Search results for: chronic training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5227

Search results for: chronic training

2047 Unveiling the Mystery: Median Arcuate Ligament Syndrome in a Middle-Aged Female Presenting with Abdominal Pain

Authors: Thaer Khaleel Swaid, Maryam Al Ahmad, Ishtiaq Ahmad

Abstract:

47-year-old female, known to have a liver cyst and hemangiomas, presented to the gastroenterology clinic for chronic moderate postprandial epigastric pain, which is aggravated by food, leaning forward and relieved on lying flat. The pain was associated with nausea, vomiting, heartburn and excessive burping. She opened her bowel daily, having well-formed stools without blood or mucus. The patient denied NSAID intake, smoking or alcohol. On physical examination during the episode of pain abdomen revealed a soft, lax abdomen and mild tenderness in the epigastric region without organomegaly. Bowel sounds were audible. Her routine hematological and biochemical parameters were within normal, including CBC, Celiac serology, Lipase, Metabolic profile and H pylori stool antigen. The patient underwent an Ultrasound of the abdomen which showed multiple liver cysts, hemangioma, normal GB and biliary tree. Based on the clinical picture and to narrow our differential diagnosis, an ultrasound Doppler for the abdomen was ordered, and it showed celiac artery peak systolic velocity in expiration is 270cm/s, suggestive of median arcuate ligament syndrome. She Had computerized tomography abdomen done and showed a Narrowing of the celiac artery at the origin, likely secondary to low insertion of the median arcuate ligament. Furthermore, Gastroscopy and, later on colonoscopy were done, which was unremarkable. A laparoscopic decompression of the celiac trunk was indicated, for which the patient was referred to vascular surgery. This case confirms that Median Arcuate Ligament syndrome is an unusual diagnosis and is always challenging. Usually, patients undergo extensive workups before a final diagnosis is achieved. Our case highlights the challenge of diagnosing MALS since this entity is rare. It is a good choice to perform abdominal ultrasound with Doppler imaging on a patient with symptoms such as postprandial angina.

Keywords: Unveiling the Mystery, MALS, rare entity, Rare vascular phenomenon

Procedia PDF Downloads 17
2046 Molecular Pathogenesis of NASH through the Dysregulation of Metabolic Organ Network in the NASH-HCC Model Mouse Treated with Streptozotocin-High Fat Diet

Authors: Bui Phuong Linh, Yuki Sakakibara, Ryuto Tanaka, Elizabeth H. Pigney, Taishi Hashiguchi

Abstract:

NASH is an increasingly prevalent chronic liver disease that can progress to hepatocellular carcinoma and now is attracting interest worldwide. The STAM™ model is a clinically-correlated murine NASH model which shows the same pathological progression as NASH patients and has been widely used for pharmacological and basic research. The multiple parallel hits hypothesis suggests abnormalities in adipocytokines, intestinal microflora, and endotoxins are intertwined and could contribute to the development of NASH. In fact, NASH patients often exhibit gut dysbiosis and dysfunction in adipose tissue and metabolism. However, the analysis of the STAM™ model has only focused on the liver. To clarify whether the STAM™ model can also mimic multiple pathways of NASH progression, we analyzed the organ crosstalk interactions between the liver and the gut and the phenotype of adipose tissue in the STAM™ model. NASH was induced in male mice by a single subcutaneous injection of 200 µg streptozotocin 2 days after birth and feeding with high-fat diet after 4 weeks of age. The mice were sacrificed at NASH stage. Colon samples were snap-frozen in liquid nitrogen and stored at -80˚C for tight junction-related protein analysis. Adipose tissue was prepared into paraffin blocks for HE staining. Blood adiponectin was analyzed to confirm changes in the adipocytokine profile. Tight junction-related proteins in the intestine showed that expression of ZO-1 decreased with the progression of the disease. Increased expression of endotoxin in the blood and decreased expression of Adiponectin were also observed. HE staining revealed hypertrophy of adipocytes. Decreased expression of ZO-1 in the intestine of STAM™ mice suggests the occurrence of leaky gut, and abnormalities in adipocytokine secretion were also observed. Together with the liver, phenotypes in these organs are highly similar to human NASH patients and might be involved in the pathogenesis of NASH.

Keywords: Non-alcoholic steatohepatitis, hepatocellular carcinoma, fibrosis, organ crosstalk, leaky gut

Procedia PDF Downloads 159
2045 New Chances of Reforming Pedagogical Approach In Secondary English Class in China under the New English Curriculum and National College Entrance Examination Reform

Authors: Yue Wang

Abstract:

Five years passed since the newest English curriculum reform policy was published in China, hand-wringing spread among teachers who accused that this is another 'Wearing New Shoes to Walk the Old Road' policy. This paper provides a thoroughly philosophical policy analysis of serious efforts that had been made to support this reform and reveals the hindrances that bridled the reform to yield the desired effect. Blame could be easily put on teachers for their insufficient pedagogical content knowledge, conservative resistance, and the handicaps of large class sizes and limited teaching times, and so on. However, the underlying causes for this implementation failure are the interrelated factors in the NCEE-centred education system, such as the reluctant from students, the lack of school and education bureau support, and insufficient teacher training. A further discussion of 2017 to 2020’s NCEE reform on English prompt new possibilities for the authentic pedagogical approach reform in secondary English classes. In all, the pedagogical approach reform at the secondary level is heading towards a brighter future with the initiation of new NCEE reform.

Keywords: English curriculum, failure, NCEE, new possibilities, pedagogical, policy analysis, reform

Procedia PDF Downloads 141
2044 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant

Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan

Abstract:

The most important process of the water treatment plant process is the coagulation using alum and poly aluminum chloride (PACL), and the value of usage per day is a hundred thousand baht. Therefore, determining the dosage of alum and PACL are the most important factors to be prescribed. Water production is economical and valuable. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for prediction chemical dose used to coagulation such as alum and PACL, which input data consists of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of Bangkhen water treatment plant (BKWTP) Metropolitan Waterworks Authority. The data collected from 1 January 2019 to 31 December 2019 cover changing seasons of Thailand. The input data of ANN is divided into three groups training set, test set, and validation set, which the best model performance with a coefficient of determination and mean absolute error of alum are 0.73, 3.18, and PACL is 0.59, 3.21 respectively.

Keywords: soft jar test, jar test, water treatment plant process, artificial neural network

Procedia PDF Downloads 166
2043 The Importance of Artificial Intelligence on Arts and Design

Authors: Mariam Adel Hakim Fouad

Abstract:

This quantitative examine investigates innovative arts teachers' perceptions regarding the implementation of an Inclusive innovative Arts curriculum. The study employs a descriptive method utilizing a 5-point Likert scale questionnaire comprising 15 objects to acquire data from innovative arts educators. The Census, with a disproportionate stratified sampling approach, became utilized to pick out 226 teachers from five academic circuits (Circuit A, B, C, D & E) within Offinso Municipality, Ghana. The findings suggest that most innovative arts instructors maintain a wonderful belief in enforcing an inclusive, innovative arts curriculum. Wonderful perceptions and attitudes amongst teachers are correlated with improved scholar engagement and participation in class sports. This has a look at recommends organizing workshops and in-carrier schooling periods centered on inclusive innovative arts schooling for creative Arts instructors. Moreover, it shows that colleges of education and universities accountable for trainer schooling integrate foundational guides in creative arts and special schooling into their number one schooling teacher training packages.

Keywords: arts-in-health, evidence based medicine, arts for health, expressive arts therapiesarts, cultural heritage, digitalization, ICTarts, design, font, identity

Procedia PDF Downloads 24
2042 VideoAssist: A Labelling Assistant to Increase Efficiency in Annotating Video-Based Fire Dataset Using a Foundation Model

Authors: Keyur Joshi, Philip Dietrich, Tjark Windisch, Markus König

Abstract:

In the field of surveillance-based fire detection, the volume of incoming data is increasing rapidly. However, the labeling of a large industrial dataset is costly due to the high annotation costs associated with current state-of-the-art methods, which often require bounding boxes or segmentation masks for model training. This paper introduces VideoAssist, a video annotation solution that utilizes a video-based foundation model to annotate entire videos with minimal effort, requiring the labeling of bounding boxes for only a few keyframes. To the best of our knowledge, VideoAssist is the first method to significantly reduce the effort required for labeling fire detection videos. The approach offers bounding box and segmentation annotations for the video dataset with minimal manual effort. Results demonstrate that the performance of labels annotated by VideoAssist is comparable to those annotated by humans, indicating the potential applicability of this approach in fire detection scenarios.

Keywords: fire detection, label annotation, foundation models, object detection, segmentation

Procedia PDF Downloads 7
2041 Individualized Emotion Recognition Through Dual-Representations and Ground-Established Ground Truth

Authors: Valentina Zhang

Abstract:

While facial expression is a complex and individualized behavior, all facial emotion recognition (FER) systems known to us rely on a single facial representation and are trained on universal data. We conjecture that: (i) different facial representations can provide different, sometimes complementing views of emotions; (ii) when employed collectively in a discussion group setting, they enable more accurate emotion reading which is highly desirable in autism care and other applications context sensitive to errors. In this paper, we first study FER using pixel-based DL vs semantics-based DL in the context of deepfake videos. Our experiment indicates that while the semantics-trained model performs better with articulated facial feature changes, the pixel-trained model outperforms on subtle or rare facial expressions. Armed with these findings, we have constructed an adaptive FER system learning from both types of models for dyadic or small interacting groups and further leveraging the synthesized group emotions as the ground truth for individualized FER training. Using a collection of group conversation videos, we demonstrate that FER accuracy and personalization can benefit from such an approach.

Keywords: neurodivergence care, facial emotion recognition, deep learning, ground truth for supervised learning

Procedia PDF Downloads 147
2040 The Impact of COVID-19 Health Measures on Adults with Multiple Chemical Sensitivity

Authors: Riina I. Bray, Yifan Wang, Nikolas Argiropoulos, Stephanie Robins, John Molot, Kelly Tragash, Lynn M. Marshall, Margaret E. Sears, Marie-Andrée Pigeon, Michel Gaudet, Pierre Auger, Emily Bélanger, Rohini Peris

Abstract:

Multiple chemical sensitivity (MCS) is a chronic medical condition characterized by intolerances to chemical substances. Since the arrival of the COVID-19 pandemic and associated health measures, people experiencing MCS (PEMCS) are at a heightened risk of environmental exposures associated with cleaners, disinfectants, and sanitizers. Little attention has been paid to the well-being of PEMCS in the context of the COVID-19 pandemic. Objective: This study assesses the lived experiences of Canadian adults with MCS in relation to their living environment, access to healthcare, and levels of perceived social support before and during the pandemic. Methods: A total of 119 PEMCS completed an online questionnaire. McNemar Chi-Squared and Wilcoxon Signed Rank tests were used to evaluate if there were statistically significant changes in participants’ perception of their living environment, access to healthcare, and levels of social support before and after March 11, 2020. Results: Both positive and negative outcomes were noted. Participants reported an increase in exposure to disinfectants/sanitizers that entered their living environment (p<.001). There was a reported decrease in access to a family doctor during the pandemic (p<0.001). Although PEMCS experienced increased social isolation (p<0.001), they also reported an increase in understanding from family (p<0.029) and a decrease in stigma for wearing personal protective equipment (p<0.001). Conclusion: PEMCS reported experiencing: increased exposure to disinfectants or sanitizers, a loss of social support, and barriers in accessing healthcare during the pandemic. However, COVID-19 provided an opportunity to normalize the living conditions of PEMCS, such as wearing masks and social isolation. These findings can guide decision-makers on the importance of implementing nontoxic alternatives for cleaning and disinfection, as well as improving accommodation measures for PEMCS.

Keywords: covid-19, multiple chemical sensitivity, MCS, quality of life, social isolation, physical environment, healthcare

Procedia PDF Downloads 86
2039 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction

Procedia PDF Downloads 263
2038 Morphological Processing of Punjabi Text for Sentiment Analysis of Farmer Suicides

Authors: Jaspreet Singh, Gurvinder Singh, Prabhsimran Singh, Rajinder Singh, Prithvipal Singh, Karanjeet Singh Kahlon, Ravinder Singh Sawhney

Abstract:

Morphological evaluation of Indian languages is one of the burgeoning fields in the area of Natural Language Processing (NLP). The evaluation of a language is an eminent task in the era of information retrieval and text mining. The extraction and classification of knowledge from text can be exploited for sentiment analysis and morphological evaluation. This study coalesce morphological evaluation and sentiment analysis for the task of classification of farmer suicide cases reported in Punjab state of India. The pre-processing of Punjabi text involves morphological evaluation and normalization of Punjabi word tokens followed by the training of proposed model using deep learning classification on Punjabi language text extracted from online Punjabi news reports. The class-wise accuracies of sentiment prediction for four negatively oriented classes of farmer suicide cases are 93.85%, 88.53%, 83.3%, and 95.45% respectively. The overall accuracy of sentiment classification obtained using proposed framework on 275 Punjabi text documents is found to be 90.29%.

Keywords: deep neural network, farmer suicides, morphological processing, punjabi text, sentiment analysis

Procedia PDF Downloads 326
2037 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 240
2036 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs

Authors: Agastya Pratap Singh

Abstract:

This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.

Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications

Procedia PDF Downloads 25
2035 The Role of Flexible Cystoscopy in Managing Recurrent Urinary Tract Infections in Patients with Mesh Implants

Authors: George Shaker, Maike Eylert

Abstract:

Recurrent urinary tract infections (UTIs) in patients with mesh implants, particularly following pelvic or abdominal surgeries, pose significant clinical challenges. This paper investigates whether flexible cystoscopy is an essential diagnostic and therapeutic tool in managing such patients. With the increasing prevalence of mesh-related complications, it is crucial to explore how diagnostic procedures like cystoscopy can aid in identifying mesh-associated issues that contribute to recurrent UTIs. While flexible cystoscopy is commonly used to evaluate lower urinary tract conditions, its necessity in cases involving patients with mesh implants remains under debate. This study aims to determine the value of flexible cystoscopy in identifying complications such as mesh erosion, fistula formation, and chronic inflammation, which may contribute to recurrent infections. The research compares patients who underwent flexible cystoscopy to those managed without this procedure, examining the diagnostic yield of cystoscopy in detecting mesh-related complications. Furthermore, the study investigates the relationship between recurrent UTIs and the mechanical effects of mesh on the urinary tract, as well as the potential for cystoscopy to guide treatment decisions, such as mesh removal or revision. The results indicate that while flexible cystoscopy can identify mesh-related complications in some cases, its routine use may not be necessary for all patients with recurrent UTIs and mesh. The study emphasizes the importance of patient selection, clinical history, and symptom severity in deciding whether to employ cystoscopy. In cases where there are clear signs of mesh erosion or unexplained recurrent infections despite standard treatments, cystoscopy proves valuable. However, the study also highlights potential risks and discomfort associated with the procedure, suggesting that cystoscopy should be reserved for select cases where non-invasive methods fail to provide clarity. The research concludes that while flexible cystoscopy remains a valuable tool in certain cases, its routine use for all patients with recurrent UTIs and mesh is not justified. The paper provides recommendations for clinical guidelines, emphasizing a more personalized approach to diagnostics that considers the patient’s overall condition, infection history, and mesh type.

Keywords: flexible cystoscopy, recurrent urinary tract infections, mesh implants, mesh erosion, diagnostic procedures, urology

Procedia PDF Downloads 18
2034 Enhancing the Recruitment Process through Machine Learning: An Automated CV Screening System

Authors: Kaoutar Ben Azzou, Hanaa Talei

Abstract:

Human resources is an important department in each organization as it manages the life cycle of employees from recruitment training to retirement or termination of contracts. The recruitment process starts with a job opening, followed by a selection of the best-fit candidates from all applicants. Matching the best profile for a job position requires a manual way of looking at many CVs, which requires hours of work that can sometimes lead to choosing not the best profile. The work presented in this paper aims at reducing the workload of HR personnel by automating the preliminary stages of the candidate screening process, thereby fostering a more streamlined recruitment workflow. This tool introduces an automated system designed to help with the recruitment process by scanning candidates' CVs, extracting pertinent features, and employing machine learning algorithms to decide the most fitting job profile for each candidate. Our work employs natural language processing (NLP) techniques to identify and extract key features from unstructured text extracted from a CV, such as education, work experience, and skills. Subsequently, the system utilizes these features to match candidates with job profiles, leveraging the power of classification algorithms.

Keywords: automated recruitment, candidate screening, machine learning, human resources management

Procedia PDF Downloads 56
2033 Intermittent Demand Forecast in Telecommunication Service Provider by Using Artificial Neural Network

Authors: Widyani Fatwa Dewi, Subroto Athor

Abstract:

In a telecommunication service provider, quantity and interval of customer demand often difficult to predict due to high dependency on customer expansion strategy and technological development. Demand arrives when a customer needs to add capacity to an existing site or build a network in a new site. Because demand is uncertain for each period, and sometimes there is a null demand for several equipments, it is categorized as intermittent. This research aims to improve demand forecast quality in Indonesia's telecommunication service providers by using Artificial Neural Network. In Artificial Neural Network, the pattern or relationship within data will be analyzed using the training process, followed by the learning process as validation stage. Historical demand data for 36 periods is used to support this research. It is found that demand forecast by using Artificial Neural Network outperforms the existing method if it is reviewed on two criteria: the forecast accuracy, using Mean Absolute Deviation (MAD), Mean of the sum of the Squares of the Forecasting Error (MSE), Mean Error (ME) and service level which is shown through inventory cost. This research is expected to increase the reference for a telecommunication demand forecast, which is currently still limited.

Keywords: artificial neural network, demand forecast, forecast accuracy, intermittent, service level, telecommunication

Procedia PDF Downloads 165
2032 Training of Future Computer Science Teachers Based on Machine Learning Methods

Authors: Meruert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova

Abstract:

The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers.

Keywords: algorithm, artificial intelligence, education, machine learning

Procedia PDF Downloads 73
2031 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method

Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri

Abstract:

Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.

Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method

Procedia PDF Downloads 502
2030 Performance Measurement of Logistics Systems for Thailand's Wholesales and Retails Industries by Data Envelopment Analysis

Authors: Pornpimol Chaiwuttisak

Abstract:

The study aims to compare the performance of the logistics for Thailand’s wholesale and retail trade industries (except motor vehicles, motorcycle, and stalls) by using data (data envelopment analysis). Thailand Standard Industrial Classification in 2009 (TSIC - 2009) categories that industries into sub-group no. 45: wholesale and retail trade (except for the repair of motor vehicles and motorcycles), sub-group no. 46: wholesale trade (except motor vehicles and motorcycles), and sub-group no. 47: retail trade (except motor vehicles and motorcycles. Data used in the study is collected by the National Statistical Office, Thailand. The study consisted of four input factors include the number of companies, the number of personnel in logistics, the training cost in logistics, and outsourcing logistics management. Output factor includes the percentage of enterprises having inventory management. The results showed that the average relative efficiency of small-sized enterprises equals to 27.87 percent and 49.68 percent for the medium-sized enterprises.

Keywords: DEA, wholesales and retails, logistics, Thailand

Procedia PDF Downloads 416
2029 A Study on the Effect of the Mindfulness and Cultivation of Wisdom as an Intervention Strategy for College Student Internet Addiction

Authors: P. C. Li, R. H. Feng, S. J. Chen, Y. J. Yu, Y. L. Chen, X. Y. Fan

Abstract:

The purpose of this study is to investigate the effect of mindfulness and wisdom comprehensive strategy intervention on addiction to the Internet of college students by engaging fourteen intensive full-day mindfulness-based wisdom retreat curriculum. Wisdom, one of the practice method from the threefold training. Internet addiction, a kind of impulse control disorder, which attract the attentions of society due to its high prevalence and harmfulness in the last decade. Therefore, the study of internet addiction intervention is urgent. Participants with internet addiction were Chinese college students and screened by internet addiction disorder diagnose questionnaire (IAD-DQ). A quasi-experimental pretest and posttest design was used as research design. The finding shows that the mindfulness-based wisdom intervention strategy appeared to be effective in reducing the Internet addiction. Moreover, semi-structure interview method was conducted and outcomes included five themes: the reduction of internet use, the increment of awareness on emotion, self-control, present concentration and better positive lifestyle, indicating that mindfulness could be an effective intervention for this group with internet addiction.

Keywords: mindfulness, internet addiction, wisdom comprehensive intervention, cognitive-behavior therapy

Procedia PDF Downloads 183
2028 The Evaluation of Complete Blood Cell Count-Based Inflammatory Markers in Pediatric Obesity and Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Obesity is defined as a severe chronic disease characterized by a low-grade inflammatory state. Therefore, inflammatory markers gained utmost importance during the evaluation of obesity and metabolic syndrome (MetS), a disease characterized by central obesity, elevated blood pressure, increased fasting blood glucose and elevated triglycerides or reduced high density lipoprotein cholesterol (HDL-C) values. Some inflammatory markers based upon complete blood cell count (CBC) are available. In this study, it was questioned which inflammatory marker was the best to evaluate the differences between various obesity groups. 514 pediatric individuals were recruited. 132 children with MetS, 155 morbid obese (MO), 90 obese (OB), 38 overweight (OW) and 99 children with normal BMI (N-BMI) were included into the scope of this study. Obesity groups were constituted using age- and sex-dependent body mass index (BMI) percentiles tabulated by World Health Organization. MetS components were determined to be able to specify children with MetS. CBC were determined using automated hematology analyzer. HDL-C analysis was performed. Using CBC parameters and HDL-C values, ratio markers of inflammation, which cover neutrophil-to-lymphocyte ratio (NLR), derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), monocyte-to-HDL-C ratio (MHR) were calculated. Statistical analyses were performed. The statistical significance degree was considered as p < 0.05. There was no statistically significant difference among the groups in terms of platelet count, neutrophil count, lymphocyte count, monocyte count, and NLR. PLR differed significantly between OW and N-BMI as well as MetS. Monocyte-to HDL-C value exhibited statistical significance between MetS and N-BMI, OB, and MO groups. HDL-C value differed between MetS and N-BMI, OW, OB, MO groups. MHR was the ratio, which exhibits the best performance among the other CBC-based inflammatory markers. On the other hand, when MHR was compared to HDL-C only, it was suggested that HDL-C has given much more valuable information. Therefore, this parameter still keeps its value from the diagnostic point of view. Our results suggest that MHR can be an inflammatory marker during the evaluation of pediatric MetS, but the predictive value of this parameter was not superior to HDL-C during the evaluation of obesity.

Keywords: children, complete blood cell count, high density lipoprotein cholesterol, metabolic syndrome, obesity

Procedia PDF Downloads 129
2027 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera

Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin

Abstract:

We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.

Keywords: human action recognition, pose estimation, D-CNN, deep learning

Procedia PDF Downloads 146
2026 A Qualitative Examination of the Impact of COVID-19 on the Wellbeing of Undergraduate Students in Ontario

Authors: Soumya Mishra, Elena Neiterman

Abstract:

Aligned with the growing interest in the impact of the pandemic on academic experiences of university students, this study aimed to examine the challenges Canadian undergraduate students experienced during the university closures due to COVID-19. Using qualitative methodological approach, the study utilized semi-structured interviews conducted with 20 undergraduate students enrolled in an Ontario university to explore their thoughts and experience regarding online learning during the peak of the COVID-19 pandemic, from January 2021 to March 2021. The interviews yielded four major themes with the following associated subthemes: Personal Challenges Associated with Adapting to the Pandemic (Change in the Type of Stress Experienced, Unique Impact on Certain Groups of Students, Decreased Motivation, Crucial Role of Resilience), Social Challenges Associated with Adapting to the Pandemic (Increased Loneliness, Challenges Faced while Communicating, Perception of Group work, Role of Living Conditions), Challenges associated with Accessing University Resources (Crucial Role of Professors, Perception of Virtual Events, Importance of Physical Spaces). Overall, the analysis showed that the COVID-19 pandemic fostered resilience and psychological flexibility amongst all students. However, the mental health and social wellbeing of students deteriorated during the COVID-19 pandemic and they reported experiencing chronic stress, anxiety and loneliness. International students, first year and final year students experienced a unique set of challenges. It was hard for participants in our study to make strong new connections with their classmates and maintain existing friendships with their peers. The importance of professors in facilitating learning was amplified in the online environment due to the lack of in-person interaction with other students. Despite these challenges, most participants reported that they received high grades during online learning. The findings from this study could be helpful for organizations and individuals working towards fostering the wellbeing of undergraduate students. They can also help in making post-secondary institutions more resilient to future emergencies by creating contingency plans regarding online instructions and risk management techniques.

Keywords: Canadian, COVID-19, university students, wellbeing

Procedia PDF Downloads 100
2025 Small and Medium-Sized Enterprises in West African Semi-Arid Lands Facing Climate Change

Authors: Mamadou Diop, Florence Crick, Momadou Sow, Kate Elizabeth Gannon

Abstract:

Understanding SME leaders’ responses to climate is essential to cope with ongoing changes in temperature and rainfall. This study analyzes the response of SME leaders to the adverse effects of climate change in semi-arid lands (SAL) in Senegal. Based on surveys administrated to 161 SME leaders, this research shows that 91% of economic units are affected by climatic conditions, although 70% do not have a plan to deal with climate risks. Economic actors have striven to take measures to adapt. However, their efforts are limited by various obstacles accentuated by a lack of support from public authorities. In doing so, substantial political, institutional and financial efforts at national and local levels are needed to promote an enabling environment for economic actors to adapt. This will focus on information and training about the threats and opportunities related to global warming, the creation of an adaptation support fund to support local initiatives and the improvement of the institutional, regulatory and political framework.

Keywords: small and medium-sized enterprises, climate change, adaptation, semi-arid lands

Procedia PDF Downloads 208
2024 An Investigation on the Relationship between Taxi Company Safety Climate and Safety Performance of Taxi Drivers in Iloilo City

Authors: Jasper C. Dioco

Abstract:

The study was done to investigate the relationship of taxi company safety climate and drivers’ safety motivation and knowledge on taxi drivers’ safety performance. Data were collected from three Taxi Companies with taxi drivers as participants (N = 84). The Hiligaynon translated version of Transportation Companies’ Climate Scale (TCCS), Safety Motivation and Knowledge Scale, Occupational Safety Motivation Questionnaire and Global Safety Climate Scale were used to study the relationships among four parameters: (a) Taxi company safety climate; (b) Safety motivation; (c) Safety knowledge; and (d) Safety performance. Correlational analyses found that there is no relation between safety climate and safety performance. A Hierarchical regression demonstrated that safety motivation predicts the most variance in safety performance. The results will greatly impact how taxi company can increase safe performance through the confirmation of the proximity of variables to organizational outcome. A strong positive safety climate, in which employees perceive safety to be a priority and that managers are committed to their safety, is likely to increase motivation to be safety. Hence, to improve outcomes, providing knowledge based training and health promotion programs within the organization must be implemented. Policy change might include overtime rules and fatigue driving awareness programs.

Keywords: safety climate, safety knowledge, safety motivation, safety performance, taxi drivers

Procedia PDF Downloads 192
2023 Teaching English to Students with Hearing Impairments - A Preliminary Study

Authors: Jane O`Halloran

Abstract:

This research aims to identify the issues and challenges of teaching English as a Foreign Language to Japanese university students who have special learning needs. This study sought to investigate factors influencing the academic performance of students with special or additional needs in an inclusive education context. This study will focus on a consideration of the methods available to support those with hearing impairments. While the study population is limited, it is important to give classes to be inclusive places where all students receive equal access to content. Hearing impairments provide an obvious challenge to language learning and, therefore, second-language learning. However, strategies and technologies exist to support the instructor without specialist training. This paper aims to identify these and present them to other teachers of English as a second language who wish to provide the best possible learning experience for every student. Two case studies will be introduced to compare and contrast the experience of in-class teaching and the online option and to share the positives and negatives of the two approaches. While the study focuses on the situation in a university in Japan, the lessons learned by the author may have universal value to any classroom with a student with a hearing disability.

Keywords: inclusive learning, special needs, hearing impairments, teaching strategies

Procedia PDF Downloads 132
2022 Exploring the Meaning of Safety in Acute Mental Health Inpatient Units from the Consumer Perspective

Authors: Natalie Cutler, Lorna Moxham, Moira Stephens

Abstract:

Safety is a priority in mental health services, and no more so than in the acute inpatient setting. Mental health service policies and accreditation frameworks commonly approach safety from a risk reduction or elimination perspective leading to service approaches that are arguably more focused on risk than on safety. An exploration what safety means for people who have experienced admission to an acute mental health inpatient unit is currently under way in Sydney, Australia. Using a phenomenographic research approach, this study is seeking to understand the meaning of safety from the perspective of people who use, rather than those who deliver mental health services. Preliminary findings suggest that the meanings of safety for users of mental health services vary from the meanings inherent in the policies and frameworks that inform how mental health services and mental health practice are delivered. This variance has implications for the physical and environmental design of acute mental health inpatient facilities, the policies and practices, and the education and training of mental health staff in particular nurses, who comprise the majority of the mental health workforce. These variances will be presented, along with their implications for the way quality and safety in mental health services are evaluated.

Keywords: acute inpatient, mental health, nursing, phenomenography, recovery, safety

Procedia PDF Downloads 232
2021 A Pilot Study on the Short Term Effects of Paslop Dance Exercise on Core Strength, Balance and Flexibility

Authors: Wilawan Kanhachon, Yodchai Boonprakob, Uraiwon Chatchawan, Junichiro Yamauchi

Abstract:

Introduction: Paslop is a traditional dance from Laos, which is popular in Laos and northeastern of Thailand. This unique type of Paslop dancing is to control body movement with the song. While dancing to the beat, dancers should contract their abdomen and back muscle all the time. Paslop may be a good alternative to improve strengthening, balance and flexibility. Objective: To investigate the effects of Paslop dance exercise on core strength, balance, and flexibility. Methods: Seven healthy participants (age, 20.57±1.13 yrs; height, 162.29±6.16 cm; body mass, 58.14±7.03 kg; mean± S.D.) were volunteered to perform the 45-minute Paslop dance exercise in three times a week for 8 weeks. Before, during and after the exercise period, core strength, balance and flexibility were measured with the pressure biofeedback unit (PBU), one-leg stance test (OLST), and sit and reach test (SAR), respectively. Result: PBU score for core strength increased from 2.12 mmHg in baseline to 6.34 mmHg at the 4th week and 10.10 mmHg at the 8th week after the Paslop dance training, while OLST and SAR did not change. Conclusion: The study demonstrates that 8-week Paslop dancing exercise can improve the core strength.

Keywords: balance, core strength, flexibility, Paslop

Procedia PDF Downloads 381
2020 Modeling Residual Modulus of Elasticity of Self-Compacted Concrete Using Artificial Neural Networks

Authors: Ahmed M. Ashteyat

Abstract:

Artificial Neural Network (ANN) models have been widely used in material modeling, inter-correlations, as well as behavior and trend predictions when the nonlinear relationship between system parameters cannot be quantified explicitly and mathematically. In this paper, ANN was used to predict the residual modulus of elasticity (RME) of self compacted concrete (SCC) damaged by heat. The ANN model was built, trained, tested and validated using a total of 112 experimental data sets, gathered from available literature. The data used in model development included temperature, relative humidity conditions, mix proportions, filler types, and fiber type. The result of ANN training, testing, and validation indicated that the RME of SCC, exposed to different temperature and relative humidity levels, could be predicted accurately with ANN techniques. The reliability between the predicated outputs and the actual experimental data was 99%. This show that ANN has strong potential as a feasible tool for predicting residual elastic modulus of SCC damaged by heat within the range of input parameter. The ANN model could be used to estimate the RME of SCC, as a rapid inexpensive substitute for the much more complicated and time consuming direct measurement of the RME of SCC.

Keywords: residual modulus of elasticity, artificial neural networks, self compacted-concrete, material modeling

Procedia PDF Downloads 534
2019 Understanding Post-Displacement Earnings Losses: The Role of Wealth Inequality

Authors: M. Bartal

Abstract:

A large empirical evidence points to sizable lifetime earnings losses associated with the displacement of tenured workers. The causes of these losses are still not well-understood. Existing explanations are heavily based on human capital depreciation during non-employment spells. In this paper, a new avenue is explored. Evidence on the role of household liquidity constraints in accounting for the persistence of post-displacement earning losses is provided based on SIPP data. Then, a directed search and matching model with endogenous human capital and wealth accumulation is introduced. The model is computationally tractable thanks to its block-recursive structure and highlights a non-trivial, yet intuitive, interaction between wealth and human capital. Constrained workers tend to accept jobs with low firm-sponsored training because the latter are (endogenously) easier to find. This new channel provides a plausible explanation for why young (highly constrained) workers suffer persistent scars after displacement. Finally, the model is calibrated on US data to show that the interplay between wealth and human capital is crucial to replicate the observed lifecycle pattern of earning losses. JEL— E21, E24, J24, J63.

Keywords: directed search, human capital accumulation, job displacement, wealth accumulation

Procedia PDF Downloads 208
2018 Assessment of the Administration and Services of Public Access Computers in Academic Libraries in Kaduna State, Nigeria

Authors: Usman Ahmed Adam, Umar Ibrahim, Ezra S. Gbaje

Abstract:

This study is posed to explore the practice of Public Access Computers (PACs) in academic libraries in Kaduna State, Nigeria. The study aimed to determine the computers and other tools available, their services and challenges of the practices. Three questions were framed to identify number of public computers and tools available, their services and problems faced during the practice. The study used qualitative research design along with semi-constructed interview and observation as tools for data collection. Descriptive analysis was employed to analyze the data. The sample size of the study comprises 52 librarian and IT staff from the seven academic institutions in Kaduna State. The findings revealed that, PACs were provided for access to the Internet, digital resources, library catalogue and training services. The study further explored that, despite the limit number of the computers, users were not allowed to enjoy many services. The study recommends that libraries in Kaduna state should provide more public computers to be able to cover the population of their users; libraries should allow users to use the computers without limitations and restrictions.

Keywords: academic libraries, computers in library, digital libraries, public computers

Procedia PDF Downloads 352