Search results for: mobile Ad Hoc networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4282

Search results for: mobile Ad Hoc networks

1102 DNA of Hibiscus sabdariffa Damaged by Radiation from 900 MHz GSM Antenna

Authors: A. O. Oluwajobi, O. A. Falusi, N. A. Zubbair, T. Owoeye, F. Ladejobi, M. C. Dangana, A. Abubakar

Abstract:

The technology of mobile telephony has positively enhanced human life and reports on the bio safety of the radiation from their antennae have been contradictory, leading to serious litigations and violent protests by residents in several parts of the world. The crave for more information, as requested by WHO in order to resolve this issue, formed the basis for this study on the effect of the radiation from 900 MHz GSM antenna on the DNA of Hibiscus sabdariffa. Seeds of H. sabdariffa were raised in pots placed in three replicates at 100, 200, 300 and 400 metres from the GSM antennae in three selected test locations and a control where there was no GSM signal. Temperature (˚C) and the relative humidity (%) of study sites were measured for the period of study (24 weeks). Fresh young leaves were harvested from each plant at two, eight and twenty-four weeks after sowing and the DNA extracts were subjected to RAPD-PCR analyses. There were no significant differences between the weather conditions (temperature and relative humidity) in all the study locations. However, significant differences were observed in the intensities of radiations between the control (less than 0.02 V/m) and the test (0.40-1.01 V/m) locations. Data obtained showed that DNA of samples exposed to rays from GSM antenna had various levels of distortions, estimated at 91.67%. Distortions occurred in 58.33% of the samples between 2-8 weeks of exposure while 33.33% of the samples were distorted between 8-24 weeks exposure. Approximately 8.33% of the samples did not show distortions in DNA while 33.33% of the samples had their DNA damaged twice, both at 8 and at 24 weeks of exposure. The study showed that radiation from the 900 MHz GSM antenna is potent enough to cause distortions to DNA of H. sabdariffa even within 2-8 weeks of exposure. DNA damage was also independent of the distance from the antenna. These observations would qualify emissions from GSM mast as environmental hazard to the existence of plant biodiversities and all life forms in general. These results will trigger efforts to prevent further erosion of plant genetic resources which have been threatening food security and also the risks posed to living organisms, thereby making our environment very safe for our existence while we still continue to enjoy the benefits of the GSM technology.

Keywords: damage, DNA, GSM antenna, radiation

Procedia PDF Downloads 339
1101 A Flexible Real-Time Eco-Drive Strategy for Electric Minibus

Authors: Felice De Luca, Vincenzo Galdi, Piera Stella, Vito Calderaro, Adriano Campagna, Antonio Piccolo

Abstract:

Sustainable mobility has become one of the major issues of recent years. The challenge in reducing polluting emissions as much as possible has led to the production and diffusion of vehicles with internal combustion engines that are less polluting and to the adoption of green energy vectors, such as vehicles powered by natural gas or LPG and, more recently, with hybrid and electric ones. While on the one hand, the spread of electric vehicles for private use is becoming a reality, albeit rather slowly, not the same is happening for vehicles used for public transport, especially those that operate in the congested areas of the cities. Even if the first electric buses are increasingly being offered on the market, it remains central to the problem of autonomy for battery fed vehicles with high daily routes and little time available for recharging. In fact, at present, solid-state batteries are still too large in size, heavy, and unable to guarantee the required autonomy. Therefore, in order to maximize the energy management on the vehicle, the optimization of driving profiles offer a faster and cheaper contribution to improve vehicle autonomy. In this paper, following the authors’ precedent works on electric vehicles in public transport and energy management strategies in the electric mobility area, an eco-driving strategy for electric bus is presented and validated. Particularly, the characteristics of the prototype bus are described, and a general-purpose eco-drive methodology is briefly presented. The model is firstly simulated in MATLAB™ and then implemented on a mobile device installed on-board of a prototype bus developed by the authors in a previous research project. The solution implemented furnishes the bus-driver suggestions on the guide style to adopt. The result of the test in a real case will be shown to highlight the effectiveness of the solution proposed in terms of energy saving.

Keywords: eco-drive, electric bus, energy management, prototype

Procedia PDF Downloads 142
1100 Building an E-Platform for Virtual Research Teams in Educational Science

Authors: Hanan A. Abdulhameed, Huda Y. Alyami

Abstract:

The study presents a new international direction to conduct collaborative educational research. It follows a qualitative and quantitative methodology in investigating the main requirements to build an e-platform for Virtual Research Teams (VRTs). The e-platform considers three main components: First, the human and cultural structure, second, the institutional/organizational structure, and third, the technological structure. The study mainly focuses on the third component, the technological structure (the e-platform), and studies how to incorporate the other components: The human/cultural structure and the institutional/organizational structure in order to build an effective e-platform. The importance of the study is that it presents a comprehensive study about VRTs in terms of definition, types, structure, and main challenges. In addition, it suggests a practical way that benefits from the information and communication technology to conduct collaborative educational research by building and managing virtual research teams through an effective e-platform. The study draws the main framework to build an e-platform for collaborative educational research teams in Arab World. Thus, it tackles mainly the theoretical aspects, the framework of an effective e-platform. Then, it presents the evaluation of 18 Arab educational experts' to the proposed e-platform.

Keywords: collaborative research, educational science, E-platform, social research networks sites (SRNS), virtual research teams (VRTs)

Procedia PDF Downloads 460
1099 Investigating Message Timing Side Channel Attacks on Networks on Chip with Ring Topology

Authors: Mark Davey

Abstract:

Communications on a Network on Chip (NoC) produce timing information, i.e., network injection delays, packet traversal times, throughput metrics, and other attributes relating to the traffic being sent across the chip. The security requirements of a platform encompass each node to operate with confidentiality, integrity, and availability (ISO 27001). Inherently, a shared NoC interconnect is exposed to analysis of timing patterns created by contention for the network components, i.e., links and switches/routers. This phenomenon is defined as information leakage, which represents a ‘side channel’ of sensitive information that can be correlated to platform activity. The key algorithm presented in this paper evaluates how an adversary can control two platform neighbouring nodes of a target node to obtain sensitive information about communication with the target node. The actual information obtained is the period value of a periodic task communication. This enacts a breach of the expected confidentiality of a node operating in a multiprocessor platform. An experimental investigation of the side channel is undertaken to judge the level and significance of inferred information produced by access times to the NoC. Results are presented with a series of expanding task set scenarios to evaluate the efficacy of the side channel detection algorithm as the network load increases.

Keywords: embedded systems, multiprocessor, network on chip, side channel

Procedia PDF Downloads 71
1098 Climate Variability on Hydro-Energy Potential: An MCDM and Neural Network Approach

Authors: Apu Kumar Saha, Mrinmoy Majumder

Abstract:

The increase in the concentration of Green House gases all over the World has induced global warming phenomena whereby the average temperature of the world has aggravated to impact the pattern of climate in different regions. The frequency of extreme event has increased, early onset of season and change in an average amount of rainfall all are engrossing the conclusion that normal pattern of climate is changing. Sophisticated and complex models are prepared to estimate the future situation of the climate in different zones of the Earth. As hydro-energy is directly related to climatic parameters like rainfall and evaporation such energy resources will have to sustain the onset of the climatic abnormalities. The present investigation has tried to assess the impact of climatic abnormalities upon hydropower potential of different regions of the World. In this regard multi-criteria, decision making, and the neural network is used to predict the impact of the change cognitively by an index. The results from the study show that hydro-energy potential of Asian region is mostly vulnerable with respect to other regions of the world. The model results also encourage further application of the index to analyze the impact of climate change on the potential of hydro-energy.

Keywords: hydro-energy potential, neural networks, multi criteria decision analysis, environmental and ecological engineering

Procedia PDF Downloads 549
1097 Synthesis of (S)-Naproxen Based Amide Bond Forming Chiral Reagent and Application for Liquid Chromatographic Resolution of (RS)-Salbutamol

Authors: Poonam Malik, Ravi Bhushan

Abstract:

This work describes a very efficient approach for synthesis of activated ester of (S)-naproxen which was characterized by UV, IR, ¹HNMR, elemental analysis and polarimetric studies. It was used as a C-N bond forming chiral derivatizing reagent for further synthesis of diastereomeric amides of (RS)-salbutamol (a β₂ agonist that belongs to the group β-adrenolytic and is marketed as racamate) under microwave irradiation. The diastereomeric pair was separated by achiral phase HPLC, using mobile phase in gradient mode containing methanol and aqueous triethylaminephosphate (TEAP); separation conditions were optimized with respect to pH, flow rate, and buffer concentration and the method of separation was validated as per International Council for Harmonisation (ICH) guidelines. The reagent proved to be very effective for on-line sensitive detection of the diastereomers with very low limit of detection (LOD) values of 0.69 and 0.57 ng mL⁻¹ for diastereomeric derivatives of (S)- and (R)-salbutamol, respectively. The retention times were greatly reduced (2.7 min) with less consumption of organic solvents and large (α) as compared to literature reports. Besides, the diastereomeric derivatives were separated and isolated by preparative HPLC; these were characterized and were used as standard reference samples for recording ¹HNMR and IR spectra for determining absolute configuration and elution order; it ensured the success of diastereomeric synthesis and established the reliability of enantioseparation and eliminated the requirement of pure enantiomer of the analyte which is generally not available. The newly developed reagent can suitably be applied to several other amino group containing compounds either from organic syntheses or pharmaceutical industries because the presence of (S)-Npx as a strong chromophore would allow sensitive detection.This work is significant not only in the area of enantioseparation and determination of absolute configuration of diastereomeric derivatives but also in the area of developing new chiral derivatizing reagents (CDRs).

Keywords: chiral derivatizing reagent, naproxen, salbutamol, synthesis

Procedia PDF Downloads 155
1096 The Role of Digital Technology in Crime Prevention: a Case Study of Cellular Forensics Unit, Capital City Police Peshawar-Pakistan

Authors: Muhammad Ashfaq

Abstract:

Main theme: This prime focus of this study is on the role of digital technology in crime prevention, with special focus on Cellular Forensic Unit, Capital City Police Peshawar-Khyber Pakhtunkhwa-Pakistan. Objective(s) of the study: The prime objective of this study is to provide statistics, strategies and pattern of analysis used for crime prevention in Cellular Forensic Unit of Capital City Police Peshawar, Khyber Pakhtunkhwa-Pakistan. Research Method and Procedure: Qualitative method of research has been used in the study for obtaining secondary data from research wing and Information Technology (IT) section of Peshawar police. Content analysis was the method used for the conduction of the study. This study is delimited to Capital City Police and Cellular Forensic Unit Peshawar-KP, Pakistan. information technologies.Major finding(s): It is evident that the old traditional approach will never provide solutions for better management in controlling crimes. The best way to control crimes and promotion of proactive policing is to adopt new technologies. The study reveals that technology have transformed police more effective and vigilant as compared to traditional policing. The heinous crimes like abduction, missing of an individual, snatching, burglaries and blind murder cases are now traceable with the help of technology.Recommendation(s): From the analysis of the data, it is reflected that Information Technology (IT) expert should be recruited along with research analyst to timely assist and facilitate operational as well as investigation units of police .A mobile locator should be Provided to Cellular Forensic Unit to timely apprehend the criminals .Latest digital analysis software should be provided to equip the Cellular Forensic Unit.

Keywords: crime-prevention, cellular-forensic unit-pakistan, crime prevention-digital-pakistan, crminology-pakistan

Procedia PDF Downloads 82
1095 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features

Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari

Abstract:

An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.

Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)

Procedia PDF Downloads 446
1094 Modeling the Philippine Stock Exchange Index Closing Value Using Artificial Neural Network

Authors: Frankie Burgos, Emely Munar, Conrado Basa

Abstract:

This paper aimed at developing an artificial neural network (ANN) model specifically for the Philippine Stock Exchange index closing value. The inputs to the ANN are US Dollar and Philippine Peso(USD-PHP) exchange rate, GDP growth of the country, quarterly inflation rate, 10-year bond yield, credit rating of the country, previous open, high, low, close values and volume of trade of the Philippine Stock Exchange Index (PSEi), gold price of the previous day, National Association of Securities Dealers Automated Quotations (NASDAQ), Standard and Poor’s 500 (S & P 500) and the iShares MSCI Philippines ETF (EPHE) previous closing value. The target is composed of the closing value of the PSEi during the 627 trading days from November 3, 2011, to May 30, 2014. MATLAB’s Neural Network toolbox was employed to create, train and simulate the network using multi-layer feed forward neural network with back-propagation algorithm. The results satisfactorily show that the neural network developed has the ability to model the PSEi, which is affected by both internal and external economic factors. It was found out that the inputs used are the main factors that influence the movement of the PSEi closing value.

Keywords: artificial neural networks, artificial intelligence, philippine stocks exchange index, stocks trading

Procedia PDF Downloads 297
1093 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models

Authors: Andrey Khalov

Abstract:

The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.

Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph

Procedia PDF Downloads 16
1092 An Application of Meta-Modeling Methods for Surrogating Lateral Dynamics Simulation in Layout-Optimization for Electric Drivetrains

Authors: Christian Angerer, Markus Lienkamp

Abstract:

Electric vehicles offer a high variety of possible drivetrain topologies with up to 4 motors. Multi-motor-designs can have several advantages regarding traction, vehicle dynamics, safety and even efficiency. With a rising number of motors, the whole drivetrain becomes more complex. All permutations of gearings, drivetrain-layouts, motor-types and –sizes lead up in a very large solution space. Single elements of this solution space can be analyzed by simulation methods. In addition to longitudinal vehicle behavior, which most optimization-approaches are restricted to, also lateral dynamics are important for vehicle dynamics, stability and efficiency. In order to compete large solution spaces and to find an optimal result, genetic algorithm based optimization is state-of-the-art. As lateral dynamics simulation is way more CPU-intensive, optimization takes much more time than in case of longitudinal-only simulation. Therefore, this paper shows an approach how to create meta-models from a 14-degree of freedom vehicle model in order to enable a numerically efficient drivetrain-layout optimization process under consideration of lateral dynamics. Different meta-modelling approaches such as neural networks or DoE are implemented and comparatively discussed.

Keywords: driving dynamics, drivetrain layout, genetic optimization, meta-modeling, lateral dynamicx

Procedia PDF Downloads 417
1091 Analyzing Perceptions of Leadership Capacities After a Year-Long Leadership Development Training: An Exploratory Study of School Leaders in South Africa

Authors: Norma Kok, Diemo Masuko, Thandokazi Dlongwana, Komala Pillay

Abstract:

CONTEXT: While many school principals have been outstanding teachers and have inherent leadership potential, many have not had access to the quality of leadership development or support that empowers them to produce high-quality education outcomes in extremely challenging circumstances. Further, school leaders in under-served communities face formidable challenges arising from insufficient infrastructure, overcrowded classrooms, socio-economic challenges within the community, and insufficient parental involvement, all of which put a strain on principals’ ability to lead their schools effectively. In addition few school leaders have access to other supportive networks, and many do not know how to build and leverage social capital to create opportunities for their schools and learners. Moreover, we know that fostering parental involvement in their children’s learning improves a child’s morale, attitude, and academic achievement across all subject areas, and promotes better behaviour and social adjustment. Citizen Leader Lab facilitates the Partners for Possibility (PfP) programme to provide leadership development and support to school leaders serving under-resourced communities in South Africa to create effective environments of learning. This is done by creating partnerships between school leaders and private-sector business leaders over a 12-month period. (185) OBJECTIVES: To explore school leaders’ perceptions of their leadership capacities and changes at their schools after being exposed to a year-long leadership development training programme. METHODS: School leaders gained new leadership capacities e.g. resilience, improved confidence, communication and conflict resolution skills - catalysing into improved cultures of collaborative decision-making and environments for enhanced teaching and learningprogramme based on the 70:20:10 model whereby: 10% of learning comes from workshops, 20% of learning takes place through peer learning and 70% of learning occurs through experiential learning as partnerships work together to identify and tackle challenges in targeted schools. Participants completed a post-programme questionnaire consisting of structured and unstructured questions and semi-structured interviews were conducted with them and their business leader. The interviews were audio-recorded, transcribed and thematic content analysis was undertaken. The analysis was inductive and emerging themes were identified. A code list was generated after coding was undertaken using computer software (Dedoose). Quantitative data gathered from surveys was aggregated and analysed. RESULTS: School leadership found the programme interesting and rewarding. They gained new leadership capacities such as resilience, improved confidence, communication and conflict resolution skills - catalyzing into improved cultures of collaborative decision-making and environments for enhanced teaching and learning. New networks resulted in tangible outcomes such as upgrades to school infrastructure, water and sanitation, vegetable gardens at schools resulting in nutrition for learners and/or intangible outcomes such as skills for members of school management teams (SMTs). Collaborative leadership led to SMTs being more aligned, efficient, and cohesive; and teachers being more engaged and motivated. Notable positive changes at the school inspired parents and community members to become more actively involved in the school and in their children’s education. CONCLUSION: The PfP programme leads to improved leadership capacities and improved school culture which leads to improved teaching and learning and new resources for schools.

Keywords: collaborative decision-making, collaborative leadership, community involvement, confidence

Procedia PDF Downloads 91
1090 Exploring the Role of Humorous Dialogues in Advertisements of Pakistani Network Companies: Analysis of Discourses through Multi-Modal Critical Approach

Authors: Jane E. Alam Solangi

Abstract:

The contribution of the study is to explore the important part of humorous dialogues in cellular network advertisements. This promotes the message of valuable construction and promotion of network companies in Pakistan that employ different and broad techniques to give promotion to selling products. It merely instigates the consumers to buy it. The results of the study after analysis of its collected data gives a vision that advertisers of network advertisements use humorous dialogues as a significant device to the greater level. The source of entertainment in the advertisement is accompanied by the texts and humorous discourses to influence buying decisions of the consumers. Therefore, it tends to neutralize personal and social based values. The earlier contribution of scholars presented that the technical employment of humorous devices leads to the successful market of the relevant products. In order to analyze the humorous discourse devices, the approach of multi-modality of Fairclough (1989) is used. It is accompanied by the framework of Kress and van Leeuwen’s (1996). It analyzes the visual graph of the grammar. The overall findings in the study verified the role of humorous devices in the captivation of consumers’ decision to buy the product that interests them. Therefore, the role of humor acts as a breaker of the monotonous rhythm of advertisements.

Keywords: advertisements, devices, humorous, multi-modality, networks, Pakistan

Procedia PDF Downloads 103
1089 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits

Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.

Abstract:

With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.

Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme

Procedia PDF Downloads 134
1088 Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor

Authors: Vasudha Hegde, Narendra Chaulagain, H. M. Ravikumar, Sonu Mishra, Siva Yellampalli

Abstract:

Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 µm radius and thickness of 30 µm to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 µm sandwiched between two aluminium electrodes of thickness 0.5 µm and is coated on the diaphragm. Further, a channel with radius 3000 µm radius and length 270 µm is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations.

Keywords: acoustic sensor, diaphragm based, lumped element modeling (LEM), natural frequency, piezoelectric

Procedia PDF Downloads 442
1087 Real-Time Recognition of Dynamic Hand Postures on a Neuromorphic System

Authors: Qian Liu, Steve Furber

Abstract:

To explore how the brain may recognize objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor~(DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network~(SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures is developed, enabling the study of the methods used in the visual pathways of the brain. Inspired by the behaviours of the primary visual cortex, Convolutional Neural Networks (CNNs) are modeled using both linear perceptrons and spiking Leaky Integrate-and-Fire (LIF) neurons. In this study's largest configuration using these approaches, a network of 74,210 neurons and 15,216,512 synapses is created and operated in real-time using 290 SpiNNaker processor cores in parallel and with 93.0% accuracy. A smaller network using only 1/10th of the resources is also created, again operating in real-time, and it is able to recognize the postures with an accuracy of around 86.4% -only 6.6% lower than the much larger system. The recognition rate of the smaller network developed on this neuromorphic system is sufficient for a successful hand posture recognition system, and demonstrates a much-improved cost to performance trade-off in its approach.

Keywords: spiking neural network (SNN), convolutional neural network (CNN), posture recognition, neuromorphic system

Procedia PDF Downloads 472
1086 Emerging Social Media Presence of International Organisations - Challenges and Opportunities

Authors: Laura Hervai

Abstract:

One of the most significant phenomena of the 2000s was the emergence of social media sites and web 2.0 that revolutionized communication processes. Social networking platforms have fundamentally changed social and political participation of the public, which require organisations in the public and non-profit sector not only to adapt to these new trends but also to actively engage their audiences. Opportunity for interaction, freer expression of opinion and the proliferation of user generated content are major changes brought by web 2.0 technologies. Furthermore, due to the wide penetration of mobile technologies, social media sites are capable of connecting underdeveloped regions to the global flow of information. Taking advantage of these characteristics, organisations have the opportunity to engage much wider audiences, exploit new ways to raise awareness or reach out to regions that are difficult to access. The early adopters of these new communication tools soon recognized the need of developing social media guidelines for their organisations as well as the increased workload that they require. While ten years ago communication officers could handle their organisation’s social media presence, today it is a separate profession. International organisations face several challenges related to their social media presence. Early adopters have contributed to the development of best practices among which the ethics of social media usage still remained problematic. Another challenge for international organisations is to adapt to country-specific social media trends while they have to comply with the requirements of their parent organisation as well. However in the 21st century social media presence can be crucial to the successful operation of international organisations, their importance is still not taken seriously enough. The measurement of the effects and influence of social networking on the organisations’ productivity is an unsolved problem thus further research should focus on this matter. Research methods included primary research of major IGOs’ and NGOs’ social media presence and guidelines along with secondary research of social media statistics and scientific articles in the topic.

Keywords: international organisations, non-profit sector, NGO, social media, social network

Procedia PDF Downloads 307
1085 JaCoText: A Pretrained Model for Java Code-Text Generation

Authors: Jessica Lopez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri

Abstract:

Pretrained transformer-based models have shown high performance in natural language generation tasks. However, a new wave of interest has surged: automatic programming language code generation. This task consists of translating natural language instructions to a source code. Despite the fact that well-known pre-trained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformer neural network. It aims to generate java source code from natural language text. JaCoText leverages the advantages of both natural language and code generation models. More specifically, we study some findings from state of the art and use them to (1) initialize our model from powerful pre-trained models, (2) explore additional pretraining on our java dataset, (3) lead experiments combining the unimodal and bimodal data in training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.

Keywords: java code generation, natural language processing, sequence-to-sequence models, transformer neural networks

Procedia PDF Downloads 286
1084 Buy-and-Hold versus Alternative Strategies: A Comparison of Market-Timing Techniques

Authors: Jonathan J. Burson

Abstract:

With the rise of virtually costless, mobile-based trading platforms, stock market trading activity has increased significantly over the past decade, particularly for the millennial generation. This increased stock market attention, combined with the recent market turmoil due to the economic upset caused by COVID-19, make the topics of market-timing and forecasting particularly relevant. While the overall stock market saw an unprecedented, historically-long bull market from March 2009 to February 2020, the end of that bull market reignited a search by investors for a way to reduce risk and increase return. Similar searches for outperformance occurred in the early, and late 2000’s as the Dotcom bubble burst and the Great Recession led to years of negative returns for mean-variance, index investors. Extensive research has been conducted on fundamental analysis, technical analysis, macroeconomic indicators, microeconomic indicators, and other techniques—all using different methodologies and investment periods—in pursuit of higher returns with lower risk. The enormous variety of timeframes, data, and methodologies used by the diverse forecasting methods makes it difficult to compare the outcome of each method directly to other methods. This paper establishes a process to evaluate the market-timing methods in an apples-to-apples manner based on simplicity, performance, and feasibility. Preliminary findings show that certain technical analysis models provide a higher return with lower risk when compared to the buy-and-hold method and to other market-timing strategies. Furthermore, technical analysis models tend to be easier for individual investors both in terms of acquiring the data and in analyzing it, making technical analysis-based market-timing methods the preferred choice for retail investors.

Keywords: buy-and-hold, forecast, market-timing, probit, technical analysis

Procedia PDF Downloads 97
1083 An Efficient Robot Navigation Model in a Multi-Target Domain amidst Static and Dynamic Obstacles

Authors: Michael Ayomoh, Adriaan Roux, Oyindamola Omotuyi

Abstract:

This paper presents an efficient robot navigation model in a multi-target domain amidst static and dynamic workspace obstacles. The problem is that of developing an optimal algorithm to minimize the total travel time of a robot as it visits all target points within its task domain amidst unknown workspace obstacles and finally return to its initial position. In solving this problem, a classical algorithm was first developed to compute the optimal number of paths to be travelled by the robot amidst the network of paths. The principle of shortest distance between robot and targets was used to compute the target point visitation order amidst workspace obstacles. Algorithm premised on the standard polar coordinate system was developed to determine the length of obstacles encountered by the robot hence giving room for a geometrical estimation of the total surface area occupied by the obstacle especially when classified as a relevant obstacle i.e. obstacle that lies in between a robot and its potential visitation point. A stochastic model was developed and used to estimate the likelihood of a dynamic obstacle bumping into the robot’s navigation path and finally, the navigation/obstacle avoidance algorithm was hinged on the hybrid virtual force field (HVFF) method. Significant modelling constraints herein include the choice of navigation path to selected target points, the possible presence of static obstacles along a desired navigation path and the likelihood of encountering a dynamic obstacle along the robot’s path and the chances of it remaining at this position as a static obstacle hence resulting in a case of re-routing after routing. The proposed algorithm demonstrated a high potential for optimal solution in terms of efficiency and effectiveness.

Keywords: multi-target, mobile robot, optimal path, static obstacles, dynamic obstacles

Procedia PDF Downloads 281
1082 Potential of Tourism Logistic Service Business in the Border Areas of Chong Anma, Chong Sa-Ngam, and Chong Jom Checkpoints in Thailand to Increase Competitive Efficiency among the ASEAN Community

Authors: Pariwat Somnuek

Abstract:

This study focused on tourism logistic services in the border areas of Thailand by an analysis and comparison of the opinions of tourists, villagers, and entrepreneurs of these services. Sample representatives of this study were a total of 600 villagers and 15 entrepreneurs in the three border areas consisting of Chong Anma, Chong Sa-Ngam, and Chong Jom checkpoints. For methodology, survey questionnaires, situation analysis, TOWS matrix, and focus group discussions were used for data collection, as well as descriptive analysis and statistics such as arithmetic means and standard deviations, were employed for data analysis. The findings revealed that business potential was at the medium level and entrepreneurs were satisfied with their turnovers. However, perspectives of transportation and tourism services provided for tourists need to be immediately improved. Recommendations for the potential development included promotion of border tourism destinations and foreign investments into accommodation, restaurants, and transport, as well as the establishment of business networks between Thailand and Cambodia, along with the introduction of new tourism destinations by co-operation between entrepreneurs in both countries. These initiatives may lead to increased visitors, collaboration of security offices, and an improved image of tourism security.

Keywords: business potential, potential development, tourism logistics, services

Procedia PDF Downloads 308
1081 Dynamic Risk Model for Offshore Decommissioning Using Bayesian Belief Network

Authors: Ahmed O. Babaleye, Rafet E. Kurt

Abstract:

The global oil and gas industry is beginning to witness an increase in the number of installations moving towards decommissioning. Decommissioning of offshore installations is a complex, costly and hazardous activity, making safety one of the major concerns. Among existing removal options, complete and partial removal options pose the highest risks. Therefore, a dynamic risk model of the accidents from the two options is important to assess the risks on an overall basis. In this study, a risk-based safety model is developed to conduct quantitative risk analysis (QRA) for jacket structure systems failure. Firstly, bow-tie (BT) technique is utilised to model the causal relationship between the system failure and potential accident scenarios. Subsequently, to relax the shortcomings of BT, Bayesian Belief Networks (BBNs) were established to dynamically assess associated uncertainties and conditional dependencies. The BBN is developed through a similitude mapping of the developed bow-tie. The BBN is used to update the failure probabilities of the contributing elements through diagnostic analysis, thus, providing a case-specific and realistic safety analysis method when compared to a bow-tie. This paper presents the application of dynamic safety analysis to guide the allocation of risk control measures and consequently, drive down the avoidable cost of remediation.

Keywords: Bayesian belief network, offshore decommissioning, dynamic safety model, quantitative risk analysis

Procedia PDF Downloads 280
1080 Optoelectronic Hardware Architecture for Recurrent Learning Algorithm in Image Processing

Authors: Abdullah Bal, Sevdenur Bal

Abstract:

This paper purposes a new type of hardware application for training of cellular neural networks (CNN) using optical joint transform correlation (JTC) architecture for image feature extraction. CNNs require much more computation during the training stage compare to test process. Since optoelectronic hardware applications offer possibility of parallel high speed processing capability for 2D data processing applications, CNN training algorithm can be realized using Fourier optics technique. JTC employs lens and CCD cameras with laser beam that realize 2D matrix multiplication and summation in the light speed. Therefore, in the each iteration of training, JTC carries more computation burden inherently and the rest of mathematical computation realized digitally. The bipolar data is encoded by phase and summation of correlation operations is realized using multi-object input joint images. Overlapping properties of JTC are then utilized for summation of two cross-correlations which provide less computation possibility for training stage. Phase-only JTC does not require data rearrangement, electronic pre-calculation and strict system alignment. The proposed system can be incorporated simultaneously with various optical image processing or optical pattern recognition techniques just in the same optical system.

Keywords: CNN training, image processing, joint transform correlation, optoelectronic hardware

Procedia PDF Downloads 506
1079 Satisfaction of Distance Education University Students with the Use of Audio Media as a Medium of Instruction: The Case of Mountains of the Moon University in Uganda

Authors: Mark Kaahwa, Chang Zhu, Moses Muhumuza

Abstract:

This study investigates the satisfaction of distance education university students (DEUS) with the use of audio media as a medium of instruction. Studying students’ satisfaction is vital because it shows whether learners are comfortable with a certain instructional strategy or not. Although previous studies have investigated the use of audio media, the satisfaction of students with an instructional strategy that combines radio teaching and podcasts as an independent teaching strategy has not been fully investigated. In this study, all lectures were delivered through the radio and students had no direct contact with their instructors. No modules or any other material in form of text were given to the students. They instead, revised the taught content by listening to podcasts saved on their mobile electronic gadgets. Prior to data collection, DEUS received orientation through workshops on how to use audio media in distance education. To achieve objectives of the study, a survey, naturalistic observations and face-to-face interviews were used to collect data from a sample of 211 undergraduate and graduate students. Findings indicate that there was no statistically significant difference in the levels of satisfaction between male and female students. The results from post hoc analysis show that there is a statistically significant difference in the levels of satisfaction regarding the use of audio media between diploma and graduate students. Diploma students are more satisfied compared to their graduate counterparts. T-test results reveal that there was no statistically significant difference in the general satisfaction with audio media between rural and urban-based students. And ANOVA results indicate that there is no statistically significant difference in the levels of satisfaction with the use of audio media across age groups. Furthermore, results from observations and interviews reveal that DEUS found learning using audio media a pleasurable medium of instruction. This is an indication that audio media can be considered as an instructional strategy on its own merit.

Keywords: audio media, distance education, distance education university students, medium of instruction, satisfaction

Procedia PDF Downloads 122
1078 Cooperative Robot Application in a Never Explored or an Abandoned Sub-Surface Mine

Authors: Michael K. O. Ayomoh, Oyindamola A. Omotuyi

Abstract:

Autonomous mobile robots deployed to explore or operate in a never explored or an abandoned sub-surface mine requires extreme effectiveness in coordination and communication. In a bid to transmit information from the depth of the mine to the external surface in real-time and amidst diverse physical, chemical and virtual impediments, the concept of unified cooperative robots is seen to be a proficient approach. This paper presents an effective [human → robot → task] coordination framework for effective exploration of an abandoned underground mine. The problem addressed in this research is basically the development of a globalized optimization model premised on time series differentiation and geometrical configurations for effective positioning of the two classes of robots in the cooperation namely the outermost stationary master (OSM) robots and the innermost dynamic task (IDT) robots for effective bi-directional signal transmission. In addition, the synchronization of a vision system and wireless communication system for both categories of robots, fiber optics system for the OSM robots in cases of highly sloppy or vertical mine channels and an autonomous battery recharging capability for the IDT robots further enhanced the proposed concept. The OSM robots are the master robots which are positioned at strategic locations starting from the mine open surface down to its base using a fiber-optic cable or a wireless communication medium all subject to the identified mine geometrical configuration. The OSM robots are usually stationary and function by coordinating the transmission of signals from the IDT robots at the base of the mine to the surface and in a reverse order based on human decisions at the surface control station. The proposed scheme also presents an optimized number of robots required to form the cooperation in a bid to reduce overall operational cost and system complexity.

Keywords: sub-surface mine, wireless communication, outermost stationary master robots, inner-most dynamic robots, fiber optic

Procedia PDF Downloads 213
1077 Paper-Like and Battery Free Sensor Patches for Wound Monitoring

Authors: Xiaodi Su, Xin Ting Zheng, Laura Sutarlie, Nur Asinah binte Mohamed Salleh, Yong Yu

Abstract:

Wound healing is a dynamic process with multiple phases. Rapid profiling and quantitative characterization of inflammation and infection remain challenging. We have developed paper-like battery-free multiplexed sensors for holistic wound assessment via quantitative detection of multiple inflammation and infection markers. In one of the designs, the sensor patch consists of a wax-printed paper panel with five colorimetric sensor channels arranged in a pattern resembling a five-petaled flower (denoted as a ‘Petal’ sensor). The five sensors are for temperature, pH, trimethylamine, uric acid, and moisture. The sensor patch is sandwiched between a top transparent silicone layer and a bottom adhesive wound contact layer. In the second design, a palm-like-shaped paper strip is fabricated by a paper-cutter printer (denoted as ‘Palm’ sensor). This sensor strip carries five sensor regions connected by a stem sampling entrance that enables rapid colorimetric detection of multiple bacteria metabolites (aldehyde, lactate, moisture, trimethylamine, tryptophan) from wound exudate. For both the “\’ Petal’ and ‘Palm’ sensors, color images can be captured by a mobile phone. According to the color changes, one can quantify the concentration of the biomarkers and then determine wound healing status and identify/quantify bacterial species in infected wounds. The ‘Petal’ and ‘Palm’ sensors are validated with in-situ animal and ex-situ skin wound models, respectively. These sensors have the potential for integration with wound dressing to allow early warning of adverse events without frequent removal of the plasters. Such in-situ and early detection of non-healing condition can trigger immediate clinical intervention to facilitate wound care management.

Keywords: wound infection, colorimetric sensor, paper fluidic sensor, wound care

Procedia PDF Downloads 81
1076 Preparation and Struggle of Two Generations for Future Care: A Study of Intergenerational Care Planning among Mainland Immigrant Ageing Families in Hong Kong

Authors: Xue Bai, Ranran He, Chang Liu

Abstract:

Care planning before the onset of intensive care needs can benefit older adults’ psychological well-being and increases families’ ability to manage caregiving crises and cope with care transitions. Effective care planning requires collaborative ‘team-work’ in families. However, future care planning has not been substantially examined in intergenerational or family contexts, let alone among immigrant families who have to face particular challenges in parental caregiving. From a family systems perspective, this study intends to explore the extent, processes, and contents of intergenerational care planning of Mainland immigrant ageing families in Hong Kong and to examine the intergenerational congruence and discrepancies in the care planning process. Adopting a qualitative research design, semi-structured in-depth interviews were conducted with 17 adult child-older parent pairs and another 33 adult children. In total, 50 adult children who migrated to Hong Kong after the age of 18 with more than three years’ work experience in Hong Kong had at least one parent aged over 55 years old who was not a Hong Kong resident and considered his/herself as the primary caregiver of the parent were recruited. Seventeen ageing parents of the recruited adult children were invited for dyadic interviews. Scarcity of caregiving resources in the context of cross-border migration, intergenerational discrepancies in care planning stages, both generations’ struggle and ambivalence toward filial care, intergenerational transmission of care values, and facilitating role of accumulated family capital in care preparation were primary themes concluded from participants’ narratives. Compared with ageing parents, immigrant adult children generally displayed lower levels of care planning. Although with a strong awareness of parents’ future care needs, few adult children were found engaged in concrete planning activities. This is largely due to their uncertainties toward future life and career, huge work and living pressure, the relatively good health status of their parents, and restrictions of public welfare policies in the receiving society. By contrast, children’s cross-border migration encouraged ageing parents to have early and clear preparation for future care. Ageing parents mostly expressed low filial care expectations when realizing the scarcity of family caregiving resources in the cross-border context. Even though they prefer in-person support from children, most of them prepare themselves for independent ageing to prioritize the next generation’s needs or choose to utilize paid services, welfare systems, friend networks, or extended family networks in their sending society. Adult children were frequently found caught in the dilemma of desiring to provide high quality and in-person support for their parents but lacking sufficient resources. Notably, a salient pattern of intergenerational transmission in terms of family and care values and ideal care arrangement emerged from intergenerational care preparation. Moreover, the positive role of accumulated family capital generated by a reunion in care preparation and joint decision-making were also identified. The findings of the current study will enhance professionals’ and service providers’ awareness of intergenerational care planning in cross-border migration contexts, inform services to alleviate unpreparedness for elderly care and intergenerational discrepancies concerning care arrangements and broaden family services to encompass intergenerational care planning interventions. Acknowledgment: This study is supported by a General Research Grant from the Research Grants Council of the HKSAR, China (Project Number: 15603818).

Keywords: intergenerational care planning, mainland immigrants in Hong Kong, migrant family, older adults

Procedia PDF Downloads 126
1075 Design and Control of a Knee Rehabilitation Device Using an MR-Fluid Brake

Authors: Mina Beheshti, Vida Shams, Mojtaba Esfandiari, Farzaneh Abdollahi, Abdolreza Ohadi

Abstract:

Most of the people who survive a stroke need rehabilitation tools to regain their mobility. The core function of these devices is a brake actuator. The goal of this study is to design and control a magnetorheological brake which can be used as a rehabilitation tool. In fact, the fluid used in this brake is called magnetorheological fluid or MR that properties can change by variation of the magnetic field. The braking properties can be set as control by using this feature of the fluid. In this research, different MR brake designs are first introduced in each design, and the dimensions of the brake have been determined based on the required torque for foot movement. To calculate the brake dimensions, it is assumed that the shear stress distribution in the fluid is uniform and the fluid is in its saturated state. After designing the rehabilitation brake, the mathematical model of the healthy movement of a healthy person is extracted. Due to the nonlinear nature of the system and its variability, various adaptive controllers, neural networks, and robust have been implemented to estimate the parameters and control the system. After calculating torque and control current, the best type of controller in terms of error and control current has been selected. Finally, this controller is implemented on the experimental data of the patient's movements, and the control current is calculated to achieve the desired torque and motion.

Keywords: rehabilitation, magnetorheological fluid, knee, brake, adaptive control, robust control, neural network control, torque control

Procedia PDF Downloads 151
1074 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification

Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang

Abstract:

One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.

Keywords: malware detection, network security, targeted attack, computational intelligence

Procedia PDF Downloads 264
1073 Research on Resilience-Oriented Disintegration in System-of-System

Authors: Hang Yang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge

Abstract:

The system-of-systems (SoS) are utilized to characterize networks formed by integrating individual complex systems that demonstrate interdependence and interconnectedness. Research on the disintegration issue in SoS is significant in improving network survivability, maintaining network security, and optimizing SoS architecture. Accordingly, this study proposes an integrated framework called resilience-oriented disintegration in SoS (SoSRD), for modeling and solving the issue of SoS disintegration. Firstly, a SoS disintegration index (SoSDI) is presented to evaluate the disintegration effect of SoS. This index provides a practical description of the disintegration process and is the first integration of the network disintegration model and resilience models. Subsequently, we propose a resilience-oriented disintegration method based on reinforcement learning (RDRL) to enhance the efficiency of SoS disintegration. This method is not restricted by the problem scenario as well as considering the coexistence of disintegration (node/link removal) and recovery (node/link addition) during the process of SoS disintegration. Finally, the effectiveness and superiority of the proposed SoSRD are demonstrated through a case study. We demonstrate that our proposed framework outperforms existing indexes and methods in both node and link disintegration scenarios, providing a fresh perspective on network disintegration. The findings provide crucial insights into dismantling harmful SoS and designing a more resilient SoS.

Keywords: system-of-systems, disintegration index, resilience, reinforcement learning

Procedia PDF Downloads 15