Search results for: quest based learning
29126 Chassis Level Control Using Proportional Integrated Derivative Control, Fuzzy Logic and Deep Learning
Authors: Atakan Aral Ormancı, Tuğçe Arslantaş, Murat Özcü
Abstract:
This study presents the design and implementation of an experimental chassis-level system for various control applications. Specifically, the height level of the chassis is controlled using proportional integrated derivative, fuzzy logic, and deep learning control methods. Real-time data obtained from height and pressure sensors installed in a 6x2 truck chassis, in combination with pulse-width modulation signal values, are utilized during the tests. A prototype pneumatic system of a 6x2 truck is added to the setup, which enables the Smart Pneumatic Actuators to function as if they were in a real-world setting. To obtain real-time signal data from height sensors, an Arduino Nano is utilized, while a Raspberry Pi processes the data using Matlab/Simulink and provides the correct output signals to control the Smart Pneumatic Actuator in the truck chassis. The objective of this research is to optimize the time it takes for the chassis to level down and up under various loads. To achieve this, proportional integrated derivative control, fuzzy logic control, and deep learning techniques are applied to the system. The results show that the deep learning method is superior in optimizing time for a non-linear system. Fuzzy logic control with a triangular membership function as the rule base achieves better outcomes than proportional integrated derivative control. Traditional proportional integrated derivative control improves the time it takes to level the chassis down and up compared to an uncontrolled system. The findings highlight the superiority of deep learning techniques in optimizing the time for a non-linear system, and the potential of fuzzy logic control. The proposed approach and the experimental results provide a valuable contribution to the field of control, automation, and systems engineering.Keywords: automotive, chassis level control, control systems, pneumatic system control
Procedia PDF Downloads 8129125 Students’ Motivation, Self-Determination, Test Anxiety and Academic Engagement
Authors: Shakirat Abimbola Adesola, Shuaib Akintunde Asifat, Jelili Olalekan Amoo
Abstract:
This paper presented the impact of students’ emotions on learning when receiving lectures and when taking tests. It was observed that students experience different types of emotions during the study, and this was found to have a significant effect on their academic performance. A total of one thousand six hundred and seventy-five (1675) students from the department of Computer Science in two Colleges of Education in South-West Nigeria took part in this study. The students were randomly selected for the research. Sample comprises of 968 males representing 58%, and 707 females representing 42%. A structured questionnaire, of Motivated Strategies for Learning Questionnaire (MSLQ) was distributed to the participants to obtain their opinions. Data gathered were analyzed using the IBM SPSS 20 to obtain ANOVA, descriptive analysis, stepwise regression, and reliability tests. The results revealed that emotion moderately shape students’ motivation and engagement in learning; and that self-regulation and self-determination do have significant impact on academic performance. It was further revealed that test anxiety has a significant correlation with academic performance.Keywords: motivation, self-determination, test anxiety, academic performance, and academic engagement
Procedia PDF Downloads 8329124 Saudi Teachers’ Perceptions of Rough and Tumble Play in Early Learning
Authors: Rana Alghamdi
Abstract:
This study explored teachers’ perceptions of rough-and-tumble (R&T) play in early childhood education in Saudi Arabia. The literature on rough-and-tumble play in Saudi Arabia is limited in scope, and more research is needed to explore teachers’ perceptions on this type of play for early learners. The pertinent literature reveals that R&T play, which includes running, jumping, fighting, wrestling, chasing, pulling, pushing, and climbing, among other rough playful activities, can positively impact learning and development across psychosocial, emotional, and cognitive domains. Teachers’ understanding of R & T play is key, and the attitudes of Saudi early childhood teachers who are responsible for implementing curriculum-based play have not been fully researched. Four early childhood teachers from an urban Saudi preschool participated in the study. The data collected in this study were interpreted through a sociocultural lens. Data sources included in-depth interviews, photo-elicitation interviews, and participant-generated drawings. Three overarching themes emerged: teachers’ concerns about rough-and-tumble play, teachers’ perceptions about the benefits of rough-and-tumble play, and teachers’ expression of gender roles in R & T play as contextualized within Saudi culture. Saudi teachers’ perceptions are discussed in detail, and implications of the findings and recommendations for future research are put forth.Keywords: rough and tumble play, gender, culture, early childhood, Saudi Arabia
Procedia PDF Downloads 13229123 Adaptive Architecture and Urbanism - A Study of Coastal Cities, Climate Change Problems, Effects, Risks And Opportunities for Making Sustainable Habitat
Authors: Santosh Kumar Ketham
Abstract:
Climate change creating most dramatic and destructive consequences, the result is global warming and sea-level rise, flooding coastal cities around the world forming vulnerable situations affecting in multiple ways: environment, economy, social and political. The aim and goal of the research is to develop cities on water. Taking the problem as an opportunity to bring science, engineering, policies and design together to make a resilient and sustainable floating community on water considering existing/new technologies of floating. The quest is to make sustainable habitat on water to live, work, learn and play. To make sustainable energy generation and storage alongside maintaining balance of land and marine to conserve Ecosystem. The research would serve as a model for sustainable neighbourhoods designed in a modular way and thus can easily extend or re-arranged, to adapt for future socioeconomic realities. This research paper studies primarily on climate change problems, effects, risks and opportunities. It does so, through analysing existing case studies, books and writings published on coastal cities and understanding its various aspects for making sustainable habitat.Keywords: floating cities, flexible modular typologies, rising sea levels, sustainable architecture and urbanism
Procedia PDF Downloads 13729122 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data
Authors: S. Nickolas, Shobha K.
Abstract:
The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing
Procedia PDF Downloads 27429121 Optimizing Pick and Place Operations in a Simulated Work Cell for Deformable 3D Objects
Authors: Troels Bo Jørgensen, Preben Hagh Strunge Holm, Henrik Gordon Petersen, Norbert Kruger
Abstract:
This paper presents a simulation framework for using machine learning techniques to determine robust robotic motions for handling deformable objects. The main focus is on applications in the meat sector, which mainly handle three-dimensional objects. In order to optimize the robotic handling, the robot motions have been parameterized in terms of grasp points, robot trajectory and robot speed. The motions are evaluated based on a dynamic simulation environment for robotic control of deformable objects. The evaluation indicates certain parameter setups, which produce robust motions in the simulated environment, and based on a visual analysis indicate satisfactory solutions for a real world system.Keywords: deformable objects, robotic manipulation, simulation, real world system
Procedia PDF Downloads 28129120 Prediction of Mental Health: Heuristic Subjective Well-Being Model on Perceived Stress Scale
Authors: Ahmet Karakuş, Akif Can Kilic, Emre Alptekin
Abstract:
A growing number of studies have been conducted to determine how well-being may be predicted using well-designed models. It is necessary to investigate the backgrounds of features in order to construct a viable Subjective Well-Being (SWB) model. We have picked the suitable variables from the literature on SWB that are acceptable for real-world data instructions. The goal of this work is to evaluate the model by feeding it with SWB characteristics and then categorizing the stress levels using machine learning methods to see how well it performs on a real dataset. Despite the fact that it is a multiclass classification issue, we have achieved significant metric scores, which may be taken into account for a specific task.Keywords: machine learning, multiclassification problem, subjective well-being, perceived stress scale
Procedia PDF Downloads 13129119 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence
Procedia PDF Downloads 14429118 Lessons Learnt from Tutors’ Perspectives on Online Tutorial’s Policies in Open and Distance Education Institution
Authors: Durri Andriani, Irsan Tahar, Lilian Sarah Hiariey
Abstract:
Every institution has to develop, implement, and control its policies to ensure the effectiveness of the institution. In doing so, all related stakeholders have to be involved to maximize the benefit of the policies and minimize the potential constraints and resistances. Open and distance education (ODE) institution is no different. As an education institution, ODE institution has to focus their attention to fulfilling academic needs of their students through open and distance measures. One of them is quality learning support system. Significant stakeholders in learning support system are tutors since they are the ones who directly communicate with students. Tutors are commonly seen as objects whose main responsibility is limited to implementing policies decided by management in ODE institutions. Nonetheless, tutors’ perceptions of tutorials are believed to influence tutors’ performances in facilitating learning support. It is therefore important to analyze tutors’ perception on various aspects of learning support. This paper presents analysis of tutors’ perceptions on policies of tutoriala in ODE institution using Policy Analysis Framework (PAF) modified by King, Nugent, Russell, and Lacy. Focus of this paper is on on-line tutors, those who provide tutorials via Internet. On-line tutors were chosen to stress the increasingly important used of Internet in ODE system. The research was conducted in Universitas Terbuka (UT), Indonesia. UT is purposely selected because of its large number (1,234) of courses offered and large area coverage (6000 inhabited islands). These posed UT in a unique position where learning support system has, to some extent, to be standardized while at the same time it has to be able to cater the needs of different courses in different places for students with different backgrounds. All 598 listed on-line tutors were sent the research questionnaires. Around 20% of the email addresses could not be reached. Tutors were asked to fill out open-ended questionnaires on their perceptions on definition of on-line tutorial, roles of tutors and students in on-line tutorials, requirement for on-line tutors, learning materials, and student evaluation in on-line tutorial. Data analyzed was gathered from 40 on-line tutors who sent back filled-out questionnaires. Data were analyzed qualitatively using content analysis from all 40 tutors. The results showed that using PAF as entry point in choosing learning support services as area of policy with delivery learning materials as the issue at UT has been able to provide new insights of aspects need to be consider in formulating policies in online tutorial and in learning support services. Involving tutors as source of information could be proven to be productive. In general, tutors had clear understanding about definition of online tutorial, roles of tutors and roles of students, and requirement of tutor. Tutors just need to be more involved in the policy formulation since they could provide data on students and problem faced in online tutorial. However, tutors need an adjustment in student evaluation which according tutors too focus on administrative aspects and subjective.Keywords: distance education, on-line tutorial, tutorial policy, tutors’ perspectives
Procedia PDF Downloads 25329117 Culturally Responsive Teaching for Learner Diversity in Czech Schools: A Literature Review
Authors: Ntite Orji Kalu, Martina Kurowski
Abstract:
Until recently, the Czech Republic had an educational system dominated by indigenous people, who accounted for 95% of the school population. With the increasing influx of migrants and foreign students, especially from outside European Union, came a great disparity among the quality of learners and their learning needs and consideration for the challenges associated with being a minority and living within a foreign culture. This has prompted the research into ways of tailoring the educational system to meet the rising demand of learning styles and needs for the diverse learners in the Czech classrooms. Literature is reviewed regarding the various ways to accommodate the international students considering racial differences, focusing on theoretical approach and pedagogical principles. This study examines the compulsory educational system of the Czech Republic and the position and responsibility of the teacher in fostering a culturally sensitive and inclusive learning environment. Descriptive and content analysis is relied upon for this study. Recommendations are made for stakeholders to imbibe a more responsive environment that enhances the cultural and social integration of all learners.Keywords: culturally responsive teaching, cultural competence, diversity, learners, inclusive education, Czech schools
Procedia PDF Downloads 14629116 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs
Authors: Agastya Pratap Singh
Abstract:
This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications
Procedia PDF Downloads 2629115 Determinants of Utilization of Information and Communication Technology by Lecturers at Kenya Medical Training College, Nairobi
Authors: Agnes Anyango Andollo, Jane Achieng Achola
Abstract:
The use of Information and Communication Technologies (ICTs) has become one of the driving forces in facilitation of learning in most colleges. The ability to effectively harness the technology varies from college to college. The study objective was to determine the lecturers’, institutional attributes and policies that influence the utilization of ICT by the lecturers’. A cross sectional survey design was employed in order to empirically investigate the extent to which lecturers’ personal, institutional attributes and policies influence the utilization of ICT to facilitate learning. The target population of the study was 295 lecturers who facilitate learning at KMTC-Nairobi. Structured self-administered questionnaire was given to the lecturers. Quantitative data was scrutinized for completeness, accuracy and uniformity then coded. Data were analyzed in frequencies and percentages using Statistical Package for Social Sciences (SPSS) version 19, this was a reliable tool for quantitative data analysis. A total of 155 completed questionnaires administered were obtained from the respondents for the study that were subjected to analysis. The study found out that 93 (60%) of the respondents were male while 62 (40%) of the respondents were female. Individual’s educational level, age, gender and educational experience had the greatest impact on use of ICT. Lecturers’ own beliefs, values, ideas and thinking had moderate impact on use of ICT. And that institutional support by provision of resources for ICT related training such as internet, computers, laptops and projectors had moderate impact (p = 0.049) at 5% significant level on use of ICT. The study concluded that institutional attributes and ICT policy were keys to utilization of ICT by lecturers at KMTC Nairobi also mandatory policy on use of ICT by lecturers to facilitate learning was key. It recommended that policies should be put in place for Technical support to lecturers when in problem during utilization of ICT and also a mechanism should be put in place to make the use of ICT in teaching and learning mandatory.Keywords: policy, computers education, medical training institutions, ICTs
Procedia PDF Downloads 35829114 An Ecological Approach to Understanding Student Absenteeism in a Suburban, Kansas School
Authors: Andrew Kipp
Abstract:
Student absenteeism is harmful to both the school and the absentee student. One approach to improving student absenteeism is targeting contextual factors within the students’ learning environment. However, contemporary literature has not taken an ecological agency approach to understanding student absenteeism. Ecological agency is a theoretical framework that magnifies the interplay between the environment and the actions of people within the environment. To elaborate, the person’s personal history and aspirations and the environmental conditions provide potential outlets or restrictions to their intended action. The framework provides the unique perspective of understanding absentee students’ decision-making through the affordances and constraints found in their learning environment. To that effect, the study was guided by the question, “Why do absentee students decide to engage in absenteeism in a suburban Kansas school?” A case study methodology was used to answer the research question. Four suburban, Kansas high school absentee students in the 2020-2021 school year were selected for the study. The fall 2020 semester was in a remote learning setting, and the spring 2021 semester was in an in-person learning setting. The study captured their decision-making with respect to school attendance throughsemi-structured interviews, prolonged observations, drawings, and concept maps. The data was analyzed through thematic analysis. The findings revealed that peer socialization opportunities, methods of instruction, shifts in cultural beliefs due to COVID-19, manifestations of anxiety and lack of space to escape their anxiety, social media bullying, and the inability to receive academic tutoring motivated the participants’ daily decision to either attend or miss school. The findings provided a basis to improve several institutional and classroom practices. These practices included more student-led instruction and less teacher-led instruction in both in-person and remote learning environments, promoting socialization through classroom collaboration and clubs based on emerging student interests, reducing instances of bullying through prosocial education, safe spaces for students to escape the classroom to manage their anxiety, and more opportunities for one-on-one tutoring to improve grades. The study provides an example of using the ecological agency approach to better understand the personal and environmental factors that lead to absenteeism. The study also informs educational policies and classroom practices to better promote student attendance. Further research should investigate other school contexts using the ecological agency theoretical framework to better understand the influence of the school environment on student absenteeism.Keywords: student absenteeism, ecological agency, classroom practices, educational policy, student decision-making
Procedia PDF Downloads 14329113 Integrating Distributed Architectures in Highly Modular Reinforcement Learning Libraries
Authors: Albert Bou, Sebastian Dittert, Gianni de Fabritiis
Abstract:
Advancing reinforcement learning (RL) requires tools that are flexible enough to easily prototype new methods while avoiding impractically slow experimental turnaround times. To match the first requirement, the most popular RL libraries advocate for highly modular agent composability, which facilitates experimentation and development. To solve challenging environments within reasonable time frames, scaling RL to large sampling and computing resources has proved a successful strategy. However, this capability has been so far difficult to combine with modularity. In this work, we explore design choices to allow agent composability both at a local and distributed level of execution. We propose a versatile approach that allows the definition of RL agents at different scales through independent, reusable components. We demonstrate experimentally that our design choices allow us to reproduce classical benchmarks, explore multiple distributed architectures, and solve novel and complex environments while giving full control to the user in the agent definition and training scheme definition. We believe this work can provide useful insights to the next generation of RL libraries.Keywords: deep reinforcement learning, Python, PyTorch, distributed training, modularity, library
Procedia PDF Downloads 8329112 Enhancing the Recruitment Process through Machine Learning: An Automated CV Screening System
Authors: Kaoutar Ben Azzou, Hanaa Talei
Abstract:
Human resources is an important department in each organization as it manages the life cycle of employees from recruitment training to retirement or termination of contracts. The recruitment process starts with a job opening, followed by a selection of the best-fit candidates from all applicants. Matching the best profile for a job position requires a manual way of looking at many CVs, which requires hours of work that can sometimes lead to choosing not the best profile. The work presented in this paper aims at reducing the workload of HR personnel by automating the preliminary stages of the candidate screening process, thereby fostering a more streamlined recruitment workflow. This tool introduces an automated system designed to help with the recruitment process by scanning candidates' CVs, extracting pertinent features, and employing machine learning algorithms to decide the most fitting job profile for each candidate. Our work employs natural language processing (NLP) techniques to identify and extract key features from unstructured text extracted from a CV, such as education, work experience, and skills. Subsequently, the system utilizes these features to match candidates with job profiles, leveraging the power of classification algorithms.Keywords: automated recruitment, candidate screening, machine learning, human resources management
Procedia PDF Downloads 5629111 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method
Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri
Abstract:
Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method
Procedia PDF Downloads 50229110 Making Food Science Education and Research Activities More Attractive for University Students and Food Enterprises by Utilizing Open Innovative Space-Approach
Authors: Anna-Maria Saarela
Abstract:
At the Savonia University of Applied Sciences (UAS), curriculum and studies have been improved by applying an Open Innovation Space approach (OIS). It is based on multidisciplinary action learning. The key elements of OIS-ideology are work-life orientation, and student-centric communal learning. In this approach, every participant can learn from each other and innovations will be created. In this social innovation educational approach, all practices are carried out in close collaboration with enterprises in real-life settings, not in classrooms. As an example, in this paper, Savonia UAS’s Future Food RDI hub (FF) shows how OIS practices are implemented by providing food product development and consumer research services for enterprises in close collaboration with academicians, students and consumers. In particular one example of OIS experimentation in the field is provided by a consumer research carried out utilizing verbal analysis protocol combined with audio-visual observation (VAP-WAVO). In this case, all co-learners were acting together in supermarket settings to collect the relevant data for a product development and the marketing department of a company. The company benefitted from the results obtained, students were more satisfied with their studies, educators and academicians were able to obtain good evidence for further collaboration as well as renewing curriculum contents based on the requirements of working life. In addition, society will benefit over time as young university adults find careers more easily through their OIS related food science studies. Also this knowledge interaction model re-news education practices and brings working-life closer to educational research institutes.Keywords: collaboration, education, food science, industry, knowledge transfer, RDI, student
Procedia PDF Downloads 37329109 Attributes That Influence Respondents When Choosing a Mate in Internet Dating Sites: An Innovative Matching Algorithm
Authors: Moti Zwilling, Srečko Natek
Abstract:
This paper aims to present an innovative predictive analytics analysis in order to find the best combination between two consumers who strive to find their partner or in internet sites. The methodology shown in this paper is based on analysis of consumer preferences and involves data mining and machine learning search techniques. The study is composed of two parts: The first part examines by means of descriptive statistics the correlations between a set of parameters that are taken between man and women where they intent to meet each other through the social media, usually the internet. In this part several hypotheses were examined and statistical analysis were taken place. Results show that there is a strong correlation between the affiliated attributes of man and woman as long as concerned to how they present themselves in a social media such as "Facebook". One interesting issue is the strong desire to develop a serious relationship between most of the respondents. In the second part, the authors used common data mining algorithms to search and classify the most important and effective attributes that affect the response rate of the other side. Results exhibit that personal presentation and education background are found as most affective to achieve a positive attitude to one's profile from the other mate.Keywords: dating sites, social networks, machine learning, decision trees, data mining
Procedia PDF Downloads 29329108 Students’ Level of Knowledge Construction and Pattern of Social Interaction in an Online Forum
Authors: K. Durairaj, I. N. Umar
Abstract:
The asynchronous discussion forum is one of the most widely used activities in learning management system environment. Online forum allows participants to interact, construct knowledge, and can be used to complement face to face sessions in blended learning courses. However, to what extent do the students perceive the benefits or advantages of forum remain to be seen. Through content and social network analyses, instructors will be able to gauge the students’ engagement and knowledge construction level. Thus, this study aims to analyze the students’ level of knowledge construction and their participation level that occur through online discussion. It also attempts to investigate the relationship between the level of knowledge construction and their social interaction patterns. The sample involves 23 students undertaking a master course in one public university in Malaysia. The asynchronous discussion forum was conducted for three weeks as part of the course requirement. The finding indicates that the level of knowledge construction is quite low. Also, the density value of 0.11 indicating that the overall communication among the participants in the forum is low. This study reveals that strong and significant correlations between SNA measures (in-degree centrality, out-degree centrality) and level of knowledge construction. Thus, allocating these active students in a different groups aids the interactive discussion takes place. Finally, based upon the findings, some recommendations to increase students’ level of knowledge construction and also for further research are proposed.Keywords: asynchronous discussion forums, content analysis, knowledge construction, social network analysis
Procedia PDF Downloads 37329107 Language Learning Motivation in Mozambique: A Quantitative Study of University Students
Authors: Simao E. Luis
Abstract:
From the 1960s to the 1990s, the social-psychological framework of language attitudes that emerged from the Canadian research tradition was very influential. Integrativeness was one of the main variables in Gardner’s theory because refugees and immigrants were motivated to learn English and French to integrate into the Canadian community. Second language (L2) scholars have expressed concerns over integrativeness because it cannot explain the motivation of L2 learners in global contexts. This study aims to investigate student motivation to learn English as a foreign language in Mozambique, and to contribute to the ongoing validation of the L2 Motivational Self System theory in an under-researched country. One hundred thirty-seven (N=137) university students completed a well-established motivation questionnaire. The data were analyzed with SPSS, and descriptive statistics, correlations, multiple regressions, and MANOVA were conducted. Results show that many variables contribute to motivated learning behavior, particularly the L2 learning experience and attitudes towards the English language. Statistically significant differences were found between males and females, with males expressing more motivation to learn the English language for personal interests. Statistically significant differences were found between older and younger students, with older students reporting more vivid images of themselves as future English language users. These findings have pedagogical implications because motivational strategies are positively correlated with student motivated learning behavior. Therefore, teachers should design L2 tasks that can help students to develop their future L2 selves.Keywords: English as a foreign language, L2 motivational self system, Mozambique, university students
Procedia PDF Downloads 11929106 MhAGCN: Multi-Head Attention Graph Convolutional Network for Web Services Classification
Authors: Bing Li, Zhi Li, Yilong Yang
Abstract:
Web classification can promote the quality of service discovery and management in the service repository. It is widely used to locate developers desired services. Although traditional classification methods based on supervised learning models can achieve classification tasks, developers need to manually mark web services, and the quality of these tags may not be enough to establish an accurate classifier for service classification. With the doubling of the number of web services, the manual tagging method has become unrealistic. In recent years, the attention mechanism has made remarkable progress in the field of deep learning, and its huge potential has been fully demonstrated in various fields. This paper designs a multi-head attention graph convolutional network (MHAGCN) service classification method, which can assign different weights to the neighborhood nodes without complicated matrix operations or relying on understanding the entire graph structure. The framework combines the advantages of the attention mechanism and graph convolutional neural network. It can classify web services through automatic feature extraction. The comprehensive experimental results on a real dataset not only show the superior performance of the proposed model over the existing models but also demonstrate its potentially good interpretability for graph analysis.Keywords: attention mechanism, graph convolutional network, interpretability, service classification, service discovery
Procedia PDF Downloads 13529105 How Students Use WhatsApp to Access News
Authors: Emmanuel Habiyakare
Abstract:
The COVID-19 pandemic has highlighted the significance of educational technologies in teaching and learning. The global pandemic led to the closure of educational institutions worldwide, prompting the widespread implementation of online learning as a substitute method for delivering curricula. The communication platform is known as WhatsApp has gained widespread adoption and extensive utilisation within the realm of education. The primary aims of this literature review are to examine the utilisation patterns and obstacles linked to the implementation of WhatsApp in the realm of education, assess the advantages and possibilities that students and facilitators can derive from utilising this platform for educational purposes, and comprehend the hindrances and restrictions that arise when employing WhatsApp in an academic environment. The literature was acquired through the utilisation of keywords that are linked to both WhatsApp and education from diverse databases. Having a thorough comprehension of current trends, potential advantages, obstacles, and gains linked to the use of WhatsApp is imperative for lecturers and administrators. Scholarly investigations have revealed a noticeable trend of lecturers and students increasingly utilising WhatsApp as a means of communication and collaboration. The objective of this literature review is to make a noteworthy contribution to the domain of education and technology through an investigation of the potential of WhatsApp as a learning tool. Additionally, this review seeks to offer valuable insights on how to effectively incorporate WhatsApp into pedagogical practices. The article underscores the significance of taking into account privacy and security concerns while utilising WhatsApp for educational objectives and puts forth recommendations for additional investigation.Keywords: tool, COVID-19, opportunities, challenges, learning, WhatsApp
Procedia PDF Downloads 2529104 On the Influence of Sleep Habits for Predicting Preterm Births: A Machine Learning Approach
Authors: C. Fernandez-Plaza, I. Abad, E. Diaz, I. Diaz
Abstract:
Births occurring before the 37th week of gestation are considered preterm births. A threat of preterm is defined as the beginning of regular uterine contractions, dilation and cervical effacement between 23 and 36 gestation weeks. To author's best knowledge, the factors that determine the beginning of the birth are not completely defined yet. In particular, the incidence of sleep habits on preterm births is weekly studied. The aim of this study is to develop a model to predict the factors affecting premature delivery on pregnancy, based on the above potential risk factors, including those derived from sleep habits and light exposure at night (introduced as 12 variables obtained by a telephone survey using two questionnaires previously used by other authors). Thus, three groups of variables were included in the study (maternal, fetal and sleep habits). The study was approved by Research Ethics Committee of the Principado of Asturias (Spain). An observational, retrospective and descriptive study was performed with 481 births between January 1, 2015 and May 10, 2016 in the University Central Hospital of Asturias (Spain). A statistical analysis using SPSS was carried out to compare qualitative and quantitative variables between preterm and term delivery. Chi-square test qualitative variable and t-test for quantitative variables were applied. Statistically significant differences (p < 0.05) between preterm vs. term births were found for primiparity, multi-parity, kind of conception, place of residence or premature rupture of membranes and interruption during nights. In addition to the statistical analysis, machine learning methods to look for a prediction model were tested. In particular, tree based models were applied as the trade-off between performance and interpretability is especially suitable for this study. C5.0, recursive partitioning, random forest and tree bag models were analysed using caret R-package. Cross validation with 10-folds and parameter tuning to optimize the methods were applied. In addition, different noise reduction methods were applied to the initial data using NoiseFiltersR package. The best performance was obtained by C5.0 method with Accuracy 0.91, Sensitivity 0.93, Specificity 0.89 and Precision 0.91. Some well known preterm birth factors were identified: Cervix Dilation, maternal BMI, Premature rupture of membranes or nuchal translucency analysis in the first trimester. The model also identifies other new factors related to sleep habits such as light through window, bedtime on working days, usage of electronic devices before sleeping from Mondays to Fridays or change of sleeping habits reflected in the number of hours, in the depth of sleep or in the lighting of the room. IF dilation < = 2.95 AND usage of electronic devices before sleeping from Mondays to Friday = YES and change of sleeping habits = YES, then preterm is one of the predicting rules obtained by C5.0. In this work a model for predicting preterm births is developed. It is based on machine learning together with noise reduction techniques. The method maximizing the performance is the one selected. This model shows the influence of variables related to sleep habits in preterm prediction.Keywords: machine learning, noise reduction, preterm birth, sleep habit
Procedia PDF Downloads 14829103 Blended Cloud Based Learning Approach in Information Technology Skills Training and Paperless Assessment: Case Study of University of Cape Coast
Authors: David Ofosu-Hamilton, John K. E. Edumadze
Abstract:
Universities have come to recognize the role Information and Communication Technology (ICT) skills plays in the daily activities of tertiary students. The ability to use ICT – essentially, computers and their diverse applications – are important resources that influence an individual’s economic and social participation and human capital development. Our society now increasingly relies on the Internet, and the Cloud as a means to communicate and disseminate information. The educated individual should, therefore, be able to use ICT to create and share knowledge that will improve society. It is, therefore, important that universities require incoming students to demonstrate a level of computer proficiency or trained to do so at a minimal cost by deploying advanced educational technologies. The training and standardized assessment of all in-coming first-year students of the University of Cape Coast in Information Technology Skills (ITS) have become a necessity as students’ most often than not highly overestimate their digital skill and digital ignorance is costly to any economy. The one-semester course is targeted at fresh students and aimed at enhancing the productivity and software skills of students. In this respect, emphasis is placed on skills that will enable students to be proficient in using Microsoft Office and Google Apps for Education for their academic work and future professional work whiles using emerging digital multimedia technologies in a safe, ethical, responsible, and legal manner. The course is delivered in blended mode - online and self-paced (student centered) using Alison’s free cloud-based tutorial (Moodle) of Microsoft Office videos. Online support is provided via discussion forums on the University’s Moodle platform and tutor-directed and assisted at the ICT Centre and Google E-learning laboratory. All students are required to register for the ITS course during either the first or second semester of the first year and must participate and complete it within a semester. Assessment focuses on Alison online assessment on Microsoft Office, Alison online assessment on ALISON ABC IT, Peer assessment on e-portfolio created using Google Apps/Office 365 and an End of Semester’s online assessment at the ICT Centre whenever the student was ready in the cause of the semester. This paper, therefore, focuses on the digital culture approach of hybrid teaching, learning and paperless examinations and the possible adoption by other courses or programs at the University of Cape Coast.Keywords: assessment, blended, cloud, paperless
Procedia PDF Downloads 24829102 English as a Foreign Language Teachers' Perspectives on the Workable Approaches and Challenges that Encountered them when Teaching Reading Using E-Learning
Authors: Sarah Alshehri, Messedah Alqahtani
Abstract:
Reading instruction in EFL classes is still challenging for teachers, and many students are still behind their expected level. Due to the Covid-19 pandemic, there was a shift in teaching English from face-to face to online classes. This paper will discover how the digital shift during and post pandemic has influenced English literacy instruction and what methods seem to be effective or challenging. Specifically, this paper will examine English language teachers' perspectives on the workable approaches and challenges that encountered them when teaching reading using E-Learning platform in Saudi Arabian Secondary and intermediate schools. The study explores public secondary school EFL teachers’ instructional practices and the challenges encountered when teaching reading online. Quantitative data will be collected through a 28 -item Likert type survey that will be administered to Saudi English teachers who work in public secondary and intermediate schools. The quantitative data will be analyzed using SPSS by conducting frequency distributions, descriptive statistics, reliability tests, and one-way ANOVA tests. The potential outcomes of this study will contribute to better understanding of digital literacy and technology integration in language teaching. Findings of this study can provide directions for professionals and policy makers to improve the quality of English teaching and learning. Limitations and results will be discussed, and suggestions for future directions will be offered.Keywords: EFL reading, E-learning- EFL literacy, EFL workable approaches, EFL reading instruction
Procedia PDF Downloads 10029101 Pragmatic Competence in Pakistani English Language Learners
Authors: Ghazala Kausar
Abstract:
This study investigates Pakistani first year university students’ perception of the role of pragmatics in their general approach to learning English. The research is triggered by National Curriculum’s initiative to provide holistic opportunities to the students for language development and to equip them with competencies to use English language in academic and social contexts (New English National Curriculum for I-XII). The traditional grammar translation and examination oriented method is believed to reduce learners to silent listener (Zhang, 2008: Zhao 2009). This lead to the inability of the students to interpret discourse by relating utterances to their meaning, understanding the intentions of the users and how language is used in specific setting (Bachman & Palmer, 1996, 2010). Pragmatic competence is a neglected area as far as teaching and learning English in Pakistan is concerned. This study focuses on the different types of pragmatic knowledge, learners perception of such knowledge and learning strategies employed by different learners to process the learning in general and pragmatic in particular. This study employed three data collecting tools; a questionnaire, discourse completion task and interviews to elicit data from first year university students regarding their perception of pragmatic competence. Results showed that Pakistani first year university learners have limited pragmatic knowledge. Although they acknowledged the importance of linguistic knowledge for linguistic competence in the students but argued that insufficient English proficiency, limited knowledge of pragmatics, insufficient language material and tasks were major reasons of pragmatic failure.Keywords: pragmatic competence, Pakistani college learners, linguistic competence
Procedia PDF Downloads 73929100 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning
Authors: Richard O’Riordan, Saritha Unnikrishnan
Abstract:
Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection
Procedia PDF Downloads 10429099 Leave or Remain Silent: A Study of Parents’ Views on Social-Emotional Learning in Chinese Schools
Authors: Pei Wang
Abstract:
The concept of social-emotional learning (SEL) is becoming increasingly popular in both research and practical applications worldwide. However, there is a lack of empirical studies and implementation of SEL in China, particularly from the perspective of parents. This qualitative study examined how Chinese parents perceived SEL, how their views on SEL were shaped, and how these views affected their decisions regarding their children’s education programs. Using the Collaborative for Academic Social and Emotional Learning Interactive Wheel framework and Bronfenbrenner's bioecological theory, the study conducted interviews with eight parents whose children attended public, international, and private schools in China. All collected data were conducted a thematic analysis involving three coding phases. The findings revealed that interviewees perceived SEL as significant to children’s development but held diverse understandings and perspectives on SEL at school depending on the amount and the quality of SEL resources available in their children’s schools. Additionally, parents’ attitudes towards the exam-oriented education system and Chinese culture influenced their views on SEL in school. Nevertheless, their socioeconomic status (SES) was the most significant factor in their perspectives on SEL, which significantly impacted their choices in their children's educational programs. High-SES families had more options to pursue SEL resources by sending their children to international schools or Western countries, while lower middle-class SES families had limited SEL resources in public schools. This highlighted educational inequality in China and emphasized the need for greater attention and investment in SEL programs in Chinese public schools.Keywords: Chinese, inequality, parent, school, social-emotional learning
Procedia PDF Downloads 6629098 Modeling and Mapping of Soil Erosion Risk Using Geographic Information Systems, Remote Sensing, and Deep Learning Algorithms: Case of the Oued Mikkes Watershed, Morocco
Authors: My Hachem Aouragh, Hind Ragragui, Abdellah El-Hmaidi, Ali Essahlaoui, Abdelhadi El Ouali
Abstract:
This study investigates soil erosion susceptibility in the Oued Mikkes watershed, located in the Meknes-Fez region of northern Morocco, utilizing advanced techniques such as deep learning algorithms and remote sensing integrated within Geographic Information Systems (GIS). Spanning approximately 1,920 km², the watershed is characterized by a semi-arid Mediterranean climate with irregular rainfall and limited water resources. The waterways within the watershed, especially the Oued Mikkes, are vital for agricultural irrigation and potable water supply. The research assesses the extent of erosion risk upstream of the Sidi Chahed dam while developing a spatial model of soil loss. Several important factors, including topography, land use/land cover, and climate, were analyzed, with data on slope, NDVI, and rainfall erosivity processed using deep learning models (DLNN, CNN, RNN). The results demonstrated excellent predictive performance, with AUC values of 0.92, 0.90, and 0.88 for DLNN, CNN, and RNN, respectively. The resulting susceptibility maps provide critical insights for soil management and conservation strategies, identifying regions at high risk for erosion across 24% of the study area. The most high-risk areas are concentrated on steep slopes, particularly near the Ifrane district and the surrounding mountains, while low-risk areas are located in flatter regions with less rugged topography. The combined use of remote sensing and deep learning offers a powerful tool for accurate erosion risk assessment and resource management in the Mikkes watershed, highlighting the implications of soil erosion on dam siltation and operational efficiency.Keywords: soil erosion, GIS, remote sensing, deep learning, Mikkes Watershed, Morocco
Procedia PDF Downloads 1829097 Digital Literacy Transformation and Implications in Institutions of Higher Learning in Kenya
Authors: Emily Cherono Sawe, Elisha Ondieki Makori
Abstract:
Knowledge and digital economies have brought challenges and potential opportunities for universities to innovate and improve the quality of learning. Disruption technologies and information dynamics continue to transform and change the landscape in teaching, scholarship, and research activities across universities. Digital literacy is a fundamental and imperative element in higher education and training, as witnessed during the new norm. COVID-19 caused unprecedented disruption in universities, where teaching and learning depended on digital innovations and applications. Academic services and activities were provided online, including library information services. Information professionals were forced to adopt various digital platforms in order to provide information services to patrons. University libraries’ roles in fulfilling educational responsibilities continue to evolve in response to changes in pedagogy, technology, economy, society, policies, and strategies of parent institutions. Libraries are currently undergoing considerable transformational change as a result of the inclusion of a digital environment. Academic libraries have been at the forefront of providing online learning resources and online information services, as well as supporting students and staff to develop digital literacy skills via online courses, tutorials, and workshops. Digital literacy transformation and information staff are crucial elements reminiscent of the prioritization of skills and knowledge for lifelong learning. The purpose of this baseline research is to assess the implications of digital literacy transformation in institutions of higher learning in Kenya and share appropriate strategies to leverage and sustain teaching and research. Objectives include examining the leverage and preparedness of the digital literacy environment in streamlining learning in the universities, exploring and benchmarking imperative digital competence for information professionals, establishing the perception of information professionals towards digital literacy skills, and determining lessons, best practices, and strategies to accelerate digital literacy transformation for effective research and learning in the universities. The study will adopt a descriptive research design using questionnaires and document analysis as the instruments for data collection. The targeted population is librarians and information professionals, as well as academics in public and private universities teaching information literacy programmes. Data and information are to be collected through an online structured questionnaire and digital face-to-face interviews. Findings and results will provide promising lessons together with best practices and strategies to transform and change digital literacies in university libraries in Kenya.Keywords: digital literacy, digital innovations, information professionals, librarians, higher education, university libraries, digital information literacy
Procedia PDF Downloads 96