Search results for: land cover classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5097

Search results for: land cover classification

1917 Sustainable Use of Fresh Groundwater Lens of Pleistocene Aquifer in Nam Dinh, Vietnam

Authors: Tran Thanh Le, Pham Trong Duc

Abstract:

The fresh groundwater lens of the Pleistocene aquifer in Nam Dinh was formed since 12,900 years ago. Currently, the Pleistocene aquifer has been continuously exploited on average of 154,163m3/day, distributed mainly in the districts of Nghia Hung, Hai Hau, a part of Truc Ninh, Y Yen, Nam Truc and Giao Thuy. The groundwater level is still on a declining trend, saltwater intrusion in this freshwater lens can occur if the growth rate in exploitation is maintained. This study focused on groundwater sustainable use by means of 4 groups of criteria including: Groundwater quality and pollution; Aquifers’ productivity and capacity; Environment impacts due to exploitation (groundwater level decline, land subsidence due to water exploitation); Social and economic impacts. Using a combination of methods including field surveys, geophysics, hydrogeochemistry, isotope and numerical models to determine safe groundwater exploitation thresholds for the whole study area has been determined to be 544,314m3/day and the actual exploitation amount is currently about 30% compared to the safe exploitation threshold. However, it should also be noted that the current groundwater exploitation threshold and level of its exploitation compared to the safe exploitation threshold of each locality are not the same. From this result, the groundwater exploitation threshold map of the study area was established to serve the management, licensing and orientation of groundwater exploitation.

Keywords: criteria, groundwater, fresh groundwater lens, pleistocene, Nam Dinh

Procedia PDF Downloads 156
1916 Diagnosis of Alzheimer Diseases in Early Step Using Support Vector Machine (SVM)

Authors: Amira Ben Rabeh, Faouzi Benzarti, Hamid Amiri, Mouna Bouaziz

Abstract:

Alzheimer is a disease that affects the brain. It causes degeneration of nerve cells (neurons) and in particular cells involved in memory and intellectual functions. Early diagnosis of Alzheimer Diseases (AD) raises ethical questions, since there is, at present, no cure to offer to patients and medicines from therapeutic trials appear to slow the progression of the disease as moderate, accompanying side effects sometimes severe. In this context, analysis of medical images became, for clinical applications, an essential tool because it provides effective assistance both at diagnosis therapeutic follow-up. Computer Assisted Diagnostic systems (CAD) is one of the possible solutions to efficiently manage these images. In our work; we proposed an application to detect Alzheimer’s diseases. For detecting the disease in early stage we used the three sections: frontal to extract the Hippocampus (H), Sagittal to analysis the Corpus Callosum (CC) and axial to work with the variation features of the Cortex(C). Our method of classification is based on Support Vector Machine (SVM). The proposed system yields a 90.66% accuracy in the early diagnosis of the AD.

Keywords: Alzheimer Diseases (AD), Computer Assisted Diagnostic(CAD), hippocampus, Corpus Callosum (CC), cortex, Support Vector Machine (SVM)

Procedia PDF Downloads 384
1915 Establishment and Improvement of Oil Palm Liquid Culture for Clonal Propagation

Authors: Mohd Naqiuddin Bin Husri, Siti Rahmah Abd Rahman, Dalilah Abu Bakar, Dayang Izawati Abang Masli, Meilina Ong Abdullah

Abstract:

A serious shortage of prime agricultural land coupled with environmental concerns inland expansion has daunted efforts to increase the national yield average. To address this issue, maximising yield per unit hectare through quality planting material is of great importance. Breeding for improved planting materials has been a continuous effort since the early days of this industry, it is time-consuming, and the likelihood of segregation within the progenies further impedes progress in this area. Incorporation of the cloning technology in oil palm breeding programmes is therefore advantageous to expedite the development of commercial elite and high-yielding planting materials. After more than 22 years of research and development through this project, reliable protocols for liquid/suspension culture systems coupled with various innovative technologies which are effective at promoting proliferation and growth of oil palm culture have been established. Subsequently, clonal palms derived from the suspension culture system were extensively studied in the field, and the results have been encouraging. Clones such as CPS1, CPS2 and a few others recorded superior performance in comparison with D x P standard crosses.

Keywords: tissue culture, suspension culture, oil palm, Elaeis guineensis

Procedia PDF Downloads 189
1914 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks

Authors: Radhika Ranjan Roy

Abstract:

Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.

Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve

Procedia PDF Downloads 77
1913 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System

Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas

Abstract:

This paper presents a comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in the speaker-dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signals to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients give best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose, the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfies the real-time requirements and is suitable for applications in embedded systems.

Keywords: isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW

Procedia PDF Downloads 493
1912 Application of Mobile Aluminium Light Structure Housing System in Sustainable Building Process

Authors: Wang Haining, Zhang Hong

Abstract:

In China, rapid urbanization needs more and more buildings constructed for the growing population in cities. With the help of the methodology which contains investigation, contrastive analysis, design based on component with BIM and experiment before real construction, this research based on mobile light structure system, trying to the sustainable problems partly in present China by systematic study. The system cannot replace the permanent heavy structure completely. So the goal is the improvement of the whole building system by the addition of light structure. This house system uses modularized envelopes and standardized connections, which are pre-fabricated and assembled in factories and transported like containers. Aluminum is used as the structural material in this system, and inorganic thermal insulation material used in the envelope, which have high fireproof properties. The relationship between manufactory and construction of the system is progressive hierarchy. They exist as First Industrial, Second Industrial, Third Industrial and Site Assembly Stage. It could maximize the land usage capacity by fully exploit the area where normal permanent architecture can't take advantage of. Not only the building system itself especially the thermal isolated materials used and active solar photovoltaic system equipped can save energy, but also the way of product development is sustainable.

Keywords: aluminum house, light Structure, rapid assembly, repeat construction

Procedia PDF Downloads 491
1911 Blind Channel Estimation for Frequency Hopping System Using Subspace Based Method

Authors: M. M. Qasaymeh, M. A. Khodeir

Abstract:

Subspace channel estimation methods have been studied widely. It depends on subspace decomposition of the covariance matrix to separate signal subspace from noise subspace. The decomposition normally is done by either Eigenvalue Decomposition (EVD) or Singular Value Decomposition (SVD) of the Auto-Correlation matrix (ACM). However, the subspace decomposition process is computationally expensive. In this paper, the multipath channel estimation problem for a Slow Frequency Hopping (SFH) system using noise space based method is considered. An efficient method to estimate multipath the time delays basically is proposed, by applying MUltiple Signal Classification (MUSIC) algorithm which used the null space extracted by the Rank Revealing LU factorization (RRLU). The RRLU provides accurate information about the rank and the numerical null space which make it a valuable tool in numerical linear algebra. The proposed novel method decreases the computational complexity approximately to the half compared with RRQR methods keeping the same performance. Computer simulations are also included to demonstrate the effectiveness of the proposed scheme.

Keywords: frequency hopping, channel model, time delay estimation, RRLU, RRQR, MUSIC, LS-ESPRIT

Procedia PDF Downloads 408
1910 A Different Approach to Smart Phone-Based Wheat Disease Detection System Using Deep Learning for Ethiopia

Authors: Nathenal Thomas Lambamo

Abstract:

Based on the fact that more than 85% of the labor force and 90% of the export earnings are taken by agriculture in Ethiopia and it can be said that it is the backbone of the overall socio-economic activities in the country. Among the cereal crops that the agriculture sector provides for the country, wheat is the third-ranking one preceding teff and maize. In the present day, wheat is in higher demand related to the expansion of industries that use them as the main ingredient for their products. The local supply of wheat for these companies covers only 35 to 40% and the rest 60 to 65% percent is imported on behalf of potential customers that exhaust the country’s foreign currency reserves. The above facts show that the need for this crop in the country is too high and in reverse, the productivity of the crop is very less because of these reasons. Wheat disease is the most devastating disease that contributes a lot to this unbalance in the demand and supply status of the crop. It reduces both the yield and quality of the crop by 27% on average and up to 37% when it is severe. This study aims to detect the most frequent and degrading wheat diseases, Septoria and Leaf rust, using the most efficiently used subset of machine learning technology, deep learning. As a state of the art, a deep learning class classification technique called Convolutional Neural Network (CNN) has been used to detect diseases and has an accuracy of 99.01% is achieved.

Keywords: septoria, leaf rust, deep learning, CNN

Procedia PDF Downloads 74
1909 Farm-Women in Technology Transfer to Foster the Capacity Building of Agriculture: A Forecast from a Draught-Prone Rural Setting in India

Authors: Pradipta Chandra, Titas Bhattacharjee, Bhaskar Bhowmick

Abstract:

The foundation of economy in India is primarily based on agriculture while this is the most neglected in the rural setting. More significantly, household women take part in agriculture with higher involvement. However, because of lower education of women they have limited access towards financial decisions, land ownership and technology but they have vital role towards the individual family level. There are limited studies on the institution-wise training barriers with the focus of gender disparity. The main purpose of this paper is to find out the factors of institution-wise training (non-formal education) barriers in technology transfer with the focus of participation of rural women in agriculture. For this study primary and secondary data were collected in the line of qualitative and quantitative approach. Qualitative data were collected by several field visits in the adjacent areas of Seva-Bharati, Seva Bharati Krishi Vigyan Kendra through semi-structured questionnaires. In the next level detailed field surveys were conducted with close-ended questionnaires scored on the seven-point Likert scale. Sample size was considered as 162. During the data collection the focus was to include women although some biasness from the end of respondents and interviewer might exist due to dissimilarity in observation, views etc. In addition to that the heterogeneity of sample is not very high although female participation is more than fifty percent. Data were analyzed using Exploratory Factor Analysis (EFA) technique with the outcome of three significant factors of training barriers in technology adoption by farmers: (a) Failure of technology transfer training (TTT) comprehension interprets that the technology takers, i.e., farmers can’t understand the technology either language barrier or way of demonstration exhibited by the experts/ trainers. (b) Failure of TTT customization, articulates that the training for individual farmer, gender crop or season-wise is not tailored. (c) Failure of TTT generalization conveys that absence of common training methods for individual trainers for specific crops is more prominent at the community level. The central finding is that the technology transfer training method can’t fulfill the need of the farmers under an economically challenged area. The impact of such study is very high in the area of dry lateritic and resource crunch area of Jangalmahal under Paschim Medinipur district, West Bengal and areas with similar socio-economy. Towards the policy level decision this research may help in framing digital agriculture for implementation of the appropriate information technology for the farming community, effective and timely investment by the government with the selection of beneficiary, formation of farmers club/ farm science club etc. The most important research implication of this study lies upon the contribution towards the knowledge diffusion mechanism of the agricultural sector in India. Farmers may overcome the barriers to achieve higher productivity through adoption of modern farm practices. Corporates will be interested in agro-sector through investment under corporate social responsibility (CSR). The research will help in framing public or industry policy and land use pattern. Consequently, a huge mass of rural farm-women will be empowered and farmer community will be benefitted.

Keywords: dry lateritic zone, institutional barriers, technology transfer in India, farm-women participation

Procedia PDF Downloads 372
1908 Epileptic Seizure Onset Detection via Energy and Neural Synchronization Decision Fusion

Authors: Marwa Qaraqe, Muhammad Ismail, Erchin Serpedin

Abstract:

This paper presents a novel architecture for a patient-specific epileptic seizure onset detector using scalp electroencephalography (EEG). The proposed architecture is based on the decision fusion calculated from energy and neural synchronization related features. Specifically, one level of the detector calculates the condition number (CN) of an EEG matrix to evaluate the amount of neural synchronization present within the EEG channels. On a parallel level, the detector evaluates the energy contained in four EEG frequency subbands. The information is then fed into two independent (parallel) classification units based on support vector machines to determine the onset of a seizure event. The decisions from the two classifiers are then combined together according to two fusion techniques to determine a global decision. Experimental results demonstrate that the detector based on the AND fusion technique outperforms existing detectors with a sensitivity of 100%, detection latency of 3 seconds, while it achieves a 2:76 false alarm rate per hour. The OR fusion technique achieves a sensitivity of 100%, and significantly improves delay latency (0:17 seconds), yet it achieves 12 false alarms per hour.

Keywords: epilepsy, EEG, seizure onset, electroencephalography, neuron, detection

Procedia PDF Downloads 475
1907 Effect of Aging Time and Mass Concentration on the Rheological Behavior of Vase of Dam

Authors: Hammadi Larbi

Abstract:

Water erosion, the main cause of the siltation of a dam, is a natural phenomenon governed by natural physical factors such as aggressiveness, climate change, topography, lithology, and vegetation cover. Currently, a vase from certain dams is released downstream of the dikes during devastation by hydraulic means. The vases are characterized by complex rheological behaviors: rheofluidification, yield stress, plasticity, and thixotropy. In this work, we studied the effect of the aging time of the vase in the dam and the mass concentration of the vase on the flow behavior of a vase from the Fergoug dam located in the Mascara region. In order to test the reproducibility of results, two replicates were performed for most of the experiments. The flow behavior of the vase studied as a function of storage time and mass concentration is analyzed by the Herschel Bulkey model. The increase in the aging time of the vase in the dam causes an increase in the yield stress and the consistency index of the vase. This phenomenon can be explained by the adsorption of the water by the vase and the increase in volume by swelling, which modifies the rheological parameters of the vase. The increase in the mass concentration in the vase leads to an increase in the yield stress and the consistency index as a function of the concentration. This behavior could be explained by interactions between the granules of the vase suspension. On the other hand, the increase in the aging time and the mass concentration of the vase in the dam causes a reduction in the flow index of the vase. The study also showed an exponential decrease in apparent viscosity with the increase in the aging time of the vase in the dam. If a vase is allowed to age long enough for the yield stress to be close to infinity, its apparent viscosity is also close to infinity; then the apparent viscosity also tends towards infinity; this can, for example, subsequently pose problems when dredging dams. For good dam management, it could be then deduced to reduce the dredging time of the dams as much as possible.

Keywords: vase of dam, aging time, rheological behavior, yield stress, apparent viscosity, thixotropy

Procedia PDF Downloads 27
1906 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 112
1905 Impact of Ship Traffic to PM 2.5 and Particle Number Concentrations in Three Port-Cities of the Adriatic/Ionian Area

Authors: Daniele Contini, Antonio Donateo, Andrea Gambaro, Athanasios Argiriou, Dimitrios Melas, Daniela Cesari, Anastasia Poupkou, Athanasios Karagiannidis, Apostolos Tsakis, Eva Merico, Rita Cesari, Adelaide Dinoi

Abstract:

Emissions of atmospheric pollutants from ships and harbour activities are a growing concern at International level given their potential impacts on air quality and climate. These close-to-land emissions have potential impact on local communities in terms of air quality and health. Recent studies show that the impact of maritime traffic to atmospheric particulate matter concentrations in several coastal urban areas is comparable with the impact of road traffic of a medium size town. However, several different approaches have been used for these estimates making difficult a direct comparison of results. In this work an integrated approach based on emission inventories and dedicated measurement campaigns has been applied to give a comparable estimate of the impact of maritime traffic to PM2.5 and particle number concentrations in three major harbours of the Adriatic/Ionian Seas. The influences of local meteorology and of the logistic layout of the harbours are discussed.

Keywords: ship emissions, PM2.5, particle number concentrations, impact of shipping to atmospheric aerosol

Procedia PDF Downloads 751
1904 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery

Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao

Abstract:

Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.

Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset

Procedia PDF Downloads 118
1903 Theorising Chinese as a Foreign Language Curriculum Justice in the Australian School Context

Authors: Wen Xu

Abstract:

The expansion of Confucius institutes and Chinese as a Foreign Language (CFL) education is often considered as cultural invasion and part of much bigger, if not ambitious, Chinese central government agenda among Western public opinion. The CFL knowledge and teaching practice inherent in textbooks are also harshly critiqued as failing to align with Western educational principles. This paper takes up these concerns and attempts to articulate that Confucius’s idea of ‘education without discrimination’ appears to have become synonymous with social justice touted in contemporary Australian education and policy discourses. To do so, it capitalises on Bernstein's conceptualization of classification and pedagogic rights to articulate CFL curriculum's potential of drawing in and drawing out curriculum boundaries to achieve educational justice. In this way, the potential useful knowledge of CFL constitutes a worthwhile tool to engage in a peripheral Western country’s education issues, as well as to include disenfranchised students in the multicultural Australian society. It opens spaces for critically theorising CFL curricular justice in Australian educational contexts, and makes an original contribution to scholarly argumentation that CFL curriculum has the potential of including socially and economically disenfranchised students in schooling.

Keywords: curriculum justice, Chinese as a Foreign Language curriculum, Bernstein, equity

Procedia PDF Downloads 143
1902 Recycled Plastic Fibers for Minimizing Plastic Shrinkage Cracking of Cement Based Mortar

Authors: B. S. Al-Tulaian, M. J. Al-Shannag, A. M. Al-Hozaimy

Abstract:

The development of new construction materials using recycled plastic is important to both the construction and the plastic recycling industries. Manufacturing of fibers from industrial or post-consumer plastic waste is an attractive approach with such benefits as concrete performance enhancement, and reduced needs for land filling. The main objective of this study is to investigate the effect of plastic fibers obtained locally from recycled waste on plastic shrinkage cracking of ordinary cement based mortar. Parameters investigated include: Fiber length ranging from 20 to 50 mm, and fiber volume fraction ranging from 0% to 1.5% by volume. The test results showed significant improvement in crack arresting mechanism and substantial reduction in the surface area of cracks for the mortar reinforced with recycled plastic fibers compared to plain mortar. Furthermore, test results indicated that there was a slight decrease in compressive strength of mortar reinforced with different lengths and contents of recycled fibers compared to plain mortar. This study suggests that adding more than 1% of RP fibers to mortar, can be used effectively for controlling plastic shrinkage cracking of cement based mortar, and thus results in waste reduction and resources conservation.

Keywords: mortar, plastic, shrinkage cracking, compressive strength, RF recycled fibers

Procedia PDF Downloads 406
1901 The Competing Roles of Educator, Music Teacher, and Musician in Professional Identity Development: A Longitudinal Autoethnography

Authors: Thomas LaRocca

Abstract:

This study explores the development of a public-school music teacher’s professional identity within three domains: as an educator in the profession at large, as a music teacher in a school, and as a professional musician. An autoethnographic method is employed by calling upon undergraduate student teaching reflections, graduate writing assignments and presentations, cover letters for employment, professional correspondence, and reflective memos. These artifacts provide a reference for phenomenological insights into the values, hopes, and criticisms within each domain over time –all of which provide a window into the overall ontological perspective of one’s professional life at different moments in their career. While the topic of music teacher identity has been examined using autoethnographical methods before, by accessing materials over the course of ten years, the study is able to investigate the ‘how’ of identity development in a temporal context; from undergraduate student to established professional. Additionally, while the field offers a considerable amount of work surrounding the child and adolescent identity development, there are unmined opportunities to examine identity development in the adult years, especially surrounding adult professional life. Employing a postpositivist approach with social constructionism as a backdrop, this study examines adult identity formation and the contradictions, resonances, and priorities within each domain, between each domain, and perceived expectations of the professional community. What is revealed is a journey of self-improvement motivated by failure and success, marked by negotiation and sacrifice; as each domain competes for mental and temporal resources, identity is viewed as not just who one is, but also as what one leaves behind. These insights offer a window into the ontology of identity of a music educator and may provide considerations for differentiating professional development based on what stage educators are at in their careers.

Keywords: identity, longitudinal autoethnography, music teacher education, music teacher ontology

Procedia PDF Downloads 138
1900 The Initiation of Privatization, Market Structure, and Free Entry with Vertically Related Markets

Authors: Hung-Yi Chen, Shih-Jye Wu

Abstract:

The existing literature provides little discussion on why a public monopolist gives up its market dominant position and allows private firms entering the market. We argue that the privatization of a public monopolist under a vertically related market may induce the entry of private firms. We develop a model of a mixed oligopoly with vertically related markets to explain the change in the market from a public monopolist to a mixed oligopoly and examine issues on privatizing the downstream public enterprise both in the short run and long run in the vertically related markets. We first show that the welfare-maximizing public monopoly firm is suboptimal in the vertically related markets. This is due to the fact that the privatization will reduce the input price charged by the upstream foreign monopolist. Further, the privatization will induce the entry of private firms since input price will decrease after privatization. Third, we demonstrate that the complete privatizing the public firm becomes a possible solution if the entry cost of private firm is low. Finally, we indicate that the public firm should partially privatize if the free-entry of private firms is allowed. JEL classification: F12, F14, L32, L33

Keywords: free entry, mixed oligopoly, public monopoly, the initiation of privatization, vertically related markets, mixed oligopoly

Procedia PDF Downloads 135
1899 Jesus’ Approach in Liberation of the Poor, Luke 4:18-19: Lesson for Nigerian Leaders

Authors: Aboekwe, Mary Emilia

Abstract:

Jesus’ mission was not only a religious one but had social and political implications. From the birth to the death of Jesus, God’s message of liberation is proclaimed in and through Jesus. This work studied Jesus’ inaugural mission in Luke 4: 18 -19 in the context of Nigerian leaders. A theological interpretation was adopted and it was discovered that Luke 4: 18-19 unfolded Jesus’ mission statement. This mission statement centered in preaching the good news to the poor, the release of the captives, healing the sick, liberation to the oppressed, and favour and abundance in the land. Related to the Jewish-Roman world of Jesus and the Nigerian nation, it was discovered that most of the maladies enumerated in Jesus’ inaugural mission statement were prevalent in Nigerian society. Maladies like poverty, oppression, violence, sickness and diseases are widespread in Nigeria. Poverty affects all, irrespective of gender, religion, or ethnicity. There is insecurity everywhere. Unemployment bites harder on Nigeria’s youthful population, and they are unable to find a job at the prevailing wage rate. To this effect, therefore, this study proposes Jesus’ liberative technique as a solution to these maladies prevalent in the country. The work equally challenged the Nigerian leaders to emulate Jesus’ mission statement and take proactive measures in fighting against these social challenges resident in Nigeria today.

Keywords: liberation, leadership, maladies, poverty

Procedia PDF Downloads 75
1898 Killing Your Children to Hurt Your Partner: Motivations for Revenge Filicide

Authors: Melanie Moen, Christiaan Bezuidenhout

Abstract:

Cases of parents murdering their offspring are incomprehensible but sadly as old as humanity itself. The act of killing your own child is known as filicide. Revenge filicide is an act where one parent kills their own offspring for retribution for hurting and upsetting the other parent. The true extent of filicide in South Africa is unknown, but in the United States, filicide constitutes more or less 2.5% of all murders. The focus of this contribution is to extend the knowledge of revenge filicide. Data was collected through court documents and newspaper articles. Newspapers that cover murder cases are between 75% to 100% accurate compared to official sources. Often family-related murders are violent in nature, and for this reason, these crimes receive extensive media coverage. The cases of twenty revenge filicide murderers (14 male and 6 female) were qualitatively analyzed to determine the motivations and offense characteristics of revenge filicide offenders. Findings related to a loss of social identity due to rejection; extreme rage-type anger; external locus of control; sadism; a desire to cause pain, and a need to inflict harm. The initial emotional response may escalate from mild anger to a level of narcissistic rage which eventually culminates in the murdering of the child to punish and hurt the other parent and to restore control. To our knowledge, our study is the first to systematically examine the motivations related to revenge filicides from a South African perspective. Filicide is a complex phenomenon with diverse possibilities and reasons why it occurs. However, it was apparent in this study that the motivations for revenge filicides were often linked to complex personal and interpersonal relationship problems. Further research within this field is imperative.

Keywords: revenge filicide, child murder, rage, anger, narcissistic rage, parent kills child

Procedia PDF Downloads 78
1897 A New DIDS Design Based on a Combination Feature Selection Approach

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original data set. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 data set is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.

Keywords: distributed intrusion detection system, mobile agent, feature selection, bees algorithm, decision tree

Procedia PDF Downloads 407
1896 The Determinants of Country Corruption: Unobserved Heterogeneity and Individual Choice- An empirical Application with Finite Mixture Models

Authors: Alessandra Marcelletti, Giovanni Trovato

Abstract:

Corruption in public offices is found to be the reflection of country-specific features, however, the exact magnitude and the statistical significance of its determinants effect has not yet been identified. The paper aims to propose an estimation method to measure the impact of country fundamentals on corruption, showing that covariates could differently affect the extent of corruption across countries. Thus, we exploit a model able to take into account different factors affecting the incentive to ask or to be asked for a bribe, coherently with the use of the Corruption Perception Index. We assume that discordant results achieved in literature may be explained by omitted hidden factors affecting the agents' decision process. Moreover, assuming homogeneous covariates effect may lead to unreliable conclusions since the country-specific environment is not accounted for. We apply a Finite Mixture Model with concomitant variables to 129 countries from 1995 to 2006, accounting for the impact of the initial conditions in the socio-economic structure on the corruption patterns. Our findings confirm the hypothesis of the decision process of accepting or asking for a bribe varies with specific country fundamental features.

Keywords: Corruption, Finite Mixture Models, Concomitant Variables, Countries Classification

Procedia PDF Downloads 262
1895 Accounting for Cryptocurrency: Urgent Need for an Accounting Standard

Authors: Fatima Ali Abbass, Hassan Ibrahim Rkein

Abstract:

The number of entities worldwide that currently accept digital currency as payment is increasing; however, digital currency still is not widely accepted as a medium of exchange, nor they represent legal tender. At the same time, this makes accounting for cryptocurrency, as cash (Currency) is not possible under IAS 7 and IAS 32, Cryptocurrency also cannot be accounted for as Financial Assets at fair value through profit or loss under IFRS 9. Therefore, this paper studies the possible means to account for Cryptocurrency, since, as of today, there is not yet an accounting standard that deals with cryptocurrency. The request to have a specific accounting standard is increasing from top accounting firms and from professional accounting bodies. This study uses a mixture of qualitative and quantitative analysis in its quest to explore the best possible way to account for cryptocurrency. Interviews and surveys were conducted targeting accounting professionals. This study highlighted the deficiencies in the current way of accounting for Cryptocurrency as intangible Assets with an indefinite life. The deficiency becomes well highlighted, as the asset will then be subject to impairment, where under GAAP, only depreciation in the value of the intangible asset is recognized. On the other hand, appreciation in the value of the asset is ignored, and this prohibits the reporting entity from showing the true value of the cryptocurrency asset. This research highlights the gap that arises due to using accounting standards that are not specific for Cryptocurrency and this study confirmed that there is an urgent need to call upon the accounting standards setters (IASB and FASB) to issue accounting standards specifically for Cryptocurrency.

Keywords: cryptocurrency, accounting, IFRS, GAAP, classification, measurement

Procedia PDF Downloads 95
1894 Bridging the Gap Between Student Needs and Labor Market Requirements in the Translation Industry in Saudi Arabia

Authors: Sultan Samah A Almjlad

Abstract:

The translation industry in Saudi Arabia is experiencing significant shifts driven by Vision 2030, which aims to diversify the economy and enhance international engagement. This change highlights the need for translators who are skilled in various languages and cultures, playing a crucial role in the nation's global integration efforts. However, there's a notable gap between the skills taught in academic institutions and what the job market demands. Many translation programs in Saudi universities don't align well with industry needs, resulting in graduates who may not meet employer expectations. To tackle this challenge, it's essential to thoroughly analyze the market to identify the key skills required, especially in sectors like legal, medical, technical, and audiovisual translation. At the same time, existing translation programs need to be evaluated to see if they cover necessary topics and provide practical training. Involving stakeholders such as translation agencies, professionals, and students is crucial to gather diverse perspectives. Identifying discrepancies between academic offerings and market demands will guide the development of targeted strategies. These strategies may include enriching curricula with industry-specific content, integrating emerging technologies like machine translation and CAT tools, and establishing partnerships with industry players to offer practical training opportunities and internships. Industry-led workshops and seminars can provide students with valuable insights, and certification programs can validate their skills. By aligning academic programs with industry needs, Saudi Arabia can build a skilled workforce of translators, supporting its economic diversification goals under Vision 2030. This alignment benefits both students and the industry, contributing to the growth of the translation sector and the overall development of the country.

Keywords: translation industry, briging gap, labor market, requirements

Procedia PDF Downloads 36
1893 Design and Implementation Guidance System of Guided Rocket RKX-200 Using Optimal Guidance Law

Authors: Amalia Sholihati, Bambang Riyanto Trilaksono

Abstract:

As an island nation, is a necessity for the Republic of Indonesia to have a capable military defense on land, sea or air that the development of military weapons such as rockets for air defense becomes very important. RKX rocket-200 is one of the guided missiles which are developed by consortium Indonesia and coordinated by LAPAN that serve to intercept the target. RKX-200 is designed to have the speed of Mach 0.5-0.9. RKX rocket-200 belongs to the category two-stage rocket that control is carried out on the second stage when the rocket has separated from the booster. The requirement for better performance to intercept missiles with higher maneuverability continues to push optimal guidance law development, which is derived from non-linear equations. This research focused on the design and implementation of a guidance system based OGL on the rocket RKX-200 while considering the limitation of rockets such as aerodynamic rocket and actuator. Guided missile control system has three main parts, namely, guidance system, navigation system and autopilot systems. As for other parts such as navigation systems and other supporting simulated on MATLAB based on the results of previous studies. In addition to using the MATLAB simulation also conducted testing with hardware-based ARM TWR-K60D100M conjunction with a navigation system and nonlinear models in MATLAB using Hardware-in-the-Loop Simulation (HILS).

Keywords: RKX-200, guidance system, optimal guidance law, Hils

Procedia PDF Downloads 252
1892 Psoriasis Diagnostic Test Development: Exploratory Study

Authors: Salam N. Abdo, Orien L. Tulp, George P. Einstein

Abstract:

The purpose of this exploratory study was to gather the insights into psoriasis etiology, treatment, and patient experience, for developing psoriasis and psoriatic arthritis diagnostic test. Data collection methods consisted of a comprehensive meta-analysis of relevant studies and psoriasis patient survey. Established meta-analysis guidelines were used for the selection and qualitative comparative analysis of psoriasis and psoriatic arthritis research studies. Only studies that clearly discussed psoriasis etiology, treatment, and patient experience were reviewed and analyzed, to establish a qualitative data base for the study. Using the insights gained from meta-analysis, an existing psoriasis patient survey was modified and administered to collect additional data as well as triangulate the results. The hypothesis is that specific types of psoriatic disease have specific etiology and pathophysiologic pattern. The following etiology categories were identified: bacterial, environmental/microbial, genetic, immune, infectious, trauma/stress, and viral. Additional results, obtained from meta-analysis and confirmed by patient survey, were the common age of onset (early to mid-20s) and type of psoriasis (plaque; mild; symmetrical; scalp, chest, and extremities, specifically elbows and knees). Almost 70% of patients reported no prescription drug use due to severe side effects and prohibitive cost. These results will guide the development of psoriasis and psoriatic arthritis diagnostic test. The significant number of medical publications classified psoriatic arthritis disease as inflammatory of an unknown etiology. Thus numerous meta-analyses struggle to report any meaningful conclusions since no definitive results have been reported to date. Therefore, return to the basics is an essential step to any future meaningful results. To date, medical literature supports the fact that psoriatic disease in its current classification could be misidentifying subcategories, which in turn hinders the success of studies conducted to date. Moreover, there has been an enormous commercial support to pursue various immune-modulation therapies, thus following a narrow hypothesis/mechanism of action that is yet to yield resolution of disease state. Recurrence and complications may be considered unacceptable in a significant number of these studies. The aim of the ongoing study is to focus on a narrow subgroup of patient population, as identified by this exploratory study via meta-analysis and patient survey, and conduct an exhaustive work up, aiming at mechanism of action and causality before proposing a cure or therapeutic modality. Remission in psoriasis has been achieved and documented in medical literature, such as immune-modulation, phototherapy, various over-the-counter agents, including salts and tar. However, there is no psoriasis and psoriatic arthritis diagnostic test to date, to guide the diagnosis and treatment of this debilitating and, thus far, incurable disease. Because psoriasis affects approximately 2% of population, the results of this study may affect the treatment and improve the quality of life of a significant number of psoriasis patients, potentially millions of patients in the United States alone and many more millions worldwide.

Keywords: biologics, early diagnosis, etiology, immune disease, immune modulation therapy, inflammation skin disorder, phototherapy, plaque psoriasis, psoriasis, psoriasis classification, psoriasis disease marker, psoriasis diagnostic test, psoriasis marker, psoriasis mechanism of action, psoriasis treatment, psoriatic arthritis, psoriatic disease, psoriatic disease marker, psoriatic patient experience, psoriatic patient quality of life, remission, salt therapy, targeted immune therapy

Procedia PDF Downloads 117
1891 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review

Authors: Agastya Pratap Singh

Abstract:

Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.

Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation

Procedia PDF Downloads 19
1890 Prediction of Survival Rate after Gastrointestinal Surgery Based on The New Japanese Association for Acute Medicine (JAAM Score) With Neural Network Classification Method

Authors: Ayu Nabila Kusuma Pradana, Aprinaldi Jasa Mantau, Tomohiko Akahoshi

Abstract:

The incidence of Disseminated intravascular coagulation (DIC) following gastrointestinal surgery has a poor prognosis. Therefore, it is important to determine the factors that can predict the prognosis of DIC. This study will investigate the factors that may influence the outcome of DIC in patients after gastrointestinal surgery. Eighty-one patients were admitted to the intensive care unit after gastrointestinal surgery in Kyushu University Hospital from 2003 to 2021. Acute DIC scores were estimated using the new Japanese Association for Acute Medicine (JAAM) score from before and after surgery from day 1, day 3, and day 7. Acute DIC scores will be compared with The Sequential Organ Failure Assessment (SOFA) score, platelet count, lactate level, and a variety of biochemical parameters. This study applied machine learning algorithms to predict the prognosis of DIC after gastrointestinal surgery. The results of this study are expected to be used as an indicator for evaluating patient prognosis so that it can increase life expectancy and reduce mortality from cases of DIC patients after gastrointestinal surgery.

Keywords: the survival rate, gastrointestinal surgery, JAAM score, neural network, machine learning, disseminated intravascular coagulation (DIC)

Procedia PDF Downloads 255
1889 Logistics Process of Pineapple’s Leaves Product in Prachuapkhirikhan Province

Authors: Atcharawan Phenwansuk

Abstract:

The product design is important to the development of SME towards the global, because it made to the quality product to react the needs of consumers and could reduces cost in the production, making it more profitable. As a results, the business are competition advantage for more marketing. It also enhance image of product and firms to build its own brand products to be acceptable. The product was designed should be shape, size, colorful, and direct of target consumers. This is method to add value products to get popular and effective, because the beauty is first satisfaction which come from main shape and color of the design product, but the product was designed need to hold data and law combination of shape and color between artistic theory and satisfaction of consumers together. The design must consider the safety of life and asset of consumers the most important. From to use of designed products should be to consider the cost savings, convenient distance, transportation, routes (land, water or air) of living space on transport (capacity, volume, width, length of the car, truck and container, etc). The packaging must be can to prevent not damage of the products. If products is more large , maybe to design new packaging, which can easily disassembled for make smaller package such as designing the assembly. Products must be packed in the container for size standard for save costs, as well as the buyer can make transport and assembly of products to fit easily on your own.

Keywords: logistics process , pineapple’s leaves product, product design, satisfaction of consumers

Procedia PDF Downloads 397
1888 A Study of Transferable Strategies in Multilanguage Learning

Authors: Zixi You

Abstract:

With the demand of multilingual speakers increasing in the job market, multi-language learning programs have become more and more popular among undergraduate students. A study on multi-language learning strategies is therefore highly demanded on both practical and theoretical levels. Based on previous classification of learning strategies in SLA, and an investigation of BA Modern Language program students (with post-A level L2 and ab initio L3 learning experience from year one), this study explores and compares different types of learning strategies used by multi-language speakers and learners, transferable learning strategies between L2 and L3, and factors affecting the transfer. The results indicate that all the 23 types of learning strategies of L2 are employed when learning L3 from ab initio level, yet with different tendencies. Learning strategy transfer from L2 to L3 (i.e., the learners attribute the applying of these L3 learning strategies to be a direct result of their L2 learning experience) are observed in all 23 types of learning strategies. Comparatively, six types of “cognitive strategies” have higher transfer tendency than others. With regard to the failure of the transfer of some particular L2 strategies and the development of independent L3 strategies of individual learners, factors such as language proficiency, language typology and learning environment have played important roles among others. The presentation of this study will provide audiences with detailed data, insightful analysis and discussion on both theoretical and practical aspects of multi-language learning that will benefit both students and educators.

Keywords: learning strategy, multi-language acquisition, second language acquisition, strategy transfer

Procedia PDF Downloads 573