Search results for: Mesenchymal stem cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3650

Search results for: Mesenchymal stem cells

470 Modeling of Conjugate Heat Transfer including Radiation in a Kerosene/Air Certification Burner

Authors: Lancelot Boulet, Pierre Benard, Ghislain Lartigue, Vincent Moureau, Nicolas Chauvet, Sheddia Didorally

Abstract:

International aeronautic standards demand a fire certification for engines that demonstrate their resistance. This demonstration relies on tests performed with prototype engines in the late stages of the development. Hardest tests require to place a kerosene standardized flame in front of the engine casing during a given time with imposed temperature and heat flux. The purpose of this work is to provide a better characterization of a kerosene/air certification burner in order to minimize the risks of test failure. A first Large-Eddy Simulation (LES) study of the certification burner permitted to model and simulate this burner, including both adiabatic and Conjugate Heat Transfer (CHT) computations. Carried out on unstructured grids with 40 million tetrahedral cells, using the finite-volume YALES2 code, spray combustion, forced convection on walls and conduction in the solid parts of the burner were coupled to achieve a detailed description of heat transfer. It highlighted the fact that conduction inside the solid has a real impact on the flame topology and the combustion regime. However, in the absence of radiative heat transfer, unrealistic temperature of the equipment was obtained. The aim of the present study is to include the radiative heat transfer in order to reach the same temperature given by experimental measurements. First, various test-cases are conducted to validate the coupling between the different heat solvers. Then, adiabatic case, CHT case, as well as CHT including radiative transfer are studied and compared. The LES model is finally applied to investigate the heat transfer in a flame impaction configuration. The aim is to progress on fire test modeling so as to reach a good confidence level as far as success of the certification test is concerned.

Keywords: conjugate heat transfer, fire resistance test, large-eddy simulation, radiative transfer, turbulent combustion

Procedia PDF Downloads 206
469 Comparative Ante-Mortem Studies through Electrochemical Impedance Spectroscopy, Differential Voltage Analysis and Incremental Capacity Analysis on Lithium Ion Batteries

Authors: Ana Maria Igual-Munoz, Juan Gilabert, Marta Garcia, Alfredo Quijano-Lopez

Abstract:

Nowadays, several lithium-ion battery technologies are being commercialized. These chemistries present different properties that make them more suitable for different purposes. However, comparative studies showing the advantages and disadvantages of different chemistries are incomplete or scarce. Different non-destructive techniques are currently being employed to detect how ageing affects the active materials of lithium-ion batteries (LIBs). For instance, electrochemical impedance spectroscopy (EIS) is one of the most employed ones. This technique allows the user to identify the variations on the different resistances present in LIBs. On the other hand, differential voltage analysis (DVA) has shown to be a powerful technique to detect the processes affecting the different capacities present in LIBs. This technique shows variations in the state of health (SOH) and the capacities for one or both electrodes depending on their chemistry. Finally, incremental capacity analysis (ICA) is a widely known technique for being capable of detecting phase equilibria. It reminds of the commonly used cyclic voltamperometry, as it allows detecting some reactions taking place in the electrodes. In these studies, a set of ageing procedures have been applied to commercial batteries of different chemistries (NCA, NMC, and LFP). Afterwards, results of EIS, DVA, and ICA have been used to correlate them with the processes affecting each cell. Ciclability, overpotential, and temperature cycling studies envisage how the charge-discharge rates, cut-off voltage, and operation temperatures affect each chemistry. These studies will serve battery pack manufacturers, as for common battery users, as they will determine the different conditions affecting cells for each of the chemistry. Taking this into account, each cell could be adjusted to the final purpose of the battery application. Last but not least, all the degradation parameters observed are focused to be integrated into degradation models in the future. This fact will allow the implementation of the widely known digital twins to the degradation in LIBs.

Keywords: lithium ion batteries, non-destructive analysis, different chemistries, ante-mortem studies, ICA, DVA, EIS

Procedia PDF Downloads 110
468 Inhalable Lipid-Coated-Chitosan Nano-Embedded Microdroplets of an Antifungal Drug for Deep Lung Delivery

Authors: Ranjot Kaur, Om P. Katare, Anupama Sharma, Sarah R. Dennison, Kamalinder K. Singh, Bhupinder Singh

Abstract:

Respiratory microbial infections being among the top leading cause of death worldwide are difficult to treat as the microbes reside deep inside the airways, where only a small fraction of drug can access after traditional oral or parenteral routes. As a result, high doses of drugs are required to maintain drug levels above minimum inhibitory concentrations (MIC) at the infection site, unfortunately leading to severe systemic side-effects. Therefore, delivering antimicrobials directly to the respiratory tract provides an attractive way out in such situations. In this context, current study embarks on the systematic development of lung lia pid-modified chitosan nanoparticles for inhalation of voriconazole. Following the principles of quality by design, the chitosan nanoparticles were prepared by ionic gelation method and further coated with major lung lipid by precipitation method. The factor screening studies were performed by fractional factorial design, followed by optimization of the nanoparticles by Box-Behnken Design. The optimized formulation has a particle size range of 170-180nm, PDI 0.3-0.4, zeta potential 14-17, entrapment efficiency 45-50% and drug loading of 3-5%. The presence of a lipid coating was confirmed by FESEM, FTIR, and X-RD. Furthermore, the nanoparticles were found to be safe upto 40µg/ml on A549 and Calu-3 cell lines. The quantitative and qualitative uptake studies also revealed the uptake of nanoparticles in lung epithelial cells. Moreover, the data from Spraytec and next-generation impactor studies confirmed the deposition of nanoparticles in lower airways. Also, the interaction of nanoparticles with DPPC monolayers signifies its biocompatibility with lungs. Overall, the study describes the methodology and potential of lipid-coated chitosan nanoparticles in futuristic inhalation nanomedicine for the management of pulmonary aspergillosis.

Keywords: dipalmitoylphosphatidylcholine, nebulization, DPPC monolayers, quality-by-design

Procedia PDF Downloads 122
467 Synthesis of Highly Stable Multi-Functional Iron Oxide Nanoparticles for Active Mitochondrial Targeting in Immunotherapy

Authors: Masome Moeni, Roya Abedizadeh, Elham Aram, Hamid Sadeghi-Abandansari, Davood Sabour, Robert Menzel, Ali Hassanpour

Abstract:

Mitochondria- targeting immunogenic cell death inducers (MT-ICD) have been designed to trigger intrinsic apoptosis signalling pathway in malignant cells and revive the antitumour immune system. MT-ICD inducers have considered to be non-specific, which can deteriorate the ability to initiate mitochondria-selective oxidative stress, causing high toxicity. Iron oxide nanoparticles (IONPs) can be an ideal candidate as vehicles for utilizing in immunotherapy due to their biocompatibility, modifiable surface chemistry, magnetic characteristics and multi-functional applications in single platform. These types of NPs can facilitate a real time imaging which can provide an effective strategy to analyse pharmacokinetic parameters of nano-formula, including blood circulation time, targeted and controlled release at tumour microenvironment. To our knowledge, the conjugation of IONPs with MT-ICD and oxaliplatin (a chemotherapeutic agent used for the treatment of colorectal cancer) for immunotherapy have not been investigated. Herein, IONPs were generated via co-precipitation reaction at high temperatures, followed by coating the colloidal suspension with tetraethyl orthosilicate and 3-aminopropyltriethoxysilane to optimize their bio-compatibility, preventing aggregation and maintaining stability at physiological pH, then functionalized with (3-carboxypropyl) triphenyl phosphonium bromide for mitochondrial delivery. Analytical results demonstrated the successful process of IONPs functionalization. In particular, the colloidal particles of doped IONPs exhibited an excellent stability and dispersibility. The resultant particles were also successfully loaded with the oxaliplatin for an active mitochondrial targeting in immunotherapy, resulting in well-maintained super-paramagnetic characteristics and stable structure of the functionalized IONPs with nanoscale particle sizes.

Keywords: Immunotherapy, mitochondria, cancer, iron oxide nanoparticle

Procedia PDF Downloads 55
466 A Radioprotective Effect of Nanoceria (CNPs), Magnetic Flower-Like Iron Oxide Microparticles (FIOMPs), and Vitamins C and E on Irradiated BSA Protein

Authors: Hajar Zarei, AliAkbar Zarenejadatashgah, Vuk Uskoković, Hiroshi Watabe

Abstract:

The reactive oxygen species (ROS) generated by radiation in nuclear diagnostic imaging and radiotherapy could damage the structure of the proteins in noncancerous cells surrounding the tumor. The critical factor in many age-related diseases, such as Alzheimer, Parkinson, or Huntington diseases, is the oxidation of proteins by the ROS as molecular triggers of the given pathologies. Our studies by spectroscopic experiments showed doses close to therapeutic ones (1 to 5 Gy) could lead to changes of secondary and tertiary structures in BSA protein macromolecule as a protein model as well as the aggregation of polypeptide chain but without the fragmentation. For this reason, we investigated the radioprotective effects of natural (vitamin C and E) and synthetic materials (CNPs and FIOMPs) on the structural changes in BSA protein induced by gamma irradiation at a therapeutic dose (3Gy). In the presence of both vitamins and synthetic materials, the spectroscopic studies revealed that irradiated BSA was protected from the structural changes caused by ROS, according to in vitro research. The radioprotective property of CNPs and FIOMPs arises from enzyme mimetic activities (catalase, superoxide dismutase, and peroxidase) and their antioxidant capability against hydroxyl radicals. In the case of FIOMPs, a porous structure also leads to increased ROS recombination with each other in the same radiolytic track and subsequently decreased encounters with BSA. The hydrophilicity of vitamin C resulted in the major scavenging of ROS in the solvent, whereas hydrophobic vitamin E localized on the nonpolar patches of the BSA surface, where it did not only neutralize them thanks to the moderate BSA binding constant but also formed a barrier for diffusing ROS. To the best of our knowledge, there has been a persistent lack of studies investigating the radioactive effect of mentioned materials on proteins. Therefore, the results of our studies can open a new widow for application of these common dietary ingredients and new synthetic NPs in improving the safety of radiotherapy.

Keywords: reactive oxygen species, spectroscopy, bovine serum albumin, gamma radiation, radioprotection

Procedia PDF Downloads 63
465 Effect of Different Porous Media Models on Drug Delivery to Solid Tumors: Mathematical Approach

Authors: Mostafa Sefidgar, Sohrab Zendehboudi, Hossein Bazmara, Madjid Soltani

Abstract:

Based on findings from clinical applications, most drug treatments fail to eliminate malignant tumors completely even though drug delivery through systemic administration may inhibit their growth. Therefore, better understanding of tumor formation is crucial in developing more effective therapeutics. For this purpose, nowadays, solid tumor modeling and simulation results are used to predict how therapeutic drugs are transported to tumor cells by blood flow through capillaries and tissues. A solid tumor is investigated as a porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multi scale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. In this work, the mathematical model in our previous studies is developed by considering two model of momentum equation for porous media: Darcy and Brinkman. The mathematical method involves processes such as fluid flow through solid tumor as porous media, extravasation of blood flow from vessels, blood flow through vessels and solute diffusion, convective transport in extracellular matrix. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model does.

Keywords: solid tumor, porous media, Darcy model, Brinkman model, drug delivery

Procedia PDF Downloads 277
464 Correlation Studies in Nutritional Intake, Health Status and Clinical Examination of Young Adult Girls

Authors: Sonal Tuljaram Kame

Abstract:

Growth and development is based on proper diet. A balanced diet contains all the nutrients in required quantum. Although physical growth is completed by young adulthood, the body tissues remain in a dynamic state with catabolism slightly exceeding anabolism, resulting in a net decrease in the number of cells. After the years of adolescence which cause upheavals in the life of the person, the individual struggle to emerge as an adult who know who he is and what his goals are. During this period nutrients are needed for maintaining the health and energy is required for physical functions and physical activities. The nutritional requirement in young adulthood differs from other periods of life. Iron is needed for haemoglobin synthesis and necessitates by the considerable examination of blood volume. Young adult girls need to ensure adequate intake of iron as they loose 0.5 mg/day by way of menstruation. This is complete awareness about nutritional and health on the other side there is widespread ignorance about nutrition and health among young adult girls. The young adult girls who are aware about nutrition and health seem to be very conscious about nutritional intake and health. Figure consciousness and fear of obesity leads to self imposed intake of nutrients. It may result in various health problems. The study was planned to investigate nutrient intake, find relation between nutritional intake, clinical examination score and health status of young adult girls. The present study is based on the data collected from 120 young adult girls studying in four different competitive exams coaching academies in Akola city of Maharashtra. It was found that nutritional intake of these young adult girls was below the recommended level, nutritional knowledge level and nutritional intake are associated attributes, calories, calcium and protein intake is positively correlated with clinical examination and health status. It was concluded that well planned nutritional counseling for the young adult girls can help prevent nutritional deficiency diseases and disorders which may lead to anaemic condition in young adult girls. Girls need to be educated on intake of iron and vitamin B12.

Keywords: nutritional intake, health status, young adult girls, correlation studies

Procedia PDF Downloads 350
463 Evaluation of the Antiviral Activity of Dermaseptin Analogs Against Zika Virus

Authors: Houda Haddad, Nolwen Jouvenet, Maxime Chazal, Frédéric Tangy, Amira Zairi

Abstract:

Zika virus represents the primary cause of infection during pregnancy and can lead to various neurological disorders, such as microcephaly and Guillain-Barré syndrome, affecting both children and adults. This infection is also associated with urological and nephrological problems. So far, evidence of mosquito-borne Zika virus infection has been reported in a total of 89 countries and territories. However, surveillance efforts primarily concentrate on outbreaks that this virus can cause, yet the measures implemented are typically limited. Currently, there are no specific treatments or vaccines designed for the prevention or treatment of Zika virus infection or its associated disease. The development of effective therapeutic agents presents an urgent need. Importantly, an alternative for advancing the discovery of molecules could be dermaseptins, a family of antimicrobial peptides known for their potential antiviral properties. In this study, we carried out the synthesis of dermaseptins and their analogs and subsequently assessed the bioactivity tests against Zika virus (ZIKV PF13) of dermaseptins B2 and S4 and their derivatives. The cytotoxicity of these peptides was investigated on the HMC3 cell line and HeLa cells by CellTiter-Glo® Luminescent Cell Viability Assay. Thereafter, we evaluated the antiviral activity caused by the action of our dermaseptins on the viral envelope using the Fluorescence Activated Cell Sorting (FACS). The cytotoxicity of our molecules was concentration-dependent at microgram concentrations except for dermaseptin B2 and its derivative, which present no toxicity against HeLa and HMC3 cell lines. It was observed that all tested analogs from the S4 family exhibited antiviral activity with low concentrations ranging from 3 to 12.5 μg/mL, unlike the native B2 and its derivative, which increased the infectivity. Pre-incubating of dermaseptins with ZIKV PF13 before infection revealed that these derivatives inhibit the initial stages of virus infection. In summary, these results suggest that dermaseptins could serve as lead structures for the development of potent antiviral agents against Zika virus infections.

Keywords: dermaseptin B2, dermaseptin S4, analogs, zika virus, neurological infections, antiviral activity

Procedia PDF Downloads 41
462 Assessment of Platelet and Lymphocyte Interaction in Autoimmune Hyperthyroidism

Authors: Małgorzata Tomczyńska, Joanna Saluk-Bijak

Abstract:

Background: Graves’ disease is a frequent organ-specific autoimmune thyroid disease, which characterized by the presence of different kind autoantibodies, that, in most cases, act as agonists of the thyrotropin receptor, leading to hyperthyroidism. Role of platelets and lymphocytes can be modulated in the pathophysiology of thyroid autoimmune diseases. Interference in the physiology of platelets can lead to enhanced activity of these cells. Activated platelets can bind to circulating lymphocytes and to affect lymphocyte adhesion. Platelets and lymphocytes can regulate mutual functions. Therefore, the activation of T lymphocytes, as well as blood platelets, is associated with the development of inflammation and oxidative stress within the target tissue. The present study was performed to investigate a platelet-lymphocyte relation by assessing the degree of their mutual aggregation in whole blood of patients with Graves’ disease. Also, the purpose of this study was to examine the impact of platelet interaction on lymphocyte migration capacity. Methods: 30 patients with Graves’ disease were recruited in the study. The matched 30 healthy subjects were served as the control group. Immunophenotyping of lymphocytes was carried out by flow cytometry method. A CytoSelect™ Cell Migration Assay Kit was used to evaluate lymphocyte migration and adhesion to blood platelets. Visual assessment of lymphocyte-platelet aggregate morphology was done using confocal microscope after magnetic cell isolation by Miltenyi Biotec. Results: The migration and functional responses of lymphocytes to blood platelets were greater in the group of Graves’ disease patients compared with healthy controls. The group of Graves’ disease patients exhibited a reduced T lymphocyte and a higher B cell count compared with controls. Based on microscopic analysis, more platelet-lymphocyte aggregates were found in patients than in control. Conclusions: Studies have shown that in Graves' disease, lymphocytes show increased platelet affinity, more strongly migrating toward them, and forming mutual cellular conglomerates. This may be due to the increased activation of blood platelets in this disease.

Keywords: blood platelets, cell migration, Graves’ disease, lymphocytes, lymphocyte-platelet aggregates

Procedia PDF Downloads 203
461 Establishment and Aging Process Analysis in Dermal Fibroblast Cell Culture of Green Turtle (Chelonia mydas)

Authors: Yemima Dani Riani, Anggraini Barlian

Abstract:

Green turtle (Chelonia mydas) is one of well known long-lived turtle. Its age can reach 100 years old. Senescence in green turtle is an interesting process to study because until now no clear explanation has been established about senescence at cellular or molecular level in this species. Since 1999, green turtle announced as an endangered species. Hence, establishment of fibroblast skin cell culture of green turtle may be material for future study of senescence. One common marker used for detecting senescence is telomere shortening. Reduced telomerase activity, the reverse transcriptase enzyme which adds TTAGGG DNA sequence to telomere end, may also cause senescence. The purpose of this research are establish and identify green turtle fibroblast skin cell culture and also compare telomere length and telomerase activity from passage 5 and 14. Primary cell culture made with primary explant method then cultured in Leibovitz-15 (Sigma) supplemented by 10% Fetal Bovine Serum (Sigma) and 100 U/mL Penicillin/Streptomycin (Sigma) at 30 ± 1oC. Cells identified with Rabbit Anti-Vimentin Polyclonal Antibody (Abcam) and Goat Polyclonal Antibody (Abcam) using confocal microscope (Zeiss LSM 170). Telomere length obtained using TeloTAGGG Telomere Length Assay (Roche) while telomerase activity obtained using TeloTAGGG Telomerase PCR ElisaPlus (Roche). Primary cell culture from green turtle skin had fibroblastic morphology and immunocytochemistry test with vimentin antibody proved the culture was fibroblast cell. Measurement of telomere length and telomerase activity showed that telomere length and telomerase activity of passage 14 was greater than passage 5. However, based on morphology, green turtle fibroblast skin cell culture showed senescent morphology. Based on the analysis of telomere length and telomerase activity, suspected fibroblast skin cell culture of green turtles is not undergo aging through telomere shortening.

Keywords: cell culture, chelonia mydas, telomerase, telomere, senescence

Procedia PDF Downloads 407
460 Electroremediation of Saturated and Unsaturated Nickel-Contaminated Soils

Authors: Waddah Abdullah, Saleh Al-Sarem

Abstract:

Electrokinetic remediation was undoubtedly proven to be one of the most efficient techniques used to clean up soils contaminated with polar charged contaminants (such as heavy metals) and non-polar organic contaminants. It can be efficiently used to clean up low permeability mud, wastewater, electroplating wastes, sludge, and marine dredging. This study presented and discussed the results of electrokinetic remediation processes to clean up soils contaminated with nickel. Two types of electrokinetics cells were used: an open cell and an advanced cylindrical cell. Two types of soils were used for this investigation; the Azraq green clay which has very low permeability taken from the eastern part of Jordan (city of Azraq) and a sandy soil having, relatively, very high permeability. The clayey soil was spiked with 500 ppm of nickel, and the sandy soil was spiked with 1500 ppm of nickel. Fully saturated and partially saturated clayey soils were used for the clean-up process. Clayey soils were tested under a direct current of 80 mA and 50 mA to study the effect of the electrical current on the remediation process. Chelating agent (Na-EDTA), disodium ethylene diamine tetraacetatic acid, was used in both types of soils to enhance the electroremediation process. The effect of carbonates presence in the contaminated soils, also, was investigated by use of sodium carbonate and calcium carbonate. pH changes in the anode and the cathode compartments were controlled by use of buffer solutions. The results of the investigation showed that for the fully saturated clayey soil spiked with nickel had an average removal efficiency of 64%, and the average removal efficiency was 46% for the unsaturated clayey soil. For the sandy soil, the average removal efficiency of Nickel was 90%. Test results showed that presence of carbonates in the remediated soils retarded the clean-up process of nickel-contaminated soils (removal efficiency was reduced from 90% to 60%). EDTA enhanced decontamination of nickel contaminated clayey and sandy soils with carbonates was studied. The average removal efficiency increased from 60% (prior to using EDTA) to more than 90% after using EDTA.

Keywords: buffer solution, EDTA, electroremediation, nickel removal efficiency

Procedia PDF Downloads 164
459 Pedagogical Opportunities of Physics Education Technology Interactive Simulations for Secondary Science Education in Bangladesh

Authors: Mohosina Jabin Toma, Gerald Tembrevilla, Marina Milner-Bolotin

Abstract:

Science education in Bangladesh is losing its appeal at an alarming rate due to the lack of science laboratory equipment, excessive teacher-student ratio, and outdated teaching strategies. Research-based educational technologies aim to address some of the problems faced by teachers who have limited access to laboratory resources, like many Bangladeshi teachers. Physics Education Technology (PhET) research team has been developing science and mathematics interactive simulations to help students develop deeper conceptual understanding. Still, PhET simulations are rarely used in Bangladesh. The purpose of this study is to explore Bangladeshi teachers’ challenges in learning to implement PhET-enhanced pedagogies and examine teachers’ views on PhET’s pedagogical opportunities in secondary science education. Since it is a new technology for Bangladesh, seven workshops on PhET were conducted in Dhaka city for 129 in-service and pre-service teachers in the winter of 2023 prior to data collection. This study followed an explanatory mixed method approach that included a pre-and post-workshop survey and five semi-structured interviews. Teachers participated in the workshops voluntarily and shared their experiences at the end. Teachers’ challenges were also identified from workshop discussions and observations. The interviews took place three to four weeks after the workshop and shed light on teachers’ experiences of using PhET in actual classroom settings. The results suggest that teachers had difficulty handling new technology; hence, they recommended preparing a booklet and Bengali YouTube videos on PhET to assist them in overcoming their struggles. Teachers also faced challenges in using any inquiry-based learning approach due to the content-loaded curriculum and exam-oriented education system, as well as limited experience with inquiry-based education. The short duration of classes makes it difficult for them to design PhET activities. Furthermore, considering limited access to computers and the internet in school, teachers think PhET simulations can bring positive changes if used in homework activities. Teachers also think they lack pedagogical skills and sound content knowledge to take full advantage of PhET. They highly appreciated the workshops and proposed that the government designs some teacher training modules on how to incorporate PhET simulations. Despite all the challenges, teachers believe PhET can enhance student learning, ensure student engagement and increase student interest in STEM Education. Considering the lack of science laboratory equipment, teachers recognized the potential of PhET as a supplement to hands-on activities for secondary science education in Bangladesh. They believed that if PhET develops more curriculum-relevant sims, it will bring revolutionary changes to how Bangladeshi students learn science. All the participating teachers in this study came from two organizations, and all the workshops took place in urban areas; therefore, the findings cannot be generalized to all secondary science teachers. A nationwide study is required to include teachers from diverse backgrounds. A further study can shed light on how building a professional learning community can lessen teachers’ challenges in incorporating PhET-enhanced pedagogy in their teaching.

Keywords: educational technology, inquiry-based learning, PhET interactive simulations, PhET-enhanced pedagogies, science education, science laboratory equipment, teacher professional development

Procedia PDF Downloads 65
458 Curative Role of Bromoenol Lactone, an Inhibitor of Phospholipase A2 Enzyme, during Cigarette Smoke Condensate Induced Anomalies in Lung Epithelium

Authors: Subodh Kumar, Sanjeev Kumar Sharma, Gaurav Kaushik, Pramod Avti, Phulen Sarma, Bikash Medhi, Krishan Lal Khanduja

Abstract:

Background: It is well known that cigarette smoke is one of the causative factors in various lung diseases especially cancer. Carcinogens and oxidant molecules present in cigarette smoke not only damage the cellular constituents (lipids, proteins, DNA) but may also regulate the molecular pathways involved in inflammation and cancer. Continuous oxidative stress caused by the constituents of cigarette smoke leads to higher PhospholipaseA₂ (PLA₂) activity, resulting in elevated levels of secondary metabolites whose role is well defined in cancer. To reduce the burden of chronic inflammation as well as oxidative stress, and higher levels of secondary metabolites, we checked the curative potential of PLA₂ inhibitor Bromoenol Lactone (BEL) during continuous exposure of cigarette smoke condensate (CSC). Aim: To check the therapeutic potential of Bromoenol Lactone (BEL), an inhibitor of PhospholipaseA₂s, in pathways of CSC-induced changes in type I and type II alveolar epithelial cells. Methods: Effect of BEL on CSC-induced PLA2 activity were checked using colorimetric assay, cellular toxicity using cell viability assay, membrane integrity using fluorescein di-acetate (FDA) uptake assay, reactive oxygen species (ROS) levels and apoptosis markers through flow cytometry, and cellular regulation using MAPKinases levels, in lung epithelium. Results: BEL significantly mimicked CSC-induced PLA₂ activity, ROS levels, apoptosis, and kinases level whereas improved cellular viability and membrane integrity. Conclusions: Current observations revealed that BEL may be a potential therapeutic agent during Cigarette smoke-induced anomalies in lung epithelium.

Keywords: cigarette smoke condensate, phospholipase A₂, oxidative stress, alveolar epithelium, bromoenol lactone

Procedia PDF Downloads 162
457 Protective Effect of Wheat Grass (Triticum Durum) against Oxidative Damage Induced by Lead: Study of Some Biomarkers and Histological Few Organs in Males Wistar Rats

Authors: Mansouri Ouarda, Abdennour Cherif, Saidi Malika

Abstract:

Since the industrial revolution, many anthropogenic activities have caused environmental, considerable and overall changes. The lead represents a very dangerous disruptive for the functioning of the body. In this context the current study aims at evaluating a natural therapy by the use of the plant grass in wheat (Triticum durum) against the toxicity of lead in rat wistar male. The rats were divided into three groups: the control group, the group treated with 600 mg /kg food of lead only (Pb) is the group treated with the combination of 600 mg/kg of food and 9g/rat /day of the plant grass in wheat (Pb-bl). The duration of the treatment is 6 weeks. The results of the biometrics of the organs (thyroid, kidney, testis and epididymis) show no significant difference between the three groups. The dosage of a few parameters and hormonal biochemical shows a decrease in the concentration of the hormone T3 and TSH levels among the group pb alone compared to the control and Pb-Bl. These results have been confirmed by the study of histological slices. A morphological changes represented by a shrinking volume of vesicles with the group treated with Pb alone. A return to the normal state of the structure of the follicles was observed. The concentration in serum testosterone, urea and creatinine was significantly increased among the group treated by Pb only in relation to the control and Pb-Bl. whereas the rate of glucose did not show any significant difference. The histology study of the kidney, testis and epididymal weights show no modification at the group Pb-bl comparing to the control. The parenchyma of the kidney shows a dilation of tubes distal and proximal causing a tubular nephropathy for the batch processed by Pb only. The testicles have marked a destruction or absence of germ cells and the light of some seminiferous are almost empty. Conclusion: The supplementation of the plant Triticum durum has caused a considerable improvement which ensures the return of parameters investigated in the normal state.

Keywords: creatinine, glucose, histological sections, T3, TSH, testosterone

Procedia PDF Downloads 351
456 Application of the Pattern Method to Form the Stable Neural Structures in the Learning Process as a Way of Solving Modern Problems in Education

Authors: Liudmyla Vesper

Abstract:

The problems of modern education are large-scale and diverse. The aspirations of parents, teachers, and experts converge - everyone interested in growing up a generation of whole, well-educated persons. Both the family and society are expected in the future generation to be self-sufficient, desirable in the labor market, and capable of lifelong learning. Today's children have a powerful potential that is difficult to realize in the conditions of traditional school approaches. Focusing on STEM education in practice often ends with the simple use of computers and gadgets during class. "Science", "technology", "engineering" and "mathematics" are difficult to combine within school and university curricula, which have not changed much during the last 10 years. Solving the problems of modern education largely depends on teachers - innovators, teachers - practitioners who develop and implement effective educational methods and programs. Teachers who propose innovative pedagogical practices that allow students to master large-scale knowledge and apply it to the practical plane. Effective education considers the creation of stable neural structures during the learning process, which allow to preserve and increase knowledge throughout life. The author proposed a method of integrated lessons – cases based on the maths patterns for forming a holistic perception of the world. This method and program are scientifically substantiated and have more than 15 years of practical application experience in school and student classrooms. The first results of the practical application of the author's methodology and curriculum were announced at the International Conference "Teaching and Learning Strategies to Promote Elementary School Success", 2006, April 22-23, Yerevan, Armenia, IREX-administered 2004-2006 Multiple Component Education Project. This program is based on the concept of interdisciplinary connections and its implementation in the process of continuous learning. This allows students to save and increase knowledge throughout life according to a single pattern. The pattern principle stores information on different subjects according to one scheme (pattern), using long-term memory. This is how neural structures are created. The author also admits that a similar method can be successfully applied to the training of artificial intelligence neural networks. However, this assumption requires further research and verification. The educational method and program proposed by the author meet the modern requirements for education, which involves mastering various areas of knowledge, starting from an early age. This approach makes it possible to involve the child's cognitive potential as much as possible and direct it to the preservation and development of individual talents. According to the methodology, at the early stages of learning students understand the connection between school subjects (so-called "sciences" and "humanities") and in real life, apply the knowledge gained in practice. This approach allows students to realize their natural creative abilities and talents, which makes it easier to navigate professional choices and find their place in life.

Keywords: science education, maths education, AI, neuroplasticity, innovative education problem, creativity development, modern education problem

Procedia PDF Downloads 37
455 Development of a Novel Antibacterial to Block Growth of Pseudomonas Aeruginosa and Prevent Biofilm Formation

Authors: Clara Franch de la Cal, Christopher J Morris, Michael McArthur

Abstract:

Cystic fibrosis (CF) is an autosomal recessive genetic disorder characterized by abnormal transport of chloride and sodium across the lung epithelium, leading to thick and viscous secretions. Within which CF patients suffer from repeated bacterial pulmonary infections, with Pseudomonas aeru-ginosa (PA) eliciting the greatest inflammatory response, causing an irreversible loss of lung func-tion that determines morbidity and mortality. The cell wall of PA is a permeability barrier to many antibacterials and the rise of Mutli-Drug Resistant strains (MDR) is eroding the efficacy of the few remaining clinical options. In addition when PA infection becomes established it forms an antibi-otic-resistant biofilm, embedded in which are slow growing cells that are refractive to drug treat-ment. Making the development of new antibacterials a major challenge. This work describes the development of new type of nanoparticulate oligonucleotide antibacterial capable of tackling PA infections, including MDR strains. It is being developed to both block growth and prevent biofilm formation. These oligonucleotide therapeutics, Transcription Factor Decoys (TFD), act on novel genomic targets by capturing key regulatory proteins to block essential bacterial genes and defeat infection. They have been successfully transfected into a wide range of pathogenic bacteria, both in vitro and in vivo, using a proprietary delivery technology. The surfactant used self-assembles with TFD to form a nanoparticle stable in biological fluids, which protects the TFD from degradation and preferentially transfects prokaryotic membranes. Key challenges are to adapt the nanoparticle so it is active against PA in the context of biofilms and to formulate it for administration by inhalation. This would allow the drug to be delivered to the respiratory tract, thereby achieving drug concentrations sufficient to eradicate the pathogenic organisms at the site of infection.

Keywords: antibacterials, transcriptional factor decoys (TFDs), pseudomonas aeruginosa

Procedia PDF Downloads 265
454 Human Par14 and Par17 Isomerases Bind Hepatitis B Virus Components Inside and Out

Authors: Umar Saeed

Abstract:

Peptidyl-prolyl cis/trans isomerases Par14 and Par17 in humans play crucial roles in diverse cellular processes, including protein folding, chromatin remodeling, DNA binding, ribosome biogenesis, and cell cycle progression. However, the effects of Par14 and Par17 on viral replication have been explored to a limited extent. We first time discovered their influential roles in promoting Hepatitis B Virus replication. In this study, we observed that in the presence of HBx, either Par14 or Par17 could upregulate HBV replication. However, in the absence of HBx, neither Par14 nor Par17 had any effect on replication. Their mechanism of action involves binding to specific motifs within HBc and HBx proteins. Notably, they target the conserved 133Arg-Pro134 (RP) motif of HBc and the 19RP20-28RP29 motifs of HBx. This interaction is fundamental for the stability of HBx, core particles, and HBc. Par14 and Par17 exhibit versatility by binding both outside and inside core particles, thereby facilitating core particle assembly through their participation in HBc dimer-dimer interactions. NAGE and immunoblotting analyses unveiled the binding of Par14/Par17 to core particles. Co-immunoprecipitation experiments further demonstrated the interaction of Par14/Par17 with core particle assembly-defective and dimer-positive HBc-Y132A. It's essential to emphasize that R133 is the key residue in the HBc RP motif that governs their interaction with Par14/Par17. Chromatin immunoprecipitation conducted on HBV-infected cells elucidated the participation of residues S19 and E46/D74 in Par14 and S44 and E71/D99 in Par17 in the recruitment of 133RP134 motif-containing HBc into cccDNA. Depleting PIN4 in liver cell lines results in a significant reduction in cccDNA levels, pgRNA, sgRNAs, HBc, core particle assembly, and HBV DNA synthesis. Notably, parvulin inhibitors like juglone and PiB have proven to be effective in substantially reducing HBV replication. These inhibitors weaken the interaction between HBV core particles and Par14/Par17, underscoring the dynamic nature of this interaction. It's also worth noting that specific Par14/Par17 inhibitors hold promise as potential therapeutic options for chronic hepatitis B.

Keywords: Par14Par17, HBx, HBc, cccDNA, HBV

Procedia PDF Downloads 47
453 Yellow Necklacepod and Shih-Balady: Possible Promising Sources Against Human Coronaviruses

Authors: Howaida I. Abd-Alla, Omnia Kutkat, Yassmin Moatasim, Magda T. Ibrahim, Marwa A. Mostafa, Mohamed GabAllah, Mounir M. El-Safty

Abstract:

Artemisia judaica (known shih-balady), Azadirachta indica and Sophora tomentosa (known yellow necklace pod) are members of available medicinal plants well-known for their traditional medical use in Egypt which suggests that they probably harbor broad-spectrum antiviral, immunostimulatory and anti-inflammatory functions. Their ethyl acetate-dichloromethane (1:1, v/v) extracts were evaluated for the potential anti-Middle East respiratory syndrome-related coronavirus (anti-MERS-CoV) activity. Their cytotoxic activity was tested in Vero-E6 cells using 3-(4,-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method with minor modification. The plot of percentage cytotoxicity for each extract concentration has calculated the concentration which exhibited 50% cytotoxic concentration (TC50). A plaque reduction assay was employed using safe dose of extract to evaluate its effect on virus propagation. The highest inhibition percentage was recorded for the yellow necklace pod, followed by Shih-balady. The possible mode of action of virus inhibition was studied at three different levels viral replication, viral adsorption and virucidal activity. The necklace pod leaves have induced virucidal effects and direct effects on the replication of virus. Phytochemical investigation of the promising necklace pod led to the isolation and structure determination of nine compounds. The structure of each compound was determined by a variety of spectroscopic methods. Compounds 4-O-methyl sorbitol 1, 8-methoxy daidzin 6 and 6-methoxy apigenin-7-O-β-D-glucopyranoside 8 were isolated for the first time from the Sophora genus and the other six compounds were the first time that they were isolated from this species according to available works of literature. Generally, the highest anti-CoV 2 activity of S. tomentosa was associated with the crude ethanolic extract, indicating the possibility of synergy among the antiviral phytochemical constituents (1-9).

Keywords: coronavirus, MERS-CoV, mode of action, necklace pod, shih-balady

Procedia PDF Downloads 185
452 Big Data Applications for Transportation Planning

Authors: Antonella Falanga, Armando Cartenì

Abstract:

"Big data" refers to extremely vast and complex sets of data, encompassing extraordinarily large and intricate datasets that require specific tools for meaningful analysis and processing. These datasets can stem from diverse origins like sensors, mobile devices, online transactions, social media platforms, and more. The utilization of big data is pivotal, offering the chance to leverage vast information for substantial advantages across diverse fields, thereby enhancing comprehension, decision-making, efficiency, and fostering innovation in various domains. Big data, distinguished by its remarkable attributes of enormous volume, high velocity, diverse variety, and significant value, represent a transformative force reshaping the industry worldwide. Their pervasive impact continues to unlock new possibilities, driving innovation and advancements in technology, decision-making processes, and societal progress in an increasingly data-centric world. The use of these technologies is becoming more widespread, facilitating and accelerating operations that were once much more complicated. In particular, big data impacts across multiple sectors such as business and commerce, healthcare and science, finance, education, geography, agriculture, media and entertainment and also mobility and logistics. Within the transportation sector, which is the focus of this study, big data applications encompass a wide variety, spanning across optimization in vehicle routing, real-time traffic management and monitoring, logistics efficiency, reduction of travel times and congestion, enhancement of the overall transportation systems, but also mitigation of pollutant emissions contributing to environmental sustainability. Meanwhile, in public administration and the development of smart cities, big data aids in improving public services, urban planning, and decision-making processes, leading to more efficient and sustainable urban environments. Access to vast data reservoirs enables deeper insights, revealing hidden patterns and facilitating more precise and timely decision-making. Additionally, advancements in cloud computing and artificial intelligence (AI) have further amplified the potential of big data, enabling more sophisticated and comprehensive analyses. Certainly, utilizing big data presents various advantages but also entails several challenges regarding data privacy and security, ensuring data quality, managing and storing large volumes of data effectively, integrating data from diverse sources, the need for specialized skills to interpret analysis results, ethical considerations in data use, and evaluating costs against benefits. Addressing these difficulties requires well-structured strategies and policies to balance the benefits of big data with privacy, security, and efficient data management concerns. Building upon these premises, the current research investigates the efficacy and influence of big data by conducting an overview of the primary and recent implementations of big data in transportation systems. Overall, this research allows us to conclude that big data better provide to enhance rational decision-making for mobility choices and is imperative for adeptly planning and allocating investments in transportation infrastructures and services.

Keywords: big data, public transport, sustainable mobility, transport demand, transportation planning

Procedia PDF Downloads 43
451 Caspase-11 and AIM2 Inflammasome are Involved in Smoking-Induced COPD and Lung Adenocarcinoma

Authors: Chiara Colarusso, Michela Terlizzi, Aldo Pinto, Rosalinda Sorrentino

Abstract:

Cigarette smoking is the main cause and the most common risk factor for both COPD and lung cancer. In our previous studies, we proved that caspase-11 in mice and its human analogue, caspase-4, are involved in lung carcinogenesis and that AIM2 inflammasome might play a pro-cancerous role in lung cancer. Therefore, the aim of this study was to investigate potential crosstalk between COPD and lung cancer, focusing on AIM2 and caspase-11-dependent inflammasome signaling pathway. To mimic COPD, we took advantage of an experimental first-hand smoking mouse model and, to confirm what was observed in mice, we used human samples of lung adenocarcinoma patients stratified according to the smoking and COPD status. We demonstrated that smoke exposure led to emphysema-like features, bronchial tone impairment, and release of IL-1-like cytokines (IL-1α, IL-1β, IL-33, IL-18) in a caspase-1 independent manner in C57Bl/6N. Rather, a dysfunctional caspase-11 in smoke-exposed 129Sv mice was associated to lower bronchial inflammation, collagen deposition, and IL-1-like inflammation. In addition, for the first time, we found that AIM2 inflammasome is involved in lung inflammation in smoking and COPD, in that its expression was higher in smoke-exposed C57Bl/6N compared to 129Sv smoking mice, who instead did not show any alteration of AIM2 in both macrophages and dendritic cells. Moreover, we found that AIM2 expression in the cancerous tissue, albeit higher than non-cancerous tissue, was not statistically different according to the COPD and smoking status. Instead, the higher expression of AIM2 in non-cancerous tissue of smoker COPD patients than smokers who did not have COPD was correlated to a higher hazard ratio of poor survival rate than patients who presented lower levels of AIM2. In conclusion, our data highlight that caspase-11 in mice is associated to smoke-induced lung latent inflammation which could drive the establishment of lung cancer, and that AIM2 inflammasome plays a role at the crosstalk between smoking/COPD and lung adenocarcinoma in that its higher presence is correlated to lower survival rate of smoker COPD adenocarcinoma.

Keywords: COPD, inflammasome, lung cancer, lung inflammation, smoke

Procedia PDF Downloads 135
450 Cytotoxicity of 13 South African Macrofungal Species and Mechanism/s of Action against Cancer Cell Lines

Authors: Gerhardt Boukes, Maryna Van De Venter, Sharlene Govender

Abstract:

Macrofungi have been used for the past two thousand years in Asian countries, and more recently in Western countries, for their medicinal properties. Biological activities include antimicrobial, antioxidant, anti-inflammatory, antidiabetic, anticancer and immunomodulatory to name a few. Several biologically active compounds have been identified and isolated. Macrofungal research in Africa is poorly documented and to the best of our knowledge non-existent. South Africa has a rich macrofungal biodiversity, which includes endemic and exotic macrofungal species. Ethanolic extracts of 13 macrofungal species, including mushrooms, bracket fungi and puffballs, were prepared and screened for cytotoxicity against a panel of seven cell lines, including A549 (human lung adenocarcinoma), HeLa (human cervical adenocarcinoma), HT-29 (human colorectal adenocarcinoma), MCF7 (human breast adenocarcinoma), MIA PaCa-2 (human pancreatic ductal adenocarcinoma), PC-3 (human prostate adenocarcinoma) and Vero (African green monkey kidney epithelial) cells using MTT. Cell lines were chosen according to the most prevalent cancer types affecting males and females in South Africa and globally, and the mutations they contain. Preliminary results have shown that three of the macrofungal genera, i.e. Fomitopsis, Gymnopilus and Pycnoporus, have shown cytotoxic activity, ranging between IC50 ~20 and 200 µg/mL. The molecular mechanism of action contributing to cell death investigated and being investigated include apoptosis (i.e. DNA cell cycle arrest, caspase-3 activation and mitochondrial membrane potential), autophagy (i.e. acridine orange and LC3B staining) and ER stress (i.e. thioflavin T staining and caspase-12) in the presence of melphalan, chloroquine and thapsigargin/tuncamycin as positive controls, respectively. The genus, Pycnoporus, has shown the best cytotoxicity of the three macrofungal genera. Future work will focus on the identification and isolation of novel active compounds and elucidating the mechanism/s of action.

Keywords: cancer, cytotoxicity, macrofungi, mechanism/s of action

Procedia PDF Downloads 221
449 Electrochemical Bioassay for Haptoglobin Quantification: Application in Bovine Mastitis Diagnosis

Authors: Soledad Carinelli, Iñigo Fernández, José Luis González-Mora, Pedro A. Salazar-Carballo

Abstract:

Mastitis is the most relevant inflammatory disease in cattle, affecting the animal health and causing important economic losses on dairy farms. This disease takes place in the mammary gland or udder when some opportunistic microorganisms, such as Staphylococcus aureus, Streptococcus agalactiae, Corynebacterium bovis, etc., invade the teat canal. According to the severity of the inflammation, mastitis can be classified as sub-clinical, clinical and chronic. Standard methods for mastitis detection include counts of somatic cells, cell culture, electrical conductivity of the milk, and California test (evaluation of “gel-like” matrix consistency after cell lysed with detergents). However, these assays present some limitations for accurate detection of subclinical mastitis. Currently, haptoglobin, an acute phase protein, has been proposed as novel and effective biomarker for mastitis detection. In this work, an electrochemical biosensor based on polydopamine-modified magnetic nanoparticles (MNPs@pDA) for haptoglobin detection is reported. Thus, MNPs@pDA has been synthesized by our group and functionalized with hemoglobin due to its high affinity to haptoglobin protein. The protein was labeled with specific antibodies modified with alkaline phosphatase enzyme for its electrochemical detection using an electroactive substrate (1-naphthyl phosphate) by differential pulse voltammetry. After the optimization of assay parameters, the haptoglobin determination was evaluated in milk. The strategy presented in this work shows a wide range of detection, achieving a limit of detection of 43 ng/mL. The accuracy of the strategy was determined by recovery assays, being of 84 and 94.5% for two Hp levels around the cut off value. Milk real samples were tested and the prediction capacity of the electrochemical biosensor was compared with a Haptoglobin commercial ELISA kit. The performance of the assay has demonstrated this strategy is an excellent and real alternative as screen method for sub-clinical bovine mastitis detection.

Keywords: bovine mastitis, haptoglobin, electrochemistry, magnetic nanoparticles, polydopamine

Procedia PDF Downloads 146
448 Development of Ketorolac Tromethamine Encapsulated Stealth Liposomes: Pharmacokinetics and Bio Distribution

Authors: Yasmin Begum Mohammed

Abstract:

Ketorolac tromethamine (KTM) is a non-steroidal anti-inflammatory drug with a potent analgesic and anti-inflammatory activity due to prostaglandin related inhibitory effect of drug. It is a non-selective cyclo-oxygenase inhibitor. The drug is currently used orally and intramuscularly in multiple divided doses, clinically for the management arthritis, cancer pain, post-surgical pain, and in the treatment of migraine pain. KTM has short biological half-life of 4 to 6 hours, which necessitates frequent dosing to retain the action. The frequent occurrence of gastrointestinal bleeding, perforation, peptic ulceration, and renal failure lead to the development of other drug delivery strategies for the appropriate delivery of KTM. The ideal solution would be to target the drug only to the cells or tissues affected by the disease. Drug targeting could be achieved effectively by liposomes that are biocompatible and biodegradable. The aim of the study was to develop a parenteral liposome formulation of KTM with improved efficacy while reducing side effects by targeting the inflammation due to arthritis. PEG-anchored (stealth) and non-PEG-anchored liposomes were prepared by thin film hydration technique followed by extrusion cycle and characterized for in vitro and in vivo. Stealth liposomes (SLs) exhibited increase in percent encapsulation efficiency (94%) and 52% percent of drug retention during release studies in 24 h with good stability for a period of 1 month at -20°C and 4°C. SLs showed about maximum 55% of edema inhibition with significant analgesic effect. SLs produced marked differences over those of non-SL formulations with an increase in area under plasma concentration time curve, t₁/₂, mean residence time, and reduced clearance. 0.3% of the drug was detected in arthritic induced paw with significantly reduced drug localization in liver, spleen, and kidney for SLs when compared to other conventional liposomes. Thus SLs help to increase the therapeutic efficacy of KTM by increasing the targeting potential at the inflammatory region.

Keywords: biodistribution, ketorolac tromethamine, stealth liposomes, thin film hydration technique

Procedia PDF Downloads 275
447 Physiological Effects during Aerobatic Flights on Science Astronaut Candidates

Authors: Pedro Llanos, Diego García

Abstract:

Spaceflight is considered the last frontier in terms of science, technology, and engineering. But it is also the next frontier in terms of human physiology and performance. After more than 200,000 years humans have evolved under earth’s gravity and atmospheric conditions, spaceflight poses environmental stresses for which human physiology is not adapted. Hypoxia, accelerations, and radiation are among such stressors, our research involves suborbital flights aiming to develop effective countermeasures in order to assure sustainable human space presence. The physiologic baseline of spaceflight participants is subject to great variability driven by age, gender, fitness, and metabolic reserve. The objective of the present study is to characterize different physiologic variables in a population of STEM practitioners during an aerobatic flight. Cardiovascular and pulmonary responses were determined in Science Astronaut Candidates (SACs) during unusual attitude aerobatic flight indoctrination. Physiologic data recordings from 20 subjects participating in high-G flight training were analyzed. These recordings were registered by wearable sensor-vest that monitored electrocardiographic tracings (ECGs), signs of dysrhythmias or other electric disturbances during all the flight. The same cardiovascular parameters were also collected approximately 10 min pre-flight, during each high-G/unusual attitude maneuver and 10 min after the flights. The ratio (pre-flight/in-flight/post-flight) of the cardiovascular responses was calculated for comparison of inter-individual differences. The resulting tracings depicting the cardiovascular responses of the subjects were compared against the G-loads (Gs) during the aerobatic flights to analyze cardiovascular variability aspects and fluid/pressure shifts due to the high Gs. In-flight ECG revealed cardiac variability patterns associated with rapid Gs onset in terms of reduced heart rate (HR) and some scattered dysrhythmic patterns (15% premature ventricular contractions-type) that were considered as triggered physiological responses to high-G/unusual attitude training and some were considered as instrument artifact. Variation events were observed in subjects during the +Gz and –Gz maneuvers and these may be due to preload and afterload, sudden shift. Our data reveal that aerobatic flight influenced the breathing rate of the subject, due in part by the various levels of energy expenditure due to the increased use of muscle work during these aerobatic maneuvers. Noteworthy was the high heterogeneity in the different physiological responses among a relatively small group of SACs exposed to similar aerobatic flights with similar Gs exposures. The cardiovascular responses clearly demonstrated that SACs were subjected to significant flight stress. Routine ECG monitoring during high-G/unusual attitude flight training is recommended to capture pathology underlying dangerous dysrhythmias in suborbital flight safety. More research is currently being conducted to further facilitate the development of robust medical screening, medical risk assessment approaches, and suborbital flight training in the context of the evolving commercial human suborbital spaceflight industry. A more mature and integrative medical assessment method is required to understand the physiology state and response variability among highly diverse populations of prospective suborbital flight participants.

Keywords: g force, aerobatic maneuvers, suborbital flight, hypoxia, commercial astronauts

Procedia PDF Downloads 104
446 Mannosidase Alpha Class 1B Member 1 Targets F Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein and Ebola Virus Glycoprotein to Endoplasmic Reticulum-To-Lysosome-Associated Degradation by Micro-Endoplasmic Reticulum-Phagy

Authors: Yong-Hui Zheng

Abstract:

Viruses hijack host machineries to propagate and spread, which disrupts cellular homeostasis and activates various counteractive mechanisms. Infection of enveloped viruses is dependent on their fusion proteins, which bind to viral receptors to allow virus entry into cells. Fusion proteins are glycoproteins and expressed in the endoplasmic reticulum (ER) by hijacking the secretory pathway. Previously, we reported that Zaire ebolavirus (EBOV)-glycoprotein (GP) expression induces ER stress, and EBOV-GP is targeted by the calnexin cycle to macro-ER-phagy for degradation. We now report that expression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/SARS2)-spike (S) protein also causes ER stress, and its expression is strongly downregulated by mannosidase alpha class 1B member 1 (MAN1B1), a class I α-mannosidase from the ER. MAN1B1 co-localizes with SARS2-S in the ER, and its downregulation of SARS2-S is blocked by inhibitors targeting lysosomes and autophagy, but not proteasomes, indicating SARS2-S degradation by autolysosomes. Notably, the SARS2-S degradation does not require the core autophagy machinery including ATG3, ATG5, ATG7, and phosphatidylinositol 3-kinase catalytic subunit type 3 (PI3KC3)/vacuolar protein sorting 34 (VPS34), and instead, it requires Beclin 1 (BECN1), a core component in the PI3KC3 complex. In addition, MAN1B1 does not trigger SARS2-S polyubiquitination, and consistently, the SARS2-S degradation does not require the autophagy receptor sequestosome 1 (SQSTM1)/p62. MAN1B1 also downregulates EBOV-GP similarly, but this degradation does not require BECN1. Collectively, we conclude that MAN1B1 downregulates viral fusions by micro-ER-phagy, and importantly, we have identified BECN1-dependent and BECN1-independent mechanisms for micro-ER-phagy.

Keywords: Micro-ER-phagy, reticulophagy, fusion proteins, ER stress

Procedia PDF Downloads 52
445 Effect of Sanitary-Environmental Conditions of Diabetic Hypertension Incidence of Displaced Persons

Authors: Radmila Maksimovic, Sonja Ketin, Rade Biocanin, Jelena Maksimovic

Abstract:

The abnormal conditions of life and work genetic factors often play a major role in incidence of diabetes-diabetes, heart disease and vascular disease, jaundice, and post traumatic stress. Trauma and post traumatic stress are most common in the displaced persons,and the focus of this paper is to shed light on this issue in former Yugoslavia, Yugoslavia and now in our country. This is caused by increased beta-cell sensitivity to viruses, the development of autoimmune antibodies against its own pancreascells, degenerative changes in cells that r esult in change of structure and insulin. In this paper, we dealt with traumatic events and long-term psycho social consequences for internally displaced persons, several years after displacement, and found a high level of PTSD symptoms. This stress is present in almost 1/3 of internally displaced persons, and every sixth person is suffering from PTSD in the past. Respondents generally suffer from symptoms of intrusion, but there was a large number of symptoms, avoidance and increased arousal. We also found that gender, age andeducation related to the symptoms. Females, and older respondents and internally displaced persons with lower levels of education how a higher level of PTSD symptoms, especially symptoms of intrusion and increase darousal. It is a highly traumatized sample in which more than 1/2 of respondents experienced more than three traumatic events in life,although the number of traumas experienced before, during and after the conflict varies.We found that during the war, internally displaced persons haveexperienced more traumatic events compared with the periodbefore and after the conflict. Trauma are different in type. No significant correlation between the number of experienced trauma and PTSD, suggesting that it is necessary to further study the structure of past traumas and the intermediary effects of certain risk factors and protective factors.

Keywords: living environment, displaced persons, jaundice, diabetes, trauma, diabetic hypertension, post-traumatic stress (PTSD), treatment

Procedia PDF Downloads 369
444 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction

Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal

Abstract:

Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.

Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction

Procedia PDF Downloads 115
443 Development of Solid Electrolytes Based on Networked Cellulose

Authors: Boor Singh Lalia, Yarjan Abdul Samad, Raed Hashaikeh

Abstract:

Three different kinds of solid polymer electrolytes were prepared using polyethylene oxide (PEO) as a base polymer, networked cellulose (NC) as a physical support and LiClO4 as a conductive salt for the electrolytes. Networked cellulose, a modified form of cellulose, is a biodegradable and environmentally friendly additive which provides a strong fibrous networked support for structural stability of the electrolytes. Although the PEO/NC/LiClO4 electrolyte retains its structural integrity and mechanical properties at 100oC as compared to pristine PEO-based polymer electrolytes, it suffers from poor ionic conductivity. To improve the room temperature conductivity of the electrolyte, PEO is replaced by the polyethylene glycol (PEG) which is a liquid phase that provides high mobility for Li+ ions transport in the electrolyte. PEG/NC/LiClO4 shows improvement in ionic conductivity compared to PEO/NC/LiClO4 at room temperature, but it is brittle and tends to form cracks during processing. An advanced solid polymer electrolyte with optimum ionic conductivity and mechanical properties is developed by using a ternary system: TEGDME/PEO/NC+LiClO4. At room temperature, this electrolyte exhibits an ionic conductivity to the order of 10-5 S/cm, which is very high compared to that of the PEO/LiClO4 electrolyte. Pristine PEO electrolytes start melting at 65 °C and completely lose its mechanical strength. Dynamic mechanical analysis of TEGDME: PEO: NC (70:20:10 wt%) showed an improvement of storage modulus as compared to the pristine PEO in the 60–120 °C temperature range. Also, with an addition of NC, the electrolyte retains its mechanical integrity at 100 oC which is beneficial for Li-ion battery operation at high temperatures. Differential scanning calorimetry (DSC) and thermal gravimetry analysis (TGA) studies revealed that the ternary polymer electrolyte is thermally stable in the lithium ion battery operational temperature range. As-prepared polymer electrolyte was used to assemble LiFePO4/ TEGDME/PEO/NC+LiClO4/Li half cells and their electrochemical performance was studied via cyclic voltammetry and charge-discharge cycling.

Keywords: solid polymer electrolyte, ionic conductivity, mechanical properties, lithium ion batteries, cyclic voltammetry

Procedia PDF Downloads 409
442 Micro-Droplet Formation in a Microchannel under the Effect of an Electric Field: Experiment

Authors: Sercan Altundemir, Pinar Eribol, A. Kerem Uguz

Abstract:

Microfluidics systems allow many-large scale laboratory applications to be miniaturized on a single device in order to reduce cost and advance fluid control. Moreover, such systems enable to generate and control droplets which have a significant role on improved analysis for many chemical and biological applications. For example, they can be employed as the model for cells in microfluidic systems. In this work, the interfacial instability of two immiscible Newtonian liquids flowing in a microchannel is investigated. When two immiscible liquids are in laminar regime, a flat interface is formed between them. If a direct current electric field is applied, the interface may deform, i.e. may become unstable and it may be ruptured and form micro-droplets. First, the effect of thickness ratio, total flow rate, viscosity ratio of the silicone oil and ethylene glycol liquid couple on the critical voltage at which the interface starts to destabilize is investigated. Then the droplet sizes are measured under the effect of these parameters at various voltages. Moreover, the effect of total flow rate on the time elapsed for the interface to be ruptured to form droplets by hitting the wall of the channel is analyzed. It is observed that an increase in the viscosity or the thickness ratio of the silicone oil to the ethylene glycol has a stabilizing effect, i.e. a higher voltage is needed while the total flow rate has no effect on it. However, it is observed that an increase in the total flow rate results in shortening of the elapsed time for the interface to hit the wall. Moreover, the droplet size decreases down to 0.1 μL with an increase in the applied voltage, the viscosity ratio or the total flow rate or a decrease in the thickness ratio. In addition to these observations, two empirical models for determining the critical electric number, i.e., the dimensionless voltage and the droplet size and another model which is a combination of both models, for determining the droplet size at the critical voltage are established.

Keywords: droplet formation, electrohydrodynamics, microfluidics, two-phase flow

Procedia PDF Downloads 163
441 Urban Renewal, Social Housing, Relocation, and Violence in Algiers

Authors: Kahina Amal Djiar, Mouna Gharbi, Maha Messaoudene, Oumelkheir Chareb

Abstract:

Over the last decade, Algerian authorities have implemented an ambitious program of urban renewal, which includes important relocation operations. The objectives behind such strategic interventions are on the one hand, to carry out an incremental approach aiming at eradicating precarious housing and on the other hand, to diversify alternative housing options for families requiring better living spaces. It is precisely for these same purposes that the Djenan el-Hassan and Carrières Jaubert estates, which are both located in Algiers, have undergone major urban transformations. These dwelling sites were built as part of the famous "Battle of Housing", which was launched by French colonial administration in the 1950s just before the independence of Algeria in 1962. Today, the Djenan el-Hassan estate is almost entirely demolished following the relocation of 171 families. The Carrières Jaubert estate, for its part, has seen two kinds of operations. The first has been shaped by a process of urban requalification and redevelopment, which allowed some of the residents to stay on site after the transformation of most housing cells into larger apartments. The second operation has required the relocation of over 300 families to entirely newly built dwellings. Such projects of urban renewal are supposed to create new opportunities, not only in terms of local urban development, but also in terms of social perspectives for those families who are involved, either directly or indirectly, in the process of relocation. In fact, the percentage of urban violence in Algiers has increased instead. Recent events in the newly built estates show that residents are repeatedly experiencing and even instigating episodes of brutality, hostility and aggression. The objective of this paper is to examine the causes that have engendered such rise in urban violence in newly built housing estates in Algiers. This paper aims to present the findings of a recent qualitative research and highlight the way that poorly designed neighbourhood, combined with a relocation process that leaves little room for community participation, create inevitably severe social tensions.

Keywords: relocation, social housing, violence, Algiers

Procedia PDF Downloads 514