Search results for: density peak clustering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5180

Search results for: density peak clustering

2030 Coupling Fuzzy Analytic Hierarchy Process with Storm Water Management Model for Site Selection of Appropriate Adaptive Measures

Authors: Negin Binesh, Mohammad Hossein Niksokhan, Amin Sarang

Abstract:

Best Management Practices (BMPs) are considered as one of the most important structural adaptive measures to climate change and urban development challenges in recent decades. However, not every location is appropriate for applying BMPs in the watersheds. In this paper, location prioritization of two kinds of BMPs was done: Pourous pavement and Detention pond. West Flood-Diversion (WFD) catchment in northern parts of Tehran, Iran, was considered as the case study. The methodology includes integrating the results of Storm Water Management Model (SWMM) into Fuzzy Analytic Hierarchy Process (FAHP) method using Geographic Information System (GIS). The results indicate that mostly suburban areas of the watershed in northern parts are appropriate for applying detention basin, and downstream high-density urban areas are more suitable for using permeable pavement.

Keywords: adaptive measures, BMPs, location prioritization, urban flooding

Procedia PDF Downloads 343
2029 Electrochemistry and Performance of Bryophylum pinnatum Leaf (BPL) Electrochemical Cell

Authors: M. A. Mamun, M. I. Khan, M. H. Sarker, K. A. Khan, M. Shajahan

Abstract:

The study was carried out to investigate on an innovative invention, Pathor Kuchi Leaf (PKL) cell, which is fueled with PKL sap of widely available plant called Bryophyllum pinnatum as an energy source for use in PKL battery to generate electricity. This battery, a primary source of electricity, has several order of magnitude longer shelf-lives than the traditional Galvanic cell battery, is still under investigation. In this regard, we have conducted some experiments using various instruments including Atomic Absorption Spectrophotometer (AAS), Ultra-Violet Visible spectrophotometer (UV-Vis), pH meter, Ampere-Volt-Ohm Meter (AVO Meter), etc. The AAS, UV-Vis, and pH-metric analysis data provided that the potential and current were produced as the Zn electrode itself acts as reductant while Cu2+ and H+ ions are behaving as the oxidant. The significant influence of secondary salt on current and potential leads to the dissociation of weak organic acids in PKL juice, and subsequent enrichment to the reactant ions by the secondary salt effects. However, the liquid junction potential was not as great as minimized with the opposite transference of organic acid anions and H+ ions as their dissimilar ionic mobilities. Moreover, the large value of the equilibrium constant (K) implies the big change in Gibbs free energy (∆G), the more electromotive force works in electron transfer during the forward electrochemical reaction which coincides with the fast reduction of the weight of zinc plate, revealed the additional electrical work in the presence of PKL sap. This easily fabricated high-performance PKL battery can show an excellent promise during the off-peak across the countryside.

Keywords: Atomic Absorption Spectrophotometer (AAS), Bryophylum Pinnatum Leaf (BPL), electricity, electrochemistry, organic acids

Procedia PDF Downloads 308
2028 Mechanical Properties and Microstructural Analysis of Al6061-Red Mud Composites

Authors: M. Gangadharappa, M. Ravi Kumar, H. N. Reddappa

Abstract:

The mechanical properties and morphological analysis of Al6061-Red mud particulate composites were investigated. The compositions of the composite include a matrix of Al6061 and the red mud particles of 53-75 micron size as reinforcement ranging from 0% to 12% at an interval of 2%. Stir casting technique was used to fabricate Al6061-Red mud composites. Density measurement, estimation of percentage porosity, tensile properties, fracture toughness, hardness value, impact energy, percentage elongation and percentage reduction in area. Further, the microstructures and SEM examinations were investigated to characterize the composites produced. The result shows that a uniform dispersion of the red mud particles along the grain boundaries of the Al6061 alloy. The tensile strength and hardness values increases with the addition of Red mud particles, but there is a slight decrease in the impact energy values, values of percentage elongation and percentage reduction in area as the reinforcement increases. From these results of investigation, we concluded that the red mud, an industrial waste can be used to enhance the properties of Al6061 alloy for engineering applications.

Keywords: Al6061, red mud, tensile strength, hardness and microstructures

Procedia PDF Downloads 545
2027 Analyze of Nanoscale Materials and Devices for Future Communication and Telecom Networks in the Gas Refinery

Authors: Mohamad Bagher Heidari, Hefzollah Mohammadian

Abstract:

New discoveries in materials on the nanometer-length scale are expected to play an important role in addressing ongoing and future challenges in the field of communication. Devices and systems for ultra-high speed short and long range communication links, portable and power efficient computing devices, high-density memory and logics, ultra-fast interconnects, and autonomous and robust energy scavenging devices for accessing ambient intelligence and needed information will critically depend on the success of next-generation emerging nonmaterials and devices. This article presents some exciting recent developments in nonmaterials that have the potential to play a critical role in the development and transformation of future intelligent communication and telecom networks in the gas refinery. The industry is benefiting from nanotechnology advances with numerous applications including those in smarter sensors, logic elements, computer chips, memory storage devices, optoelectronics.

Keywords: nonmaterial, intelligent communication, nanoscale, nanophotonic, telecom

Procedia PDF Downloads 308
2026 Modelling the Dynamics of Corporate Bonds Spreads with Asymmetric GARCH Models

Authors: Sélima Baccar, Ephraim Clark

Abstract:

This paper can be considered as a new perspective to analyse credit spreads. A comprehensive empirical analysis of conditional variance of credit spreads indices is performed using various GARCH models. Based on a comparison between traditional and asymmetric GARCH models with alternative functional forms of the conditional density, we intend to identify what macroeconomic and financial factors have driven daily changes in the US Dollar credit spreads in the period from January 2011 through January 2013. The results provide a strong interdependence between credit spreads and the explanatory factors related to the conditions of interest rates, the state of the stock market, the bond market liquidity and the exchange risk. The empirical findings support the use of asymmetric GARCH models. The AGARCH and GJR models outperform the traditional GARCH in credit spreads modelling. We show, also, that the leptokurtic Student-t assumption is better than the Gaussian distribution and improves the quality of the estimates, whatever the rating or maturity.

Keywords: corporate bonds, default risk, credit spreads, asymmetric garch models, student-t distribution

Procedia PDF Downloads 457
2025 Overview and Post Damage Analysis of Nepal Earthquake 2015

Authors: Vipin Kumar Singhal, Rohit Kumar Mittal, Pavitra Ranjan Maiti

Abstract:

Damage analysis is one of the preliminary activities to be done after an earthquake so as to enhance the seismic building design technologies and prevent similar type of failure in future during earthquakes. This research article investigates the damage pattern and most probable reason of failure by observing photographs of seven major buildings collapsed/damaged which were evenly spread over the region during Mw7.8, Nepal earthquake 2015 followed by more than 400 aftershocks of Mw4 with one aftershock reaching a magnitude of Mw7.3. Over 250,000 buildings got damaged, and more than 9000 people got injured in this earthquake. Photographs of these buildings were collected after the earthquake and the cause of failure was estimated along with the severity of damage and comment on the reparability of structure has been made. Based on observations, it was concluded that the damage in reinforced concrete buildings was less compared to masonry structures. The number of buildings damaged was high near Kathmandu region due to high building density in that region. This type of damage analysis can be used as a cost effective and quick method for damage assessment during earthquakes.

Keywords: Nepal earthquake, damage analysis, damage assessment, damage scales

Procedia PDF Downloads 353
2024 Advanced Phosphorus-Containing Polymer Materials towards Eco-Friendly Flame Retardant Epoxy Thermosets

Authors: Ionela-Daniela Carja, Diana Serbezeanu, Tachita Vlad-Bubulac, Corneliu Hamciuc

Abstract:

Nowadays, epoxy materials are extensively used in ever more areas and under ever more demanding environmental conditions due to their remarkable combination of properties, light weight and ease of processing. However, these materials greatly increase the fire risk due to their flammability and possible release of toxic by-products as a result of their chemical composition which consists mainly from carbon and hydrogen atoms. Therefore, improving the fire retardant behaviour to prevent the loss of life and property is of particular concern among government regulatory bodies, consumers and manufacturers alike. Modification of epoxy resins with organophosphorus compounds, as reactive flame retardants or additives, is the key to achieving non-flammable advanced epoxy materials. Herein, a detailed characterization of fire behaviour for a series of phosphorus-containing epoxy thermosets is reported. A carefully designed phosphorus flame retardant additive was simply blended with a bifunctional bisphenol-A based epoxy resin. Further thermal cross-linking in the presence of various aminic hardeners led to eco-friendly flame retardant epoxy resins. The type of hardener, concentration of flame retardant additive, compatibility between the components of the mixture, char formation and morphology, thermal stability, flame retardant mechanisms were investigated. It was found that even a very low content of phosphorus introduced into the epoxy matrix increased the limiting oxygen index value to about 30%. In addition, the peak of the heat release rate value decreased up to 45% as compared to the one of the neat epoxy system. The main flame retardant mechanism was the condensed-phase one as revealed by SEM and XPS measurements.

Keywords: condensed-phase mechanism, eco-friendly phosphorus flame retardant, epoxy resin, thermal stability

Procedia PDF Downloads 292
2023 Road Safety and Accident Prevention in Third World Countries: A Case Study of NH-7 in India

Authors: Siddegowda, Y. A. Sathish, G. Krishnegowda, T. M. Mohan Kumar

Abstract:

Road accidents are a human tragedy. They involve high human suffering and monetary costs in terms of untimely death, injuries and social problems. India had earned the dubious distinction of having more number of fatalities due to road accidents in the world. Road safety is emerging as a major social concern around the world especially in India because of infrastructure project works. A case study was taken on NH – 07 which connects to various major cities and industries. The study shows that major cases of fatalities are due to bus, trucks and high speed vehicles. The main causes of accidents are due to high density, non-restriction of speed, use of mobile phones, lack of board signs on road parking, visibility restriction, improper geometric design, road use characteristics, environmental aspects, social aspects etc. Data analysis and preventive measures are enlightened in this paper.

Keywords: accidents, environmental aspects, fatalities, geometric design, road user characteristics

Procedia PDF Downloads 237
2022 Evaluation of As-Cast U-Mo Alloys Processed in Graphite Crucible Coated with Boron Nitride

Authors: Kleiner Marques Marra, Tércio Pedrosa

Abstract:

This paper reports the production of uranium-molybdenum alloys, which have been considered promising fuel for test and research nuclear reactors. U-Mo alloys were produced in three molybdenum contents: 5 wt.%, 7 wt.%, and 10 wt.%, using an electric vacuum induction furnace. A boron nitride-coated graphite crucible was employed in the production of the alloys and, after melting, the material was immediately poured into a boron nitride-coated graphite mold. The incorporation of carbon was observed, but it happened in a lower intensity than in the case of the non-coated crucible/mold. It is observed that the carbon incorporation increased and alloys density decreased with Mo addition. It was also noticed that the increase in the carbon or molybdenum content did not seem to change the as-cast structure in terms of granulation. The three alloys presented body-centered cubic crystal structure (g phase), after solidification, besides a seeming negative microsegregation of molybdenum, from the center to the periphery of the grains. There were signs of macrosegregation, from the base to the top of the ingots.

Keywords: uranium-molybdenum alloys, incorporation of carbon, solidification, macrosegregation and microsegregation

Procedia PDF Downloads 123
2021 The Impact of the Composite Expanded Graphite PCM on the PV Panel Whole Year Electric Output: Case Study Milan

Authors: Hasan A Al-Asadi, Ali Samir, Afrah Turki Awad, Ali Basem

Abstract:

Integrating the phase change material (PCM) with photovoltaic (PV) panels is one of the effective techniques to minimize the PV panel temperature and increase their electric output. In order to investigate the impact of the PCM on the electric output of the PV panels for a whole year, a lumped-distributed parameter model for the PV-PCM module has been developed. This development has considered the impact of the PCM density variation between the solid phase and liquid phase. This contribution will increase the assessment accuracy of the electric output of the PV-PCM module. The second contribution is to assess the impact of the expanded composite graphite-PCM on the PV electric output in Milan for a whole year. The novel one-dimensional model has been solved using MATLAB software. The results of this model have been validated against literature experiment work. The weather and the solar radiation data have been collected. The impact of expanded graphite-PCM on the electric output of the PV panel for a whole year has been investigated. The results indicate this impact has an enhancement rate of 2.39% for the electric output of the PV panel in Milan for a whole year.

Keywords: PV panel efficiency, PCM, numerical model, solar energy

Procedia PDF Downloads 151
2020 Performance Analysis of M-Ary Pulse Position Modulation in Multihop Multiple Input Multiple Output-Free Space Optical System over Uncorrelated Gamma-Gamma Atmospheric Turbulence Channels

Authors: Hechmi Saidi, Noureddine Hamdi

Abstract:

The performance of Decode and Forward (DF) multihop Free Space Optical ( FSO) scheme deploying Multiple Input Multiple Output (MIMO) configuration under Gamma-Gamma (GG) statistical distribution, that adopts M-ary Pulse Position Modulation (MPPM) coding, is investigated. We have extracted exact and estimated values of Symbol-Error Rates (SERs) respectively. A closed form formula related to the Probability Density Function (PDF) is expressed for our designed system. Thanks to the use of DF multihop MIMO FSO configuration and MPPM signaling, atmospheric turbulence is combatted; hence the transmitted signal quality is improved.

Keywords: free space optical, multiple input multiple output, M-ary pulse position modulation, multihop, decode and forward, symbol error rate, gamma-gamma channel

Procedia PDF Downloads 185
2019 The Response to Various Planting Conditions of Thein Corn Inbred Lines

Authors: K. Boonlertnirun, C. Rawdsiri, R. Suvannasara, S. Boonlertnirun

Abstract:

Thein corn variety well adapted to several planting conditions is usually accepted by most farmers. The objectives of this work were to evaluate yield potential of Thein corn inbred line grown in various nitrogen rates and plant conditions for selecting good inbred lines to be germ plasm for further breeding program. Split plot design with three replications was utilized as experimental design, three planting conditions: normal (control), low nitrogen, and high plant density condition, and sixteen inbred lines of Thein corn were used as main and subplot respectively. The results showed that no interaction between inbred line and planting condition in terms of yield. Correlation between planting conditions based on yield of inbred line was positive at medium level. Thein corn inbreds, namely L7, L5, L16, and L14 lines were tolerant to low nitrogen condition because they could produce high yield under all planting conditions and they were selected to be germ plasm for further breeding program.

Keywords: inbred line, planting condition, Thein corn, planting conditions

Procedia PDF Downloads 345
2018 VISSIM Modeling of Driver Behavior at Connecticut Roundabouts

Authors: F. Clara Fang, Hernan Castaneda

Abstract:

The Connecticut Department of Transportation (ConnDOT) has constructed four roundabouts in the State of Connecticut within the past ten years. VISSIM traffic simulation software was utilized to analyze these roundabouts during their design phase. The queue length and level of service observed in the field appear to be better than predicted by the VISSIM model. The objectives of this project are to: identify VISSIM input variables most critical to accurate modeling; recommend VISSIM calibration factors; and, provide other recommendations for roundabout traffic operations modeling. Traffic data were collected at these roundabouts using Miovision Technologies. Cameras were set up to capture vehicle circulating activity and entry behavior for two weekdays. A large sample size of filed data was analyzed to achieve accurate and statistically significant results. The data extracted from the videos include: vehicle circulating speed; critical gap estimated by Maximum Likelihood Method; peak hour volume; follow-up headway; travel time; and, vehicle queue length. A VISSIM simulation of existing roundabouts was built to compare both queue length and travel time predicted from simulation with measured in the field. The research investigated a variety of simulation parameters as calibration factors for describing driver behaviors at roundabouts. Among them, critical gap is the most effective calibration variable in roundabout simulation. It has a significant impact to queue length, particularly when the volume is higher. The results will improve the design of future roundabouts in Connecticut and provide decision makers with insights on the relationship between various choices and future performance.

Keywords: driver critical gap, roundabout analysis, simulation, VISSIM modeling

Procedia PDF Downloads 271
2017 Effect of Various Durations of Type 2 Diabetes on Muscle Performance

Authors: Santosh Kumar Yadav, Shobha Keswani, Nishat Quddus, Sohrab Ahmad Khan, Zuheb Ahmad Shiddiqui, Varsha Chorsiya

Abstract:

Introduction: Early onset diabetes is more aggressive than the late onset diabetes. Diabetic individual has a greater spectrum of life period to suffer from its damage, complications, and long-term disability. This study aimed at assessing knee joint muscle performance under various durations of diabetes. Method and Materials: A total of 30 diabetic subjects (18 male and 12 females) without diabetic neuropathy were included for the study. They were divided into three groups with 5 years, 10 years and 15 years of duration of disease each. Muscle performance was evaluated through strength and flexibility. Peak torque for quadriceps muscle was measured using isokinetic dynamometer. Flexibility for quadriceps and hamstring muscles were measured through Ducan’s Elys test and 90/90 test. Results: The result showed significant difference in muscle strength (p<0.05), flexibility (p≤0.05) between groups. Discussion: Optimal muscle strength and flexibility are vital for musculoskeletal health and functional independence. Conclusion: The reduced muscle performance and functional impairment in nonneuropathic diabetic patients suggest that other mechanism besides neuropathy that contribute to altered biomechanics. These findings of this study project early management of these altered parameters through disease-specific physical therapy and assessment-based intervention. Clinical Relevance: Managing disability is more costly than managing disease. Prompt and timely identification and management strategy can dramatically reduce the cost of care for diabetic patients.

Keywords: muscle flexibility, muscle performance, muscle torque, type 2 diabetes

Procedia PDF Downloads 309
2016 The Hydrotrope-Mediated, Low-Temperature, Aqueous Dissolution of Maize Starch

Authors: Jeroen Vinkx, Jan A. Delcour, Bart Goderis

Abstract:

Complete aqueous dissolution of starch is notoriously difficult. A high-temperature autoclaving process is necessary, followed by cooling the solution below its boiling point. The cooled solution is inherently unstable over time. Gelation and retrogradation processes, along with aggregation-induced by undissolved starch remnants, result in starch precipitation. We recently observed the spontaneous gelatinization of native maize starch (MS) in aqueous sodium salicylate (NaSal) solutions at room temperature. A hydrotropic mode of solubilization is hypothesized. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) of starch dispersions in NaSal solution were used to demonstrate the room temperature gelatinization of MS at different concentrations of MS and NaSal. The DSC gelatinization peak shifts to lower temperatures, and the gelatinization enthalpy decreases with increasing NaSal concentration. POM images confirm the same trend through the disappearance of the ‘Maltese cross’ interference pattern of starch granules. The minimal NaSal concentration to induce complete room temperature dissolution of MS was found to be around 15-20 wt%. The MS content of the dispersion has little influence on the amount of NaSal needed to dissolve it. The effect of the NaSal solution on the MS molecular weight was checked with HPSEC. It is speculated that, because of its amphiphilic character, NaSal enhances the solubility of MS in water by association with the more hydrophobic MS moieties, much like urea, which has also been used to enhance starch dissolution in alkaline aqueous media. As such small molecules do not tend to form micelles in water, they are called hydrotropes rather than surfactants. A minimal hydrotrope concentration (MHC) is necessary for the hydrotropes to structure themselves in water, resulting in a higher solubility of MS. This is the case for the system MS/NaSal/H₂O. Further investigations into the putative hydrotropic dissolution mechanism are necessary.

Keywords: hydrotrope, dissolution, maize starch, sodium salicylate, gelatinization

Procedia PDF Downloads 165
2015 Integration of Rapid Generation Technology in Pulse Crop Breeding

Authors: Saeid H. Mobini, Monika Lulsdorf, Thomas D. Warkentin

Abstract:

The length of the breeding cycle from seed to seed is a limiting factor in the development of improved homozygous lines for breeding or recombinant inbred lines (RILs) for genetic analysis. The objective of this research was to accelerate the production of field pea RILs through application of rapid generation technology (RGT). RGT is based on the principle of growing miniature plants in an artificial medium under controlled conditions, and allowing them to produce a few flowers which develop seeds that are harvested prior to normal seed maturity. We aimed to maintain population size and genetic diversity in regeneration cycles. The effects of flurprimidol (a gibberellin synthesis inhibitor), plant density, hydroponic system, scheduled fertilizer applications, artificial light spectrum, photoperiod, and light/dark temperature were evaluated in the development of RILs from a cross between cultivars CDC Dakota and CDC Amarillo. The main goal was to accelerate flowering while reducing maintenance and space costs. In addition, embryo rescue of immature seeds was tested for shortening the seed fill period. Data collected over seven generations included plant height, the percentage of plant survival, flowering rate, seed setting rate, the number of seeds per plant, and time from seed to seed. Applying 0.6 µM flurprimidol reduced the internode length. Plant height was decreased to approximately 32 cm allowing for higher plant density without a delay in flowering and seed setting rate. The three light systems (T5 fluorescent bulbs, LEDs, and High Pressure Sodium +Metal-halide lamp) evaluated did not differ significantly in terms of flowering time in field pea. Collectively, the combination of 0.6 µM flurprimidol, 217 plant. m-2, 20 h photoperiod, 21/16 oC light/dark temperature in a hydroponic system with vermiculite substrate, applying scheduled fertilizer application based on growth stage, and 500 µmole.m-2.s-1 light intensity using T5 bulbs resulted in 100% of plants flowering within 34 ± 3 days and 96.5% of plants completed seed setting in 68.2 ± 3.6 days, i.e., 30-45 days/generation faster than conventional single seed descent (SSD) methods. These regeneration cycles were reproducible consistently. Hence, RGT could double (5.3) generations per year, using 3% occupying space, compared to SSD (2-3 generation/year). Embryo rescue of immature seeds at 7-8 mm stage, using commercial fertilizer solutions (Holland’s Secret™) showed seed setting rate of 95%, while younger embryos had lower germination rate. Mature embryos had a seed setting rate of 96.5% without either hormones or sugar added. So, considering the higher cost of embryo rescue using a procedure which requires skill, additional materials, and expenses, it could be removed from RGT with a further cost saving, and the process could be stopped between generations if required.

Keywords: field pea, flowering, rapid regeneration, recombinant inbred lines, single seed descent

Procedia PDF Downloads 345
2014 Spectroscopic, Molecular Structure and Electrostatic Potential, Polarizability, Hyperpolarizability, and HOMO–LUMO Analysis of Monomeric and Dimeric Structures of N-(2-Methylphenyl)-2-Nitrobenzenesulfonamide

Authors: A. Didaoui, N. Benhalima, M. Elkeurti, A. Chouaih, F. Hamzaoui

Abstract:

The monomer and dimer structures of the title molecule have been obtained from density functional theory (DFT) B3LYP method with 6-31G (d,p) as basis set calculations. The optimized geometrical parameters obtained by B3LYP/6-31G (d,p) method show good agreement with xperimental X-ray data. The polarizability and first order hyperpolarizabilty of the title molecule were calculated and interpreted. the intermolecular N–H•••O hydrogen bonds are discussed in dimer structure of the molecule. The vibrational wave numbers and their assignments were examined theoretically using the Gaussian 03 set of quantum chemistry codes. The predicted frontier molecular orbital energies at B3LYP/6-31G(d,p) method set show that charge transfer occurs within the molecule. The frontier molecular orbital calculations clearly show the inverse relationship of HOMO–LUMO gap with the total static hyperpolarizability. The results also show that N-(2-Methylphenyl)-2-nitrobenzenesulfonamide molecule may have nonlinear optical (NLO) comportment with non-zero values.

Keywords: DFT, Gaussian 03, NLO, N-(2-Methylphenyl)-2-nitrobenzenesulfonamide

Procedia PDF Downloads 527
2013 Modeling Food Popularity Dependencies Using Social Media Data

Authors: DEVASHISH KHULBE, MANU PATHAK

Abstract:

The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.

Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses

Procedia PDF Downloads 92
2012 Numerical Modeling on the Vehicle Interior Noise Produced by Rain-the-Roof Excitation

Authors: Zilong Peng, Jun Fan

Abstract:

With the improvement of the living standards, the requirement on the acoustic comfort of the vehicle interior environment is becoming higher. The rain-the-roof producing interior noise is a common phenomenon for the vehicle, which usually discourages the conversation, especially for the heavy rain. This paper presents some numerical results about the rain-the-roof noise. The impact of each water drop is modeled as a short pulse, and the excitation locations on the roof are generated randomly. The vehicle body is simplified to a box closed with some certain-thickness shells. According to the main frequency components of the rain excitation, the analyzing frequency range is divided as low, high and middle frequency domains, which makes the vehicle body are modeled using finite element method (FEM), statistical energy analysis (SEA) and hybrid FE-SEA method, respectively. Furthermore, the effect of spatial distribution density and size of the rain on the sound pressure level are also discussed. These results may provide a guide for designing a more silent vehicle in the special weather.

Keywords: rain-the-roof noise, vehicle, finite element method, statistical energy analysis

Procedia PDF Downloads 185
2011 The Spectroscopic, Molecular Structure and Electrostatic Potential, Polarizability Hyperpolarizability, and Homo–Lumo Analysis of Monomeric and Dimeric Structures of 2-Chloro-N-(2 Methylphenyl) Benzamide

Authors: N. Khelloul, N. Benhalima, A. Chouaih, F. Hamzaoui

Abstract:

The monomer and dimer structures of the title molecule have been obtained from density functional theory (DFT) B3LYP method with 6-31G (d,p) as basis set calculations. The optimized geometrical parameters obtained by B3LYP/6-31G (d,p) method shows good agreement with experimental X-ray data. The polarizability and first order hyperpolarizabilty of the title molecule were calculated and interpreted. The intermolecular N–H•••O hydrogen bonds are discussed in dimer structure of the molecule. The vibrational wave numbers and their assignments were examined theoretically using the Gaussian 09 set of quantum chemistry codes. The predicted frontier molecular orbital energies at B3LYP/6-31G(d,p) method set show that charge transfer occurs within the molecule. The frontier molecular orbital calculations clearly show the inverse relationship of HOMO–LUMO gap with the total static hyperpolarizability. The results also show that 2-Chloro-N-(2-methylphenyl) benzamide 2 molecule may have nonlinear optical (NLO) comportment with non-zero values.

Keywords: DFT, HOMO, LUMO, NLO

Procedia PDF Downloads 317
2010 Stressors Faced by Border Security Officers: The Singapore Experience

Authors: Jansen Ang, Andrew Neo, Dawn Chia

Abstract:

Border Security is unlike mainstream policing in that officers are essentially in static deployment, working round the clock every day and every hour of the year looking for illegitimate entry of persons and goods. In Singapore, Border Security officers perform multiple functions to ensure the nation’s safety and security. They are responsible for safeguarding the borders of Singapore to prevent threats from entering the country. Being the first line of defence in ensuring the nation’s border security officers are entrusted with the responsibility of screening travellers inbound and outbound of Singapore daily. They examined 99 million arrivals and departures at the various checkpoints in 2014, which is a considerable volume compared to most immigration agencies. The officers’ work scopes also include cargo clearance, protective and security functions of checkpoints. The officers work in very demanding environment which can range from the smog at the land checkpoints to the harshness of the ports at the sea checkpoints. In addition, all immigration checkpoints are located at the boundaries, posing commuting challenges for officers. At the land checkpoints, festive seasons and school breaks are peak periods as given the surge of inbound and outbound travellers at the various checkpoints. Such work provides unique challenges in comparison to other law enforcement duties. This paper assesses the current stressors faced by officers of a border security agency through the conduct of ground observations as well as a perceived stress survey as well as recommendations in combating stressors faced by border security officers. The findings from the field observations and surveys indicate organisational and operational stressors that are unique to border security and recommends interventions in managing these stressors. Understanding these stressors would better inform border security agencies on the interventions needed to enhance the resilience of border security officers.

Keywords: border security, Singapore, stress, operations

Procedia PDF Downloads 308
2009 High Harmonics Generation in Hexagonal Graphene Quantum Dots

Authors: Armenuhi Ghazaryan, Qnarik Poghosyan, Tadevos Markosyan

Abstract:

We have considered the high-order harmonic generation in-plane graphene quantum dots of hexagonal shape by the independent quasiparticle approximation-tight binding model. We have investigated how such a nonlinear effect is affected by a strong optical wave field, quantum dot typical band gap and lateral size, and dephasing processes. The equation of motion for the density matrix is solved by performing the time integration with the eight-order Runge-Kutta algorithm. If the optical wave frequency is much less than the quantum dot intrinsic band gap, the main aspects of multiphoton high harmonic emission in quantum dots are revealed. In such a case, the dependence of the cutoff photon energy on the strength of the optical pump wave is almost linear. But when the wave frequency is comparable to the bandgap of the quantum dot, the cutoff photon energy shows saturation behavior with an increase in the wave field strength.

Keywords: strong wave field, multiphoton, bandgap, wave field strength, nanostructure

Procedia PDF Downloads 124
2008 Estimation of Subgrade Resilient Modulus from Soil Index Properties

Authors: Magdi M. E. Zumrawi, Mohamed Awad

Abstract:

Determination of Resilient Modulus (MR) is quite important for characterizing materials in pavement design and evaluation. The main focus of this study is to develop a correlation that predict the resilient modulus of subgrade soils from simple and easy measured soil index properties. To achieve this objective, three subgrade soils representing typical Khartoum soils were selected and tested in the laboratory for measuring resilient modulus. Other basic laboratory tests were conducted on the soils to determine their physical properties. Several soil samples were prepared and compacted at different moisture contents and dry densities and then tested using resilient modulus testing machine. Based on experimental results, linear relationship of MR with the consistency factor ‘Fc’ which is a combination of dry density, void ratio and consistency index had been developed. The results revealed that very good linear relationship found between the MR and the consistency factor with a coefficient of linearity (R2) more than 0.9. The consistency factor could be used for the prediction of the MR of compacted subgrade soils with precise and reliable results.

Keywords: Consistency factor, resilient modulus, subgrade soil, properties

Procedia PDF Downloads 170
2007 Elastic Stress Analysis of Composite Cantilever Beam Loaded Uniformly

Authors: Merve Tunay Çetin, Ali Kurşun, Erhan Çetin, Halil Aykul

Abstract:

In this investigation an elastic stress analysis is carried out a woven steel fiber reinforced thermoplastic cantilever beam loaded uniformly at the upper surface. The composite beam material consists of low density polyethylene as a thermoplastic (LDFE, f.2.12) and woven steel fibers. Granules of the polyethylene is put into the moulds and they are heated up to 160°C by using electrical resistance. Subsequently, the material is held for 5min under 2.5 MPa at this temperature. The temperature is decreased to 30°C under 15 MPa pressure in 3 min. Closed form solution is found satisfying both the governing differential equation and boundary conditions. We investigated orientation angle effect on stress distribution of composite cantilever beams. The results show that orientation angle play an important role in determining the responses of a woven steel fiber reinforced thermoplastic cantilever beams and an optimal design of these structures.

Keywords: cantilever beam, elastic stress analysis, orientation angle, thermoplastic

Procedia PDF Downloads 484
2006 Non Enzymatic Electrochemical Sensing of Glucose Using Manganese Doped Nickel Oxide Nanoparticles Decorated Carbon Nanotubes

Authors: Anju Joshi, C. N. Tharamani

Abstract:

Diabetes is one of the leading cause of death at present and remains an important concern as the prevalence of the disease is increasing at an alarming rate. Therefore, it is crucial to diagnose the accurate levels of glucose for developing an efficient therapeutic for diabetes. Due to the availability of convenient and compact self-testing, continuous monitoring of glucose is feasible nowadays. Enzyme based electrochemical sensing of glucose is quite popular because of its high selectivity but suffers from drawbacks like complicated purification and immobilization procedures, denaturation, high cost, and low sensitivity due to indirect electron transfer. Hence, designing a robust enzyme free platform using transition metal oxides remains crucial for the efficient and sensitive determination of glucose. In the present work, manganese doped nickel oxide nanoparticles (Mn-NiO) has been synthesized onto the surface of multiwalled carbon nanotubes using a simple microwave assisted approach for non-enzymatic electrochemical sensing of glucose. The morphology and structure of the synthesized nanostructures were characterized using scanning electron microscopy (SEM) and X-Ray diffraction (XRD). We demonstrate that the synthesized nanostructures show enormous potential for electrocatalytic oxidation of glucose with high sensitivity and selectivity. Cyclic voltammetry and square wave voltammetry studies suggest superior sensitivity and selectivity of Mn-NiO decorated carbon nanotubes towards the non-enzymatic determination of glucose. A linear response between the peak current and the concentration of glucose has been found to be in the concentration range of 0.01 μM- 10000 μM which suggests the potential efficacy of Mn-NiO decorated carbon nanotubes for sensitive determination of glucose.

Keywords: diabetes, glucose, Mn-NiO decorated carbon nanotubes, non-enzymatic

Procedia PDF Downloads 212
2005 Study of the Potential of Raw Sediments and Sediments Treated with Lime or Cement for Use in a Foundation Layer and the Base Layer of a Roadway

Authors: Nor-Edine Abriak, Mahfoud Benzerzour, Mouhamadou Amar, Abdeljalil Zri

Abstract:

In this work, firstly we have studied the potential of raw sediments and sediments treated with lime or cement for use in a foundation layer and the base layer of a roadway. Secondly, we have examined mineral changes caused by the addition of lime or cement in order to explain the mechanical performance of stabilized sediments. After determining the amount of lime and cement required stabilizing the sediments, the compaction characteristics and Immediate Bearing Capacity (IBI) were studied using the Modified Proctor method. Then, the evolution of the three parameters, which are optimum water content, maximum dry density and IBI, were determined. Mechanical performances can be evaluated through resistance to compression, resistance under traction and the elasticity modulus. The resistances of the formulations treated with ROLAC®645 increase with the amount of ROLAC®645. Traction resistance and the elastic modulus were used to evaluate the potential of the formulations as road construction materials using the classification diagram. The results show that all the other formulations with ROLAC®645 can be used in subgrades and foundation layers for roads.

Keywords: sediment, lime, cement, roadway

Procedia PDF Downloads 249
2004 Enhancement in the Absorption Efficiency of GaAs/InAs Nanowire Solar Cells through a Decrease in Light Reflection

Authors: Latef M. Ali, Farah A. Abed, Zheen L. Mohammed

Abstract:

In this paper, the effect of the Barium fluoride (BaF2) layer on the absorption efficiency of GaAs/InAs nanowire solar cells was investigated using the finite difference time domain (FDTD) method. By inserting the BaF2 as antireflection with the dominant size of 10 nm to fill the space between the shells of wires on the Si (111) substrate. The absorption is significantly improved due to the strong reabsorption of light reflected at the shells and compared with the reference cells. The present simulation leads to a higher absorption efficiency (Qabs) and reaches a value of 97%, and the external quantum efficiencies (EQEs) above 92% are observed. The current density (Jsc) increases by 0.22 mA/cm2 and the open-circuit voltage (Voc) is enhanced by 0.11 mV. it explore the design and optimization of high-efficiency solar cells on low-reflective absorption efficiency of GaAs/InAs using simulation software tool. The changes in the core and shell diameters profoundly affects the generation and recombination process, thus affecting the conversion efficiency of solar cells.

Keywords: nanowire solar cells, absorption efficiency, photovoltaic, band structures, FDTD simulation

Procedia PDF Downloads 31
2003 Production and Investigation of Ceramic-Metal Composite from Electroless Ni Plated AlN and Al Powders

Authors: Ahmet Yönetken

Abstract:

Al metal matrix composites reinforced with AlN have been fabricated by Tube furnace sintering at various temperatures. A uniform nickel layer on Al(%1AlN)%19Ni, Al(%2AlN)%18Ni, Al(%3AlN)%17Ni, Al(%4AlN)%16Ni, Al(%5AlN)%15Ni powders were deposited prior to sintering using electroless plating technique, allowing closer surface contact than can be achieved using conventional methods such as mechanical alloying. A composite consisting of quaternary additions, a ceramic phase, AlN, within a matrix of Al, AlN, Ni has been prepared at the temperature range between 550°C and 650°C under Ar shroud. X-Ray diffraction, SEM (Scanning Electron Microscope) density, and hardness measurements were employed to characterize the properties of the specimens. Experimental results carried out for 650°C suggest that the best properties as comprehension strength σmax and hardness 681.51(HV) were obtained at 650°C, and the tube furnace sintering of electroless Al plated (%5AlN)%15Ni powders is a promising technique to produce ceramic reinforced Al (%5AlN)%15Ni composites.

Keywords: electroless nickel plating, ceramic-metal composites, powder metallurgy, sintering

Procedia PDF Downloads 228
2002 Weight Loss Degradation of Hybrid Blends LLDPE/Starch/PVA Upon Exposure to UV Light and Soil Burial

Authors: Rahmah M., Noor Zuhaira Abd Aziz, Farhan M., Mohd Muizz Fahimi M.

Abstract:

Polybag and mulch film for agricultural field pose environmental wastage upon disposal. Thus a degradable polybag was designed with hybrid sago starch (SS) and polyvinyl alcohol (PVA). Two Different blended composition of SS and PVA Hybrid have been compounded. Then, the hybrids blended are mixed with linear line density polyethylene (LLDPE) resin to fabricate polybag film through conventional film blowing process. Hybrid blends was compounded at different ratios. Samples of LLDPE, SS and PVA hybrid film were exposed to UV light and soil burial. The weight loss were determined during degradation process. Hybrid film by degradation of starch was found to decrease on esterification. However the hybrid film showed greater degradation in soil and uv radiation up to 60% of SS. Weight loss were also determined in control humidity oven with 70% humidity and temperature set up at 30 °C and left in humidity chamber for a month.

Keywords: LLDPE, PVA, sago starch, degradation, soil burial, uv radiation

Procedia PDF Downloads 609
2001 Pre-Treatment of Anodic Inoculum with Nitroethane to Improve Performance of a Microbial Fuel Cell

Authors: Rajesh P.P., Md. Tabish Noori, Makarand M. Ghangrekar

Abstract:

Methanogenic substrate loss is reported to be a major bottleneck in microbial fuel cell which significantly reduces the power production capacity and coulombic efficiency (CE) of microbial fuel cell (MFC). Nitroethane is found to be a potent inhibitor of hydrogenotrophic methanogens in rumen fermentation process. Influence of nitroethane pre-treated sewage sludge inoculum on suppressing the methanogenic activity and enhancing the electrogenesis in MFC was evaluated. MFC inoculated with nitroethane pre-treated anodic inoculum demonstrated a maximum operating voltage of 541 mV, with coulombic efficiency and sustainable volumetric power density of 39.85 % and 14.63 W/m3 respectively. Linear sweep voltammetry indicated a higher electron discharge on the anode surface due to enhancement of electrogenic activity while suppressing methanogenic activity. A 63 % reduction in specific methanogenic activity was observed in anaerobic sludge pre-treated with nitroethane; emphasizing significance of this pretreatment for suppressing methanogenesis and its utility for enhancing electricity generation in MFC.

Keywords: coulombic efficiency, methanogenesis inhibition, microbial fuel cell, nitroethane

Procedia PDF Downloads 298