4, 78.7 % women) participated in the study. Students were enrolled in degree and masters’ studies at the faculty of Education of a public university of Spain. Data was collected using an online questionnaire students could access through a QR code they completed during a teaching period where the assessed teacher was not present. To assess students’ sentiments towards their teachers’ teaching, we asked them the following open-ended question: “If you had to explain a peer who doesn't know your teacher how he or she communicates in class, what would you tell them?”. Sentiment analysis was performed with Microsoft's pre-trained model. For this study, we relied on the probability of the students answer belonging to the negative category. To assess the reliability of the measure, inter-rater agreement between this NLP tool and one of the researchers, who independently coded all answers, was examined. The average pairwise percent agreement and the Cohen’s kappa were calculated with ReCal2. The agreement reached was of 90.8% and Cohen’s kappa .68, both considered satisfactory. To test the hypothesis relations a structural equation model (SEM) was estimated. Results showed that the model fit indices displayed a good fit to the data; χ² (134) = 351.129, p < .001, RMSEA = .07, SRMR = .09, TLI = .91, CFI = .92. Specifically, results show that boredom was negatively predicted by autonomy support practices (β = -.47[-.61, -.33]), whereas for the negative sentiment extracted from SET, this relation was positive (β = .23[.16, .30]). In other words, when students’ opinion towards their instructors’ teaching practices was negative, it was more likely for them to feel bored. Regarding the relations among boredom and student outcomes, results showed a negative predictive value of boredom on students’ motivation to study (β = -.46[-.63, -.29]) and agentic engagement (β = -.24[-.33, -.15]). Altogether, results show a promising future for sentiment analysis techniques in the field of education as they proved the usefulness of this tool when evaluating relations among teaching practices and student outcomes.Keywords: sentiment analysis, boredom, motivation, agentic engagement
Procedia PDF Downloads 988544 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.Keywords: apartment complex, big data, life-cycle building value analysis, machine learning
Procedia PDF Downloads 3748543 A Framework of Dynamic Rule Selection Method for Dynamic Flexible Job Shop Problem by Reinforcement Learning Method
Authors: Rui Wu
Abstract:
In the volatile modern manufacturing environment, new orders randomly occur at any time, while the pre-emptive methods are infeasible. This leads to a real-time scheduling method that can produce a reasonably good schedule quickly. The dynamic Flexible Job Shop problem is an NP-hard scheduling problem that hybrid the dynamic Job Shop problem with the Parallel Machine problem. A Flexible Job Shop contains different work centres. Each work centre contains parallel machines that can process certain operations. Many algorithms, such as genetic algorithms or simulated annealing, have been proposed to solve the static Flexible Job Shop problems. However, the time efficiency of these methods is low, and these methods are not feasible in a dynamic scheduling problem. Therefore, a dynamic rule selection scheduling system based on the reinforcement learning method is proposed in this research, in which the dynamic Flexible Job Shop problem is divided into several parallel machine problems to decrease the complexity of the dynamic Flexible Job Shop problem. Firstly, the features of jobs, machines, work centres, and flexible job shops are selected to describe the status of the dynamic Flexible Job Shop problem at each decision point in each work centre. Secondly, a framework of reinforcement learning algorithm using a double-layer deep Q-learning network is applied to select proper composite dispatching rules based on the status of each work centre. Then, based on the selected composite dispatching rule, an available operation is selected from the waiting buffer and assigned to an available machine in each work centre. Finally, the proposed algorithm will be compared with well-known dispatching rules on objectives of mean tardiness, mean flow time, mean waiting time, or mean percentage of waiting time in the real-time Flexible Job Shop problem. The result of the simulations proved that the proposed framework has reasonable performance and time efficiency.Keywords: dynamic scheduling problem, flexible job shop, dispatching rules, deep reinforcement learning
Procedia PDF Downloads 1088542 Pragmatic Competence in Pakistani English Language Learners
Authors: Ghazala Kausar
Abstract:
This study investigates Pakistani first year university students’ perception of the role of pragmatics in their general approach to learning English. The research is triggered by National Curriculum’s initiative to provide holistic opportunities to the students for language development and to equip them with competencies to use English language in academic and social contexts (New English National Curriculum for I-XII). The traditional grammar translation and examination oriented method is believed to reduce learners to silent listener (Zhang, 2008: Zhao 2009). This lead to the inability of the students to interpret discourse by relating utterances to their meaning, understanding the intentions of the users and how language is used in specific setting (Bachman & Palmer, 1996, 2010). Pragmatic competence is a neglected area as far as teaching and learning English in Pakistan is concerned. This study focuses on the different types of pragmatic knowledge, learners perception of such knowledge and learning strategies employed by different learners to process the learning in general and pragmatic in particular. This study employed three data collecting tools; a questionnaire, discourse completion task and interviews to elicit data from first year university students regarding their perception of pragmatic competence. Results showed that Pakistani first year university learners have limited pragmatic knowledge. Although they acknowledged the importance of linguistic knowledge for linguistic competence in the students but argued that insufficient English proficiency, limited knowledge of pragmatics, insufficient language material and tasks were major reasons of pragmatic failure.Keywords: pragmatic competence, Pakistani college learners, linguistic competence
Procedia PDF Downloads 7398541 Educating the Educators: Interdisciplinary Approaches to Enhance Science Teaching
Authors: Denise Levy, Anna Lucia C. H. Villavicencio
Abstract:
In a rapid-changing world, science teachers face considerable challenges. In addition to the basic curriculum, there must be included several transversal themes, which demand creative and innovative strategies to be arranged and integrated to traditional disciplines. In Brazil, nuclear science is still a controversial theme, and teachers themselves seem to be unaware of the issue, most often perpetuating prejudice, errors and misconceptions. This article presents the authors’ experience in the development of an interdisciplinary pedagogical proposal to include nuclear science in the basic curriculum, in a transversal and integrating way. The methodology applied was based on the analysis of several normative documents that define the requirements of essential learning, competences and skills of basic education for all schools in Brazil. The didactic materials and resources were developed according to the best practices to improve learning processes privileging constructivist educational techniques, with emphasis on active learning process, collaborative learning and learning through research. The material consists of an illustrated book for students, a book for teachers and a manual with activities that can articulate nuclear science to different disciplines: Portuguese, mathematics, science, art, English, history and geography. The content counts on high scientific rigor and articulate nuclear technology with topics of interest to society in the most diverse spheres, such as food supply, public health, food safety and foreign trade. Moreover, this pedagogical proposal takes advantage of the potential value of digital technologies, implementing QR codes that excite and challenge students of all ages, improving interaction and engagement. The expected results include the education of the educators for nuclear science communication in a transversal and integrating way, demystifying nuclear technology in a contextualized and significant approach. It is expected that the interdisciplinary pedagogical proposal contributes to improving attitudes towards knowledge construction, privileging reconstructive questioning, fostering a culture of systematic curiosity and encouraging critical thinking skills.Keywords: science education, interdisciplinary learning, nuclear science, scientific literacy
Procedia PDF Downloads 1338540 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning
Authors: Richard O’Riordan, Saritha Unnikrishnan
Abstract:
Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection
Procedia PDF Downloads 1048539 Prognosis, Clinical Outcomes and Short Term Survival Analyses of Patients with Cutaneous Melanomas
Authors: Osama Shakeel
Abstract:
The objective of the paper is to study the clinic-pathological factors, survival analyses, recurrence rate, metastatic rate, risk factors and the management of cutaneous malignant melanoma at Shaukat Khanum Memorial Cancer Hospital and Research Center. Methodology: From 2014 to 2017, all patients with a diagnosis of cutaneous malignant melanoma (CMM) were included in the study. Demographic variables were collected. Short and long term oncological outcomes were recorded. All data were entered and analyzed in SPSS version 21. Results: A total of 28 patients were included in the study. Median age was 46.5 +/-15.9 years. There were 16 male and 12 female patients. The family history of melanoma was present in 7.1% (n=2) of the patients. All patients had a mean survival of 13.43+/- 9.09 months. Lower limb was the commonest site among all which constitutes 46.4%(n=13). On histopathological analyses, ulceration was seen in 53.6% (n=15) patients. Unclassified tumor type was present in 75%(n=21) of the patients followed by nodular 21.4% (n=6) and superficial spreading 3.5%(n=1). Clark level IV was the commonest presentation constituting 46.4%(n=13). Metastases were seen in 50%(n=14) of the patients. Local recurrence was observed in 60.7%(n=17). 64.3%(n=18) lived after one year of treatment. Conclusion: CMM is a fatal disease. Although its disease of fair skin individuals, however, the incidence of CMM is also rising in this part of the world. Management includes early diagnoses and prompt management. However, mortality associated with this disease is still not favorable.Keywords: malignant cancer of skin, cutaneous malignant melanoma, skin cancer, survival analyses
Procedia PDF Downloads 1708538 Leave or Remain Silent: A Study of Parents’ Views on Social-Emotional Learning in Chinese Schools
Authors: Pei Wang
Abstract:
The concept of social-emotional learning (SEL) is becoming increasingly popular in both research and practical applications worldwide. However, there is a lack of empirical studies and implementation of SEL in China, particularly from the perspective of parents. This qualitative study examined how Chinese parents perceived SEL, how their views on SEL were shaped, and how these views affected their decisions regarding their children’s education programs. Using the Collaborative for Academic Social and Emotional Learning Interactive Wheel framework and Bronfenbrenner's bioecological theory, the study conducted interviews with eight parents whose children attended public, international, and private schools in China. All collected data were conducted a thematic analysis involving three coding phases. The findings revealed that interviewees perceived SEL as significant to children’s development but held diverse understandings and perspectives on SEL at school depending on the amount and the quality of SEL resources available in their children’s schools. Additionally, parents’ attitudes towards the exam-oriented education system and Chinese culture influenced their views on SEL in school. Nevertheless, their socioeconomic status (SES) was the most significant factor in their perspectives on SEL, which significantly impacted their choices in their children's educational programs. High-SES families had more options to pursue SEL resources by sending their children to international schools or Western countries, while lower middle-class SES families had limited SEL resources in public schools. This highlighted educational inequality in China and emphasized the need for greater attention and investment in SEL programs in Chinese public schools.Keywords: Chinese, inequality, parent, school, social-emotional learning
Procedia PDF Downloads 66