Search results for: graph attention neural network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9489

Search results for: graph attention neural network

6309 Optimizing Heavy-Duty Green Hydrogen Refueling Stations: A Techno-Economic Analysis of Turbo-Expander Integration

Authors: Christelle Rabbat, Carole Vouebou, Sary Awad, Alan Jean-Marie

Abstract:

Hydrogen has been proven to be a viable alternative to standard fuels as it is easy to produce and only generates water vapour and zero carbon emissions. However, despite the hydrogen benefits, the widespread adoption of hydrogen fuel cell vehicles and internal combustion engine vehicles is impeded by several challenges. The lack of refueling infrastructures remains one of the main hindering factors due to the high costs associated with their design, construction, and operation. Besides, the lack of hydrogen vehicles on the road diminishes the economic viability of investing in refueling infrastructure. Simultaneously, the absence of accessible refueling stations discourages consumers from adopting hydrogen vehicles, perpetuating a cycle of limited market uptake. To address these challenges, the implementation of adequate policies incentivizing the use of hydrogen vehicles and the reduction of the investment and operation costs of hydrogen refueling stations (HRS) are essential to put both investors and customers at ease. Even though the transition to hydrogen cars has been rather slow, public transportation companies have shown a keen interest in this highly promising fuel. Besides, their hydrogen demand is easier to predict and regulate than personal vehicles. Due to the reduced complexity of designing a suitable hydrogen supply chain for public vehicles, this sub-sector could be a great starting point to facilitate the adoption of hydrogen vehicles. Consequently, this study will focus on designing a chain of on-site green HRS for the public transportation network in Nantes Metropole leveraging the latest relevant technological advances aiming to reduce the costs while ensuring reliability, safety, and ease of access. To reduce the cost of HRS and encourage their widespread adoption, a network of 7 H35-T40 HRS has been designed, replacing the conventional J-T valves with turbo-expanders. Each station in the network has a daily capacity of 1,920 kg. Thus, the HRS network can produce up to 12.5 tH2 per day. The detailed cost analysis has revealed a CAPEX per station of 16.6 M euros leading to a network CAPEX of 116.2 M euros. The proposed station siting prioritized Nantes metropole’s 5 bus depots and included 2 city-centre locations. Thanks to the turbo-expander technology, the cooling capacity of the proposed HRS is 19% lower than that of a conventional station equipped with J-T valves, resulting in significant CAPEX savings estimated at 708,560 € per station, thus nearly 5 million euros for the whole HRS network. Besides, the turbo-expander power generation ranges from 7.7 to 112 kW. Thus, the power produced can be used within the station or sold as electricity to the main grid, which would, in turn, maximize the station’s profit. Despite the substantial initial investment required, the environmental benefits, cost savings, and energy efficiencies realized through the transition to hydrogen fuel cell buses and the deployment of HRS equipped with turbo-expanders offer considerable advantages for both TAN and Nantes Metropole. These initiatives underscore their enduring commitment to fostering green mobility and combatting climate change in the long term.

Keywords: green hydrogen, refueling stations, turbo-expander, heavy-duty vehicles

Procedia PDF Downloads 56
6308 Second Order Cone Optimization Approach to Two-stage Network DEA

Authors: K. Asanimoghadam, M. Salahi, A. Jamalian

Abstract:

Data envelopment analysis is an approach to measure the efficiency of decision making units with multiple inputs and outputs. The structure of many decision making units also has decision-making subunits that are not considered in most data envelopment analysis models. Also, the inputs and outputs of the decision-making units usually are considered desirable, while in some real-world problems, the nature of some inputs or outputs are undesirable. In this thesis, we study the evaluation of the efficiency of two stage decision-making units, where some outputs are undesirable using two non-radial models, the SBM and the ASBM models. We formulate the nonlinear ASBM model as a second order cone optimization problem. Finally, we compare two models for both external and internal evaluation approaches for two real world example in the presence of undesirable outputs. The results show that, in both external and internal evaluations, the overall efficiency of ASBM model is greater than or equal to the overall efficiency value of the SBM model, and in internal evaluation, the ASBM model is more flexible than the SBM model.

Keywords: network DEA, conic optimization, undesirable output, SBM

Procedia PDF Downloads 194
6307 Participation in the Decision Making and Job Satisfaction in Greek Fish Farms

Authors: S. Anastasiou, C. Nathanailides

Abstract:

There is considerable evidence to suggest that employees participation in the decision-making process of an organisation, has a positive effect on job satisfaction and work performance of the employees. The purpose of the present work was to examine the HRM practices, demographics and the level of job satisfaction of employees in Greek Aquaculture fish farms. A survey of employees (n=86) in 6 Greek Aquaculture Firms was carried out. The results indicate that HRM practices such as recruitment of the personnel and communication between the departments did not vary between different firms. The most frequent method of recruitment was through the professional network or the personal network of the managers. The preferred method of HRM communication was through the line managers and through group meeting. The level of job satisfaction increased with work experience participation and participation in the decision making process. A high percentage of the employees (81,3%±8.39) felt that they frequently participated in the decision making process. The Aquaculture employees exhibited high level of job satisfaction (88,1±6.95). The level of job satisfaction was related with participation in the decision making process (-0.633, P<0.05) but was not related with as age or gender. In terms of the working conditions, employees were mostly satisfied with their work itself, their colleagues and mostly dissatisfied with working hours, salary issues and low prospects of pay rises.

Keywords: aquaculture, human resources, job satisfaction

Procedia PDF Downloads 467
6306 Cerebrovascular Modeling: A Vessel Network Approach for Fluid Distribution

Authors: Karla E. Sanchez-Cazares, Kim H. Parker, Jennifer H. Tweedy

Abstract:

The purpose of this work is to develop a simple compartmental model of cerebral fluid balance including blood and cerebrospinal-fluid (CSF). At the first level the cerebral arteries and veins are modelled as bifurcating trees with constant scaling factors between generations which are connected through a homogeneous microcirculation. The arteries and veins are assumed to be non-rigid and the cross-sectional area, resistance and mean pressure in each generation are determined as a function of blood volume flow rate. From the mean pressure and further assumptions about the variation of wall permeability, the transmural fluid flux can be calculated. The results suggest the next level of modelling where the cerebral vasculature is divided into three compartments; the large arteries, the small arteries, the capillaries and the veins with effective compliances and permeabilities derived from the detailed vascular model. These vascular compartments are then linked to other compartments describing the different CSF spaces, the cerebral ventricles and the subarachnoid space. This compartmental model is used to calculate the distribution of fluid in the cranium. Known volumes and flows for normal conditions are used to determine reasonable parameters for the model, which can then be used to help understand pathological behaviour and suggest clinical interventions.

Keywords: cerebrovascular, compartmental model, CSF model, vascular network

Procedia PDF Downloads 275
6305 Modeling of Power Network by ATP-Draw for Lightning Stroke Studies

Authors: John Morales, Armando Guzman

Abstract:

Protection relay algorithms play a crucial role in Electric Power System stability, where, it is clear that lightning strokes produce the mayor percentage of faults and outages of Transmission Lines (TLs) and Distribution Feeders (DFs). In this context, it is imperative to develop novel protection relay algorithms. However, in order to get this aim, Electric Power Systems (EPS) network have to be simulated as real as possible, especially the lightning phenomena, and EPS elements that affect their behavior like direct and indirect lightning, insulator string, overhead line, soil ionization and other. However, researchers have proposed new protection relay algorithms considering common faults, which are not produced by lightning strokes, omitting these imperative phenomena for the transmission line protection relays behavior. Based on the above said, this paper presents the possibilities of using the Alternative Transient Program ATP-Draw for the modeling and simulation of some models to make lightning stroke studies, especially for protection relays, which are developed through Transient Analysis of Control Systems (TACS) and MODELS language corresponding to the ATP-Draw.

Keywords: back-flashover, faults, flashover, lightning stroke, modeling of lightning, outages, protection relays

Procedia PDF Downloads 316
6304 Proposing an Algorithm to Cluster Ad Hoc Networks, Modulating Two Levels of Learning Automaton and Nodes Additive Weighting

Authors: Mohammad Rostami, Mohammad Reza Forghani, Elahe Neshat, Fatemeh Yaghoobi

Abstract:

An Ad Hoc network consists of wireless mobile equipment which connects to each other without any infrastructure, using connection equipment. The best way to form a hierarchical structure is clustering. Various methods of clustering can form more stable clusters according to nodes' mobility. In this research we propose an algorithm, which allocates some weight to nodes based on factors, i.e. link stability and power reduction rate. According to the allocated weight in the previous phase, the cellular learning automaton picks out in the second phase nodes which are candidates for being cluster head. In the third phase, learning automaton selects cluster head nodes, member nodes and forms the cluster. Thus, this automaton does the learning from the setting and can form optimized clusters in terms of power consumption and link stability. To simulate the proposed algorithm we have used omnet++4.2.2. Simulation results indicate that newly formed clusters have a longer lifetime than previous algorithms and decrease strongly network overload by reducing update rate.

Keywords: mobile Ad Hoc networks, clustering, learning automaton, cellular automaton, battery power

Procedia PDF Downloads 411
6303 Spatial Element Importance and Its Relation to Characters’ Emotions and Self Awareness in Michela Murgia’s Collection of Short Stories Tre Ciotole. Rituali per Un Anno DI Crisi

Authors: Nikica Mihaljević

Abstract:

Published in 2023, "Tre ciotole. Rituali per un anno di crisi" is a collection of short stories completely disconnected from one another in regard to topics and the representation of characters. However, these short stories complete and somehow continue each other in a particular way. The book happens to be Murgia's last book, as the author died a few months later after the book's publication and it appears as a kind of summary of all her previous literary works. Namely, in her previous publications, Murgia already stressed certain characters' particularities, such as solitude and alienation from others, which are at the center of attention in this literary work, too. What all the stories present in "Tre ciotole" have in common is the dealing with characters' identity and self-awareness through the challenges they confront and the way the characters live their emotions in relation to the surrounding space. Although the challenges seem similar, the spatial element around the characters is different, but it confirms each time that characters' emotions, and, consequently, their self-awareness, can be formed and built only through their connection and relation to the surrounding space. In that way, the reader creates an imaginary network of complex relations among characters in all the short stories, which gives him/her the opportunity to search for a way to break out of the usual patterns that tend to be repeated while characters focus on building self-awareness. The aim of the paper is to determine and analyze the role of spatial elements in the creation of characters' emotions and in the process of self-awareness. As the spatial element changes or gets transformed and/or substituted, in the same way, we notice the arise of the unconscious desire for self-harm in the characters, which damages their self-awareness. Namely, the characters face a crisis that they cannot control by inventing other types of crises that can be controlled. That happens to be their way of acting in order to find the way out of the identity crisis. Consequently, we expect that the results of the analysis point out the similarities in the short stories in characters' depiction as well as to show the extent to which the characters' identities depend on the surrounding space in each short story. In this way, the results will highlight the importance of spatial elements in characters' identity formation in Michela Murgia's short stories and also summarize the importance of the whole Murgia's literary opus.

Keywords: Italian literature, short stories, environment, spatial element, emotions, characters

Procedia PDF Downloads 52
6302 Strengthening Farmer-to-farmer Knowledge Sharing Network: A Pathway to Improved Extension Service Delivery

Authors: Farouk Shehu Abdulwahab

Abstract:

The concept of farmer-farmer knowledge sharing was introduced to bridge the extension worker-farmer ratio gap in developing countries. However, the idea was poorly accepted, especially in typical agrarian communities. Therefore, the study explores the concept of a farmer-to-farmer knowledge-sharing network to enhance extension service delivery. The study collected data from 80 farmers randomly selected through a series of multiple stages. The Data was analysed using a 5-point Likert scale and descriptive statistics. The Likert scale results revealed that 62.5% of the farmers are satisfied with farmer-to-farmer knowledge-sharing networks. Moreover, descriptive statistics show that lack of capacity building and low level of education are the most significant problems affecting farmer-farmer sharing networks. The major implication of these findings is that the concept of farmer-farmer knowledge-sharing networks can work better for farmers in developing countries as it was perceived by them as a reliable alternative for information sharing. Therefore, the study recommends introducing incentives into the concept of farmer-farmer knowledge-sharing networks and enhancing the capabilities of farmers who are opinion leaders in the farmer-farmer concept of knowledge-sharing to make it more sustainable.

Keywords: agricultural productivity, extension, farmer-to-farmer, livelihood, technology transfer

Procedia PDF Downloads 64
6301 Intelligent Rainwater Reuse System for Irrigation

Authors: Maria M. S. Pires, Andre F. X. Gloria, Pedro J. A. Sebastiao

Abstract:

The technological advances in the area of Internet of Things have been creating more and more solutions in the area of agriculture. These solutions are quite important for life, as they lead to the saving of the most precious resource, water, being this need to save water a concern worldwide. The paper proposes the creation of an Internet of Things system based on a network of sensors and interconnected actuators that automatically monitors the quality of the rainwater that is stored inside a tank in order to be used for irrigation. The main objective is to promote sustainability by reusing rainwater for irrigation systems instead of water that is usually available for other functions, such as other productions or even domestic tasks. A mobile application was developed for Android so that the user can control and monitor his system in real time. In the application, it is possible to visualize the data that translate the quality of the water inserted in the tank, as well as perform some actions on the implemented actuators, such as start/stop the irrigation system and pour the water in case of poor water quality. The implemented system translates a simple solution with a high level of efficiency and tests and results obtained within the possible environment.

Keywords: internet of things, irrigation system, wireless sensor and actuator network, ESP32, sustainability, water reuse, water efficiency

Procedia PDF Downloads 149
6300 Advanced Simulation and Enhancement for Distributed and Energy Efficient Scheduling for IEEE802.11s Wireless Enhanced Distributed Channel Access Networks

Authors: Fisayo G. Ojo, Shamala K. Subramaniam, Zuriati Ahmad Zukarnain

Abstract:

As technology is advancing and wireless applications are becoming dependable sources, while the physical layer of the applications are been embedded into tiny layer, so the more the problem on energy efficiency and consumption. This paper reviews works done in recent years in wireless applications and distributed computing, we discovered that applications are becoming dependable, and resource allocation sharing with other applications in distributed computing. Applications embedded in distributed system are suffering from power stability and efficiency. In the reviews, we also prove that discrete event simulation has been left behind untouched and not been adapted into distributed system as a simulation technique in scheduling of each event that took place in the development of distributed computing applications. We shed more lights on some researcher proposed techniques and results in our reviews to prove the unsatisfactory results, and to show that more work still have to be done on issues of energy efficiency in wireless applications, and congestion in distributed computing.

Keywords: discrete event simulation (DES), distributed computing, energy efficiency (EE), internet of things (IOT), quality of service (QOS), user equipment (UE), wireless mesh network (WMN), wireless sensor network (wsn), worldwide interoperability for microwave access x (WiMAX)

Procedia PDF Downloads 192
6299 Multi-Objective Electric Vehicle Charge Coordination for Economic Network Management under Uncertainty

Authors: Ridoy Das, Myriam Neaimeh, Yue Wang, Ghanim Putrus

Abstract:

Electric vehicles are a popular transportation medium renowned for potential environmental benefits. However, large and uncontrolled charging volumes can impact distribution networks negatively. Smart charging is widely recognized as an efficient solution to achieve both improved renewable energy integration and grid relief. Nevertheless, different decision-makers may pursue diverse and conflicting objectives. In this context, this paper proposes a multi-objective optimization framework to control electric vehicle charging to achieve both energy cost reduction and peak shaving. A weighted-sum method is developed due to its intuitiveness and efficiency. Monte Carlo simulations are implemented to investigate the impact of uncertain electric vehicle driving patterns and provide decision-makers with a robust outcome in terms of prospective cost and network loading. The results demonstrate that there is a conflict between energy cost efficiency and peak shaving, with the decision-makers needing to make a collaborative decision.

Keywords: electric vehicles, multi-objective optimization, uncertainty, mixed integer linear programming

Procedia PDF Downloads 179
6298 Improving Comfort and Energy Mastery: Application of a Method Based on Indicators Morpho-Energetic

Authors: Khadidja Rahmani, Nahla Bouaziz

Abstract:

The climate change and the economic crisis, which are currently running, are the origin of the emergence of many issues and problems, which are related to the domain of energy and environment in à direct or indirect manner. Since the urban space is the core element and the key to solve the current problem, particular attention is given to it in this study. For this reason, we rented to the later a very particular attention; this is for the opportunities that it provides and that can be invested to attenuate a little this situation, which is disastrous and worried, especially in the face of the requirements of sustainable development. Indeed, the purpose of this work is to develop a method, which will allow us to guide designers towards projects with a certain degree of thermo-aeraulic comfort while requiring a minimum energy consumption. In this context, the architects, the urban planners and the engineers (energeticians) have to collaborate jointly to establish a method based on indicators for the improvement of the urban environmental quality (aeraulic-thermo comfort), correlated with a reduction in the energy demand of the entities that make up this environment, in areas with a sub-humid climate. In order to test the feasibility and to validate the method developed in this work, we carried out a series of simulations using computer-based simulation. This research allows us to evaluate the impact of the use of the indicators in the design of the urban sets, on the economic and ecological plan. Using this method, we prove that an urban design, which carefully considered energetically, can contribute significantly to the preservation of the environment and the reduction of the consumption of energy.

Keywords: comfort, energy consumption, energy mastery, morpho-energetic indicators, simulation, sub-humid climate, urban sets

Procedia PDF Downloads 275
6297 Making Creative Ethnography through Droned Mode of Engagements

Authors: Elin Linder

Abstract:

Ethnographic endeavors feature a long history of creative modes of engagements, and anthropology an equally long critique of its disciplinary attention to worded representations of beyond worded experiences. Curious and critical as our research comes about, takes place, unfolds, and develops, processes of documenting, exploring, experiencing, and producing knowledge commonly evolve as intrinsic parts of our situated wishes to make sense of the worlds we study. We may imagine to do one thing and to use a specific mode of fieldnoting, only to end up doing something else, such as to capture dynamics and dimensions otherwise not attentively engaged or even lost. This paper builds on such an experience, and it acts window to open the conversation for doing and representing ethnographic work as creatively as it was undertaken. Expressively and actively undertaken by means of sensuous scholarship, fieldworking in the world of olivicoltura in Apulia intriguingly advanced into resourcefully embodied research using a drone. While the drone first and foremost allowed perspectives that one as a human is largely and physically incapable of exploring, it rapidly emerged into a mode of engagement that probed critical question how one comes to learn how to see that which one watches, listen to that which one hears, smell that which one scents, feel that which one touch, and gather that which one experience. This paper develops how the drone incorporated a transition of a particularly situated ethnographic sense of attention, all while visualizing how imaginative conceptualizations enable unexpected modes of multimodal knowing in much multisensorial worlds of being.

Keywords: drone, multimodality, sensuous scholarship, critical creativity, ethnographic practice

Procedia PDF Downloads 74
6296 Quranic Recitation Listening Relate to Memory Processing, Language Selectivity and Attentional Process

Authors: Samhani Ismail, Tahamina Begum, Faruque Reza, Zamzuri Idris, Hafizan Juahir, Jafri Malin Abdullah

Abstract:

Holy Quran, a rhymed prosed scripture has a complete literary structure that exemplifies the peak of literary beauty. Memorizing of its verses could enhance one’s memory capacity and cognition while those who are listening to its recitation it is also believed that the Holy Quran alter brainwave producing neuronal excitation engaging with cognitive processes. 28 normal healthy subjects (male =14 & female = 14) were recruited and EEG recording was done using 128-electrode sensor net (Electrical Geosics, Inc.) with the impedance of ≤ 50kΩ. They listened to Sura Fatiha recited by Sheikh Qari Abdul Basit bin Abdus Samad. Arabic news and no sound were chosen as positive and negative control, respectively. The waveform was analysed by Fast Fourier Transform (FFT) to get the power in frequency bands. Bilateral frontal (F7, F8) and temporal region (T7, T8) showed decreased power significantly in alpha wave band in respondent stimulated by Sura Fatihah recitation reflects acoustic attention processing. However, decreased in alpha power in selective attention to memorized, and in familial but not memorized language, reveals the memorial processing in long-term memory. As a conclusion, Quranic recitation relates both cognitive element of memory and language in its listeners and memorizers.

Keywords: auditory stimulation, cognition, EEG, linguistic, memory, Quranic recitation

Procedia PDF Downloads 341
6295 Manufacturing Anomaly Detection Using a Combination of Gated Recurrent Unit Network and Random Forest Algorithm

Authors: Atinkut Atinafu Yilma, Eyob Messele Sefene

Abstract:

Anomaly detection is one of the essential mechanisms to control and reduce production loss, especially in today's smart manufacturing. Quick anomaly detection aids in reducing the cost of production by minimizing the possibility of producing defective products. However, developing an anomaly detection model that can rapidly detect a production change is challenging. This paper proposes Gated Recurrent Unit (GRU) combined with Random Forest (RF) to detect anomalies in the production process in real-time quickly. The GRU is used as a feature detector, and RF as a classifier using the input features from GRU. The model was tested using various synthesis and real-world datasets against benchmark methods. The results show that the proposed GRU-RF outperforms the benchmark methods with the shortest time taken to detect anomalies in the production process. Based on the investigation from the study, this proposed model can eliminate or reduce unnecessary production costs and bring a competitive advantage to manufacturing industries.

Keywords: anomaly detection, multivariate time series data, smart manufacturing, gated recurrent unit network, random forest

Procedia PDF Downloads 118
6294 Relay Node Placement for Connectivity Restoration in Wireless Sensor Networks Using Genetic Algorithms

Authors: Hanieh Tarbiat Khosrowshahi, Mojtaba Shakeri

Abstract:

Wireless Sensor Networks (WSNs) consist of a set of sensor nodes with limited capability. WSNs may suffer from multiple node failures when they are exposed to harsh environments such as military zones or disaster locations and lose connectivity by getting partitioned into disjoint segments. Relay nodes (RNs) are alternatively introduced to restore connectivity. They cost more than sensors as they benefit from mobility, more power and more transmission range, enforcing a minimum number of them to be used. This paper addresses the problem of RN placement in a multiple disjoint network by developing a genetic algorithm (GA). The problem is reintroduced as the Steiner tree problem (which is known to be an NP-hard problem) by the aim of finding the minimum number of Steiner points where RNs are to be placed for restoring connectivity. An upper bound to the number of RNs is first computed to set up the length of initial chromosomes. The GA algorithm then iteratively reduces the number of RNs and determines their location at the same time. Experimental results indicate that the proposed GA is capable of establishing network connectivity using a reasonable number of RNs compared to the best existing work.

Keywords: connectivity restoration, genetic algorithms, multiple-node failure, relay nodes, wireless sensor networks

Procedia PDF Downloads 241
6293 End-to-End Pyramid Based Method for Magnetic Resonance Imaging Reconstruction

Authors: Omer Cahana, Ofer Levi, Maya Herman

Abstract:

Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.

Keywords: magnetic resonance imaging, image reconstruction, pyramid network, deep learning

Procedia PDF Downloads 91
6292 Performance Based Road Asset Evaluation

Authors: Kidus Dawit Gedamu

Abstract:

Addis Ababa City Road Authority is responsible for managing and setting performance evaluation of the city’s road network using the International Roughness Index (IRI). This helps the authority to conduct pavement condition assessments of asphalt roads each year to determine the health status or Level of service (LOS) of the roadway network and plan program improvements such as maintenance, resurfacing and rehabilitation. For a lower IRI limit economical and acceptable maintenance strategy may be selected among a number of maintenance alternatives. The Highway Development and Management (HDM-4) tool can do such measures to help decide which option is the best by evaluating the economic and structural conditions. This paper specifically addresses flexible pavement, including two principal arterial streets under the administration of the Addis Ababa City Roads Authority. The roads include the road from Megenagna Interchange to Ayat Square and from Ayat Square to Tafo RA. First, it was assessed the procedures followed by the city's road authority to develop the appropriate road maintenance strategies. Questionnaire surveys and interviews are used to collect information from the city's road maintenance departments. Second, the project analysis was performed for functional and economic comparison of different maintenance alternatives using HDM-4.

Keywords: appropriate maintenance strategy, cost stream, road deterioration, maintenance alternative

Procedia PDF Downloads 61
6291 Use of Smartphones in 6th and 7th Grade (Elementary Schools) in Istria: Pilot Study

Authors: Maja Ruzic-Baf, Vedrana Keteles, Andrea Debeljuh

Abstract:

Younger and younger children are now using a smartphone, a device which has become ‘a must have’ and the life of children would be almost ‘unthinkable’ without one. Devices are becoming lighter and lighter but offering an array of options and applications as well as the unavoidable access to the Internet, without which it would be almost unusable. Numerous features such as taking of photographs, listening to music, information search on the Internet, access to social networks, usage of some of the chatting and messaging services, are only some of the numerous features offered by ‘smart’ devices. They have replaced the alarm clock, home phone, camera, tablet and other devices. Their use and possession have become a part of the everyday image of young people. Apart from the positive aspects, the use of smartphones has also some downsides. For instance, free time was usually spent in nature, playing, doing sports or other activities enabling children an adequate psychophysiological growth and development. The greater usage of smartphones during classes to check statuses on social networks, message your friends, play online games, are just some of the possible negative aspects of their application. Considering that the age of the population using smartphones is decreasing and that smartphones are no longer ‘foreign’ to children of pre-school age (smartphones are used at home or in coffee shops or shopping centers while waiting for their parents, playing video games often inappropriate to their age), particular attention must be paid to a very sensitive group, the teenagers who almost never separate from their ‘pets’. This paper is divided into two sections, theoretical and empirical ones. The theoretical section gives an overview of the pros and cons of the usage of smartphones, while the empirical section presents the results of a research conducted in three elementary schools regarding the usage of smartphones and, specifically, their usage during classes, during breaks and to search information on the Internet, check status updates and 'likes’ on the Facebook social network.

Keywords: education, smartphone, social networks, teenagers

Procedia PDF Downloads 453
6290 Strengthening by Assessment: A Case Study of Rail Bridges

Authors: Evangelos G. Ilias, Panagiotis G. Ilias, Vasileios T. Popotas

Abstract:

The United Kingdom has one of the oldest railway networks in the world dating back to 1825 when the world’s first passenger railway was opened. The network has some 40,000 bridges of various construction types using a wide range of materials including masonry, steel, cast iron, wrought iron, concrete and timber. It is commonly accepted that the successful operation of the network is vital for the economy of the United Kingdom, consequently the cost effective maintenance of the existing infrastructure is a high priority to maintain the operability of the network, prevent deterioration and to extend the life of the assets. Every bridge on the railway network is required to be assessed every eighteen years and a structured approach to assessments is adopted with three main types of progressively more detailed assessments used. These assessment types include Level 0 (standardized spreadsheet assessment tools), Level 1 (analytical hand calculations) and Level 2 (generally finite element analyses). There is a degree of conservatism in the first two types of assessment dictated to some extent by the relevant standards which can lead to some structures not achieving the required load rating. In these situations, a Level 2 Assessment is often carried out using finite element analysis to uncover ‘latent strength’ and improve the load rating. If successful, the more sophisticated analysis can save on costly strengthening or replacement works and avoid disruption to the operational railway. This paper presents the ‘strengthening by assessment’ achieved by Level 2 analyses. The use of more accurate analysis assumptions and the implementation of non-linear modelling and functions (material, geometric and support) to better understand buckling modes and the structural behaviour of historic construction details that are not specifically covered by assessment codes are outlined. Metallic bridges which are susceptible to loss of section size through corrosion have largest scope for improvement by the Level 2 Assessment methodology. Three case studies are presented, demonstrating the effectiveness of the sophisticated Level 2 Assessment methodology using finite element analysis against the conservative approaches employed for Level 0 and Level 1 Assessments. One rail overbridge and two rail underbridges that did not achieve the required load rating by means of a Level 1 Assessment due to the inadequate restraint provided by U-Frame action are examined and the increase in assessed capacity given by the Level 2 Assessment is outlined.

Keywords: assessment, bridges, buckling, finite element analysis, non-linear modelling, strengthening

Procedia PDF Downloads 309
6289 Using Hidden Markov Chain for Improving the Dependability of Safety-Critical Wireless Sensor Networks

Authors: Issam Alnader, Aboubaker Lasebae, Rand Raheem

Abstract:

Wireless sensor networks (WSNs) are distributed network systems used in a wide range of applications, including safety-critical systems. The latter provide critical services, often concerned with human life or assets. Therefore, ensuring the dependability requirements of Safety critical systems is of paramount importance. The purpose of this paper is to utilize the Hidden Markov Model (HMM) to elongate the service availability of WSNs by increasing the time it takes a node to become obsolete via optimal load balancing. We propose an HMM algorithm that, given a WSN, analyses and predicts undesirable situations, notably, nodes dying unexpectedly or prematurely. We apply this technique to improve on C. Lius’ algorithm, a scheduling-based algorithm which has served to improve the lifetime of WSNs. Our experiments show that our HMM technique improves the lifetime of the network, achieved by detecting nodes that die early and rebalancing their load. Our technique can also be used for diagnosis and provide maintenance warnings to WSN system administrators. Finally, our technique can be used to improve algorithms other than C. Liu’s.

Keywords: wireless sensor networks, IoT, dependability of safety WSNs, energy conservation, sleep awake schedule

Procedia PDF Downloads 100
6288 An Evaluation of Impact of Video Billboard on the Marketing of GSM Services in Lagos Metropolis

Authors: Shola Haruna Adeosun, F. Adebiyi Ajoke, Odedeji Adeoye

Abstract:

Video billboard advertising by networks and brand switching was conceived out of inquisition at the huge billboard advertising expenditures made by the three major GSM network operators in Nigeria. The study was anchored on Lagos State Metropolis with a current census population over 1,000,000. From this population, a purposive sample of 400 was adopted, and the questionnaire designed for the survey was carefully allocated to members of this ample in the five geographical zones of the city so that each rung of the society was well represented. The data obtained were analyzed using tables and simple percentages. The results obtained showed that subscribers of these networks were hardly influenced by the video billboard advertisements. They overwhelmingly showed that rather than the slogans of the GSM networks carried on the video billboards, it was the incentives to subscribers as well as the promotional strategies of these organizations that moved them to switch from one network to another. These switching lasted only as long as the incentives and promotions were in effect. The results of the study also seemed to rekindle the age-old debate on media effects, by the unyielding schools of the theory of ‘all-powerful media’, ‘the limited effects media’, ‘the controlled effects media’ and ‘the negotiated media influence’.

Keywords: evaluation, impact, video billboard, marketing, services

Procedia PDF Downloads 253
6287 Investigation of Oscillation Mechanism of a Large-scale Solar Photovoltaic and Wind Hybrid Power Plant

Authors: Ting Kai Chia, Ruifeng Yan, Feifei Bai, Tapan Saha

Abstract:

This research presents a real-world power system oscillation incident in 2022 originated by a hybrid solar photovoltaic (PV) and wind renewable energy farm with a rated capacity of approximately 300MW in Australia. The voltage and reactive power outputs recorded at the point of common coupling (PCC) oscillated at a sub-synchronous frequency region, which sustained for approximately five hours in the network. The reactive power oscillation gradually increased over time and reached a recorded maximum of approximately 250MVar peak-to-peak (from inductive to capacitive). The network service provider was not able to quickly identify the location of the oscillation source because the issue was widespread across the network. After the incident, the original equipment manufacturer (OEM) concluded that the oscillation problem was caused by the incorrect setting recovery of the hybrid power plant controller (HPPC) in the voltage and reactive power control loop after a loss of communication event. The voltage controller normally outputs a reactive (Q) reference value to the Q controller which controls the Q dispatch setpoint of PV and wind plants in the hybrid farm. Meanwhile, a feed-forward (FF) configuration is used to bypass the Q controller in case there is a loss of communication. Further study found that the FF control mode was still engaged when communication was re-established, which ultimately resulted in the oscillation event. However, there was no detailed explanation of why the FF control mode can cause instability in the hybrid farm. Also, there was no duplication of the event in the simulation to analyze the root cause of the oscillation. Therefore, this research aims to model and replicate the oscillation event in a simulation environment and investigate the underlying behavior of the HPPC and the consequent oscillation mechanism during the incident. The outcome of this research will provide significant benefits to the safe operation of large-scale renewable energy generators and power networks.

Keywords: PV, oscillation, modelling, wind

Procedia PDF Downloads 37
6286 F-VarNet: Fast Variational Network for MRI Reconstruction

Authors: Omer Cahana, Maya Herman, Ofer Levi

Abstract:

Magnetic resonance imaging (MRI) is a long medical scan that stems from a long acquisition time. This length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach, such as compress sensing (CS) or parallel imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. In order to achieve that, two properties have to exist: i) the signal must be sparse under a known transform domain, ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm needs to be applied to recover the signal. While the rapid advance in the deep learning (DL) field, which has demonstrated tremendous successes in various computer vision task’s, the field of MRI reconstruction is still in an early stage. In this paper, we present an extension of the state-of-the-art model in MRI reconstruction -VarNet. We utilize VarNet by using dilated convolution in different scales, which extends the receptive field to capture more contextual information. Moreover, we simplified the sensitivity map estimation (SME), for it holds many unnecessary layers for this task. Those improvements have shown significant decreases in computation costs as well as higher accuracy.

Keywords: MRI, deep learning, variational network, computer vision, compress sensing

Procedia PDF Downloads 162
6285 Supergrid Modeling and Operation and Control of Multi Terminal DC Grids for the Deployment of a Meshed HVDC Grid in South Asia

Authors: Farhan Beg, Raymond Moberly

Abstract:

The Indian subcontinent is facing a massive challenge with regards to energy security in member countries, to provide reliable electricity to facilitate development across various sectors of the economy and consequently achieve the developmental targets. The instability of the current precarious situation is observable in the frequent system failures and blackouts. The deployment of interconnected electricity ‘Supergrid’ designed to carry huge quanta of power across the Indian sub-continent is proposed in this paper. Besides enabling energy security in the subcontinent, it will also provide a platform for Renewable Energy Sources (RES) integration. This paper assesses the need and conditions for a Supergrid deployment and consequently proposes a meshed topology based on Voltage Source High Voltage Direct Current (VSC-HVDC) converters for the Supergrid modeling. Various control schemes for the control of voltage and power are utilized for the regulation of the network parameters. A 3 terminal Multi Terminal Direct Current (MTDC) network is used for the simulations.

Keywords: super grid, wind and solar energy, high voltage direct current, electricity management, load flow analysis

Procedia PDF Downloads 428
6284 A Safety Analysis Method for Multi-Agent Systems

Authors: Ching Louis Liu, Edmund Kazmierczak, Tim Miller

Abstract:

Safety analysis for multi-agent systems is complicated by the, potentially nonlinear, interactions between agents. This paper proposes a method for analyzing the safety of multi-agent systems by explicitly focusing on interactions and the accident data of systems that are similar in structure and function to the system being analyzed. The method creates a Bayesian network using the accident data from similar systems. A feature of our method is that the events in accident data are labeled with HAZOP guide words. Our method uses an Ontology to abstract away from the details of a multi-agent implementation. Using the ontology, our methods then constructs an “Interaction Map,” a graphical representation of the patterns of interactions between agents and other artifacts. Interaction maps combined with statistical data from accidents and the HAZOP classifications of events can be converted into a Bayesian Network. Bayesian networks allow designers to explore “what it” scenarios and make design trade-offs that maintain safety. We show how to use the Bayesian networks, and the interaction maps to improve multi-agent system designs.

Keywords: multi-agent system, safety analysis, safety model, integration map

Procedia PDF Downloads 417
6283 DNpro: A Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations

Authors: Xiao Zhou, Jianlin Cheng

Abstract:

A single amino acid mutation can have a significant impact on the stability of protein structure. Thus, the prediction of protein stability change induced by single site mutations is critical and useful for studying protein function and structure. Here, we presented a deep learning network with the dropout technique for predicting protein stability changes upon single amino acid substitution. While using only protein sequence as input, the overall prediction accuracy of the method on a standard benchmark is >85%, which is higher than existing sequence-based methods and is comparable to the methods that use not only protein sequence but also tertiary structure, pH value and temperature. The results demonstrate that deep learning is a promising technique for protein stability prediction. The good performance of this sequence-based method makes it a valuable tool for predicting the impact of mutations on most proteins whose experimental structures are not available. Both the downloadable software package and the user-friendly web server (DNpro) that implement the method for predicting protein stability changes induced by amino acid mutations are freely available for the community to use.

Keywords: bioinformatics, deep learning, protein stability prediction, biological data mining

Procedia PDF Downloads 468
6282 A Phenomenological Method Based on Professional Descriptions of Community-of-Practice Members to Scientifically Determine the Level of Child Psycho-Social-Emotional Development

Authors: Gianni Jacucci

Abstract:

Alfred Schutz (1932), at the very turning towards phenomenology, of the attention for the social sciences, stated that successful communication of meanings requires the sharing of “sedimenta-tions “ of previous meanings. Börje Langefors (1966), at the very beginning of the social studies of information systems, stated that a common professional basis is required for a correct sharing of meanings, e. g., “standardised accounting data among accountants”. Harold Garfinkel (1967), at the very beginning of ethnomethodology, stated that the accounting of social events must be carried out in the same language used by the actors of those events in managing their practice. Community of practice: we advocate professional descriptions of the community of practice members to scientifically determine the level of child psycho social emotional development. Our approach consists of an application to Human Sciences of Husserl’s Phenomenological Philosophy using a method reminder of Giorgi’s DPM in Psychology. Husserl’s requirement of "Epoché," which involves eliminating prejudices from the minds of observers, is met through "concept cleaning," achieved by consistently sharing disciplinary concepts within their community of practice. Mean-while, the absence of subjective bias is ensured by the meticulous attention to detail in their professional expertise. Our approach shows promise in accurately assessing many other properties through detailed professional descriptions of the community of practice members.

Keywords: scientific rigour, descriptive phenomenological method, sedimentation of meanings, community of practice

Procedia PDF Downloads 57
6281 Geospatial Network Analysis Using Particle Swarm Optimization

Authors: Varun Singh, Mainak Bandyopadhyay, Maharana Pratap Singh

Abstract:

The shortest path (SP) problem concerns with finding the shortest path from a specific origin to a specified destination in a given network while minimizing the total cost associated with the path. This problem has widespread applications. Important applications of the SP problem include vehicle routing in transportation systems particularly in the field of in-vehicle Route Guidance System (RGS) and traffic assignment problem (in transportation planning). Well known applications of evolutionary methods like Genetic Algorithms (GA), Ant Colony Optimization, Particle Swarm Optimization (PSO) have come up to solve complex optimization problems to overcome the shortcomings of existing shortest path analysis methods. It has been reported by various researchers that PSO performs better than other evolutionary optimization algorithms in terms of success rate and solution quality. Further Geographic Information Systems (GIS) have emerged as key information systems for geospatial data analysis and visualization. This research paper is focused towards the application of PSO for solving the shortest path problem between multiple points of interest (POI) based on spatial data of Allahabad City and traffic speed data collected using GPS. Geovisualization of results of analysis is carried out in GIS.

Keywords: particle swarm optimization, GIS, traffic data, outliers

Procedia PDF Downloads 483
6280 Legal Regulations for the Environmental Pollution of Multinational Corporations in China

Authors: Zhang Rui

Abstract:

Multinational corporations have significantly increased their investment in China due to their strong economic strength and advanced production technology. On the one hand, this has promoted the development of China's economy, created a large amount of tax revenue for China's finance, and brought huge economic benefits to China's economic development. On the other hand, it has also consumed huge resources in China and even caused serious environmental damage, which has attracted widespread attention from all sectors of society to the environmental violations committed by multinational corporations in China. Due to the incomplete legal regulation of environmental responsibility of multinational corporations in China, there are legal gaps that provide convenient conditions for them to transfer pollution. These multinational corporations in China will take advantage of the loopholes in Chinese laws and even achieve "zero pollution" in their home country's environmental protection, but their branches in China only meet the minimum standards stipulated by Chinese environmental protection laws. Therefore, the differential treatment of environmental protection by multinational corporations urgently needs to be regulated from a legal perspective in China to promote the balance and harmony between ecological environment protection and economic development. At present, the environmental pollution caused by multinational corporations in China has received widespread attention from Chinese scholars. Through research on the environmental pollution and legal aspects of multinational corporations in China, it not only helps to enrich the theoretical research results of environmental pollution and legal regulation of multinational corporations in China, but also promotes the continuous improvement of the relevant legal system for environmental pollution caused by multinational corporations in China, so as to effectively regulate the environmental pollution caused by multinational corporations in China in practice, and provide legal basis for the governance of environmental violations.

Keywords: international law, environmental law, multinational corporations, jurisdiction

Procedia PDF Downloads 18