Search results for: continuous speed profile data
26931 The Impact of Financial Reporting on Sustainability
Authors: Lynn Ruggieri
Abstract:
The worldwide pandemic has only increased sustainability awareness. The public is demanding that businesses be held accountable for their impact on the environment. While financial data enjoys uniformity in reporting requirements, there are no uniform reporting requirements for non-financial data. Europe is leading the way with some standards being implemented for reporting non-financial sustainability data; however, there is no uniformity globally. And without uniformity, there is not a clear understanding of what information to include and how to disclose it. Sustainability reporting will provide important information to stakeholders and will enable businesses to understand their impact on the environment. Therefore, there is a crucial need for this data. This paper looks at the history of sustainability reporting in the countries of the European Union and throughout the world and makes a case for worldwide reporting requirements for sustainability.Keywords: financial reporting, non-financial data, sustainability, global financial reporting
Procedia PDF Downloads 17826930 Solar Heating System to Promote the Disinfection
Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale
Abstract:
It presents a heating system using low cost alternative solar collectors to promote the disinfection of water in low income communities that take water contaminated by bacteria. The system consists of two solar collectors, with total area of 4 m² and was built using PET bottles and cans of beer and soft drinks. Each collector is made up of 8 PVC tubes, connected in series and work in continuous flow. It will determine the flux the most appropriate to generate the temperature to promote the disinfection. Will be presented results of the efficiency and thermal loss of system and results of analysis of water after undergoing the process of heating.Keywords: disinfection of water, solar heating system, poor communities, PVC
Procedia PDF Downloads 47926929 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies
Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk
Abstract:
Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, this project proposes AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project presents the best-in-school techniques used to preserve the data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptographic techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures and identifies potential correction/mitigation measures.Keywords: data privacy, artificial intelligence (AI), healthcare AI, data sharing, healthcare organizations (HCOs)
Procedia PDF Downloads 9326928 A Method of Improving Out Put Using a Feedback Supply Chain System: Case Study Bramlima
Authors: Samuel Atongaba Danji, Veseke Moleke
Abstract:
The increase of globalization is a very important part of today’s changing environment and due to this, manufacturing industries have to always come up with methods of continuous improvement of their manufacturing methods in order to be competitive, without which may lead them to be left out of the market due to constant changing customers requirement. Due to this, the need is an advance supply chain system which prevents a number of issues that can prevent a company from being competitive. In this work, we developed a feedback control supply chain system which streamline the entire process in order to improve competitiveness and the result shows that when applied in a different geographical area, the output varies.Keywords: globalization, supply chain, improvement, manufacturing
Procedia PDF Downloads 33026927 Analysis of Syngas Combustion Characteristics in Can-Type Combustor using CFD
Authors: Norhaslina Mat Zian, Hasril Hasini, Nur Irmawati Om
Abstract:
This study focuses on the flow and combustion behavior inside gas turbine combustor used in thermal power plant. The combustion process takes place using synthetic gas and the baseline solution was made on gas turbine combustor firing natural gas (100% Methane) as the main source of fuel. Attention is given to the effect of the H2/CO ratio on the variation of the flame profile, temperature distribution, and emissions. The H2/CO ratio varies in the range of 10-80 % and the CH4 values are fixed 10% for each case. While keeping constant the mass flow rate and operating pressure, the preliminary result shows that the flow inside the can-combustor is highly swirling which indicates good mixing of fuel and air prior to the entrance of the mixture to the main combustion zone.Keywords: cfd, combustion, flame, syngas
Procedia PDF Downloads 28426926 Spatio-Temporal Variation of Suspended Sediment Concentration in the near Shore Waters, Southern Karnataka, India
Authors: Ateeth Shetty, K. S. Jayappa, Ratheesh Ramakrishnan, A. S. Rajawat
Abstract:
Suspended Sediment Concentration (SSC) was estimated for the period of four months (November, 2013 to February 2014) using Oceansat-2 (Ocean Colour Monitor) satellite images to understand the coastal dynamics and regional sediment transport, especially distribution and budgeting in coastal waters. The coastal zone undergoes continuous changes due to natural processes and anthropogenic activities. The importance of the coastal zone, with respect to safety, ecology, economy and recreation, demands a management strategy in which each of these aspects is taken into account. Monitoring and understanding the sediment dynamics and suspended sediment transport is an important issue for coastal engineering related activities. A study of the transport mechanism of suspended sediments in the near shore environment is essential not only to safeguard marine installations or navigational channels, but also for the coastal structure design, environmental protection and disaster reduction. Such studies also help in assessment of pollutants and other biological activities in the region. An accurate description of the sediment transport, caused by waves and tidal or wave-induced currents, is of great importance in predicting coastal morphological changes. Satellite-derived SSC data have been found to be useful for Indian coasts because of their high spatial (360 m), spectral and temporal resolutions. The present paper outlines the applications of state‐of‐the‐art operational Indian Remote Sensing satellite, Oceansat-2 to study the dynamics of sediment transport.Keywords: suspended sediment concentration, ocean colour monitor, sediment transport, case – II waters
Procedia PDF Downloads 25326925 Mapping Tunnelling Parameters for Global Optimization in Big Data via Dye Laser Simulation
Authors: Sahil Imtiyaz
Abstract:
One of the biggest challenges has emerged from the ever-expanding, dynamic, and instantaneously changing space-Big Data; and to find a data point and inherit wisdom to this space is a hard task. In this paper, we reduce the space of big data in Hamiltonian formalism that is in concordance with Ising Model. For this formulation, we simulate the system using dye laser in FORTRAN and analyse the dynamics of the data point in energy well of rhodium atom. After mapping the photon intensity and pulse width with energy and potential we concluded that as we increase the energy there is also increase in probability of tunnelling up to some point and then it starts decreasing and then shows a randomizing behaviour. It is due to decoherence with the environment and hence there is a loss of ‘quantumness’. This interprets the efficiency parameter and the extent of quantum evolution. The results are strongly encouraging in favour of the use of ‘Topological Property’ as a source of information instead of the qubit.Keywords: big data, optimization, quantum evolution, hamiltonian, dye laser, fermionic computations
Procedia PDF Downloads 19426924 Applying Different Stenography Techniques in Cloud Computing Technology to Improve Cloud Data Privacy and Security Issues
Authors: Muhammad Muhammad Suleiman
Abstract:
Cloud Computing is a versatile concept that refers to a service that allows users to outsource their data without having to worry about local storage issues. However, the most pressing issues to be addressed are maintaining a secure and reliable data repository rather than relying on untrustworthy service providers. In this study, we look at how stenography approaches and collaboration with Digital Watermarking can greatly improve the system's effectiveness and data security when used for Cloud Computing. The main requirement of such frameworks, where data is transferred or exchanged between servers and users, is safe data management in cloud environments. Steganography is the cloud is among the most effective methods for safe communication. Steganography is a method of writing coded messages in such a way that only the sender and recipient can safely interpret and display the information hidden in the communication channel. This study presents a new text steganography method for hiding a loaded hidden English text file in a cover English text file to ensure data protection in cloud computing. Data protection, data hiding capability, and time were all improved using the proposed technique.Keywords: cloud computing, steganography, information hiding, cloud storage, security
Procedia PDF Downloads 19226923 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics
Authors: Farhad Asadi, Mohammad Javad Mollakazemi
Abstract:
In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.Keywords: time series, fluctuation in statistical characteristics, optimal learning, change-point algorithm
Procedia PDF Downloads 42626922 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning
Authors: Pei Yi Lin
Abstract:
Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model
Procedia PDF Downloads 7526921 Study of Polyphenol Profile and Antioxidant Capacity in Italian Ancient Apple Varieties by Liquid Chromatography
Authors: A. M. Tarola, R. Preti, A. M. Girelli, P. Campana
Abstract:
Safeguarding, studying and enhancing biodiversity play an important and indispensable role in re-launching agriculture. The ancient local varieties are therefore a precious resource for genetic and health improvement. In order to protect biodiversity through the recovery and valorization of autochthonous varieties, in this study we analyzed 12 samples of four ancient apple cultivars representative of Friuli Venezia Giulia, selected by local farmers who work on a project for the recovery of ancient apple cultivars. The aim of this study is to evaluate the polyphenolic profile and the antioxidant capacity that characterize the organoleptic and functional qualities of this fruit species, besides having beneficial properties for health. In particular, for each variety, the following compounds were analyzed, both in the skins and in the pulp: gallic acid, catechin, chlorogenic acid, epicatechin, caffeic acid, coumaric acid, ferulic acid, rutin, phlorizin, phloretin and quercetin to highlight any differences in the edible parts of the apple. The analysis of individual phenolic compounds was performed by High Performance Liquid Chromatography (HPLC) coupled with a diode array UV detector (DAD), the antioxidant capacity was estimated using an in vitro essay based on a Free Radical Scavenging Method and the total phenolic compounds was determined using the Folin-Ciocalteau method. From the results, it is evident that the catechins are the most present polyphenols, reaching a value of 140-200 μg/g in the pulp and of 400-500 μg/g in the skin, with the prevalence of epicatechin. Catechins and phlorizin, a dihydrohalcone typical of apples, are always contained in larger quantities in the peel. Total phenolic compounds content was positively correlated with antioxidant activity in apple pulp (r2 = 0,850) and peel (r2 = 0,820). Comparing the results, differences between the varieties analyzed and between the edible parts (pulp and peel) of the apple were highlighted. In particular, apple peel is richer in polyphenolic compounds than pulp and flavonols are exclusively present in the peel. In conclusion, polyphenols, being antioxidant substances, have confirmed the benefits of fruit in the diet, especially as a prevention and treatment for degenerative diseases. They demonstrated to be also a good marker for the characterization of different apple cultivars. The importance of protecting biodiversity in agriculture was also highlighted through the exploitation of native products and ancient varieties of apples now forgotten.Keywords: apple, biodiversity, polyphenols, antioxidant activity, HPLC-DAD, characterization
Procedia PDF Downloads 13626920 Subclinical Renal Damage Induced by High-Fat Diet in Young Rats
Authors: Larissa M. Vargas, Julia M. Sacchi, Renata O. Pereira, Lucas S. Asano, Iara C. Araújo, Patricia Fiorino, Vera Farah
Abstract:
The aim of this study was to evaluate the occurrence of subclinical organ injuries induced by high-fat diet. Male wistar rats (n=5/group) were divided in control diet group (CD), commercial rat chow, and hyperlipidic diet (30% lipids) group (HD) administrated during 8 weeks, starting after weaning. All the procedures followed the rules of the Committee of Research and Ethics of the Mackenzie University (CEUA Nº 077/03/2011). At the end of protocol the animals were euthanized by anesthesia overload and the left kidney was removed. Intrarenal lipid deposition was evaluated by histological analyses with oilred. Kidney slices were stained with picrosirius red to evaluate the area of the Bowman's capsule (AB) and space (SB), and glomerular tuft area (GT). The renal expression of sterol regulatory element–binding protein (SREBP-2) was performed by Western Blotting. Creatinine concentration (serum and urine) and lipid profile were determined by colorimetric kit (Labtest). At the end of the protocol there was no differences in body weight between the groups, however the HD showed a marked increase in lipid deposits, glomeruli and tubules, and biochemical analysis for cholesterol and triglycerides. Moreover, in the kidney, the high-fat diet induced a reduction in the AB (13%), GT (18%) and SB (17%) associated with a reduction in glomerular filtration rate (creatinine clearance). The renal SRBP2 expression was increased in HD group. These data suggests that consumption of high-fat diet starting in childhood is associated with subclinical renal damage and function.Keywords: high-fat diet, kidney, intrarenal lipid deposition, SRBP2
Procedia PDF Downloads 29826919 Determination of the Risks of Heart Attack at the First Stage as Well as Their Control and Resource Planning with the Method of Data Mining
Authors: İbrahi̇m Kara, Seher Arslankaya
Abstract:
Frequently preferred in the field of engineering in particular, data mining has now begun to be used in the field of health as well since the data in the health sector have reached great dimensions. With data mining, it is aimed to reveal models from the great amounts of raw data in agreement with the purpose and to search for the rules and relationships which will enable one to make predictions about the future from the large amount of data set. It helps the decision-maker to find the relationships among the data which form at the stage of decision-making. In this study, it is aimed to determine the risk of heart attack at the first stage, to control it, and to make its resource planning with the method of data mining. Through the early and correct diagnosis of heart attacks, it is aimed to reveal the factors which affect the diseases, to protect health and choose the right treatment methods, to reduce the costs in health expenditures, and to shorten the durations of patients’ stay at hospitals. In this way, the diagnosis and treatment costs of a heart attack will be scrutinized, which will be useful to determine the risk of the disease at the first stage, to control it, and to make its resource planning.Keywords: data mining, decision support systems, heart attack, health sector
Procedia PDF Downloads 35626918 Bayesian Borrowing Methods for Count Data: Analysis of Incontinence Episodes in Patients with Overactive Bladder
Authors: Akalu Banbeta, Emmanuel Lesaffre, Reynaldo Martina, Joost Van Rosmalen
Abstract:
Including data from previous studies (historical data) in the analysis of the current study may reduce the sample size requirement and/or increase the power of analysis. The most common example is incorporating historical control data in the analysis of a current clinical trial. However, this only applies when the historical control dataare similar enough to the current control data. Recently, several Bayesian approaches for incorporating historical data have been proposed, such as the meta-analytic-predictive (MAP) prior and the modified power prior (MPP) both for single control as well as for multiple historical control arms. Here, we examine the performance of the MAP and the MPP approaches for the analysis of (over-dispersed) count data. To this end, we propose a computational method for the MPP approach for the Poisson and the negative binomial models. We conducted an extensive simulation study to assess the performance of Bayesian approaches. Additionally, we illustrate our approaches on an overactive bladder data set. For similar data across the control arms, the MPP approach outperformed the MAP approach with respect to thestatistical power. When the means across the control arms are different, the MPP yielded a slightly inflated type I error (TIE) rate, whereas the MAP did not. In contrast, when the dispersion parameters are different, the MAP gave an inflated TIE rate, whereas the MPP did not.We conclude that the MPP approach is more promising than the MAP approach for incorporating historical count data.Keywords: count data, meta-analytic prior, negative binomial, poisson
Procedia PDF Downloads 11726917 Strategic Citizen Participation in Applied Planning Investigations: How Planners Use Etic and Emic Community Input Perspectives to Fill-in the Gaps in Their Analysis
Authors: John Gaber
Abstract:
Planners regularly use citizen input as empirical data to help them better understand community issues they know very little about. This type of community data is based on the lived experiences of local residents and is known as "emic" data. What is becoming more common practice for planners is their use of data from local experts and stakeholders (known as "etic" data or the outsider perspective) to help them fill in the gaps in their analysis of applied planning research projects. Utilizing international Health Impact Assessment (HIA) data, I look at who planners invite to their citizen input investigations. Research presented in this paper shows that planners access a wide range of emic and etic community perspectives in their search for the “community’s view.” The paper concludes with how planners can chart out a new empirical path in their execution of emic/etic citizen participation strategies in their applied planning research projects.Keywords: citizen participation, emic data, etic data, Health Impact Assessment (HIA)
Procedia PDF Downloads 48426916 Selection of Suitable Reference Genes for Assessing Endurance Related Traits in a Native Pony Breed of Zanskar at High Altitude
Authors: Prince Vivek, Vijay K. Bharti, Manishi Mukesh, Ankita Sharma, Om Prakash Chaurasia, Bhuvnesh Kumar
Abstract:
High performance of endurance in equid requires adaptive changes involving physio-biochemical, and molecular responses in an attempt to regain homeostasis. We hypothesized that the identification of the suitable reference genes might be considered for assessing of endurance related traits in pony at high altitude and may ensure for individuals struggling to potent endurance trait in ponies at high altitude. A total of 12 mares of ponies, Zanskar breed, were divided into three groups, group-A (without load), group-B, (60 Kg) and group-C (80 Kg) on backpack loads were subjected to a load carry protocol, on a steep climb of 4 km uphill, and of gravel, uneven rocky surface track at an altitude of 3292 m to 3500 m (endpoint). Blood was collected before and immediately after the load carry on sodium heparin anticoagulant, and the peripheral blood mononuclear cell was separated for total RNA isolation and thereafter cDNA synthesis. Real time-PCR reactions were carried out to evaluate the mRNAs expression profile of a panel of putative internal control genes (ICGs), related to different functional classes, namely glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β₂ microglobulin (β₂M), β-actin (ACTB), ribosomal protein 18 (RS18), hypoxanthine-guanine phosophoribosyltransferase (HPRT), ubiquitin B (UBB), ribosomal protein L32 (RPL32), transferrin receptor protein (TFRC), succinate dehydrogenase complex subunit A (SDHA) for normalizing the real-time quantitative polymerase chain reaction (qPCR) data of native pony’s. Three different algorithms, geNorm, NormFinder, and BestKeeper software, were used to evaluate the stability of reference genes. The result showed that GAPDH was best stable gene and stability value for the best combination of two genes was observed TFRC and β₂M. In conclusion, the geometric mean of GAPDH, TFRC and β₂M might be used for accurate normalization of transcriptional data for assessing endurance related traits in Zanskar ponies during load carrying.Keywords: endurance exercise, ubiquitin B (UBB), β₂ microglobulin (β₂M), high altitude, Zanskar ponies, reference gene
Procedia PDF Downloads 13126915 The Effect of Fish and Krill Oil on Warfarin Control
Authors: Rebecca Pryce, Nijole Bernaitis, Andrew K. Davey, Shailendra Anoopkumar-Dukie
Abstract:
Background: Warfarin is an oral anticoagulant widely used in the prevention of strokes in patients with atrial fibrillation (AF) and in the treatment and prevention of deep vein thrombosis (DVT). Regular monitoring of Internationalised Normalised Ratio (INR) is required to ensure therapeutic benefit with time in therapeutic range (TTR) used to measure warfarin control. A number of factors influence TTR including diet, concurrent illness, and drug interactions. Extensive literature exists regarding the effect of conventional medicines on warfarin control, but documented interactions relating to complementary medicines are limited. It has been postulated that fish oil and krill oil supplementation may affect warfarin due to their association with bleeding events. However, to date little is known as to whether fish and krill oil significantly alter the incidence of bleeding with warfarin or impact on warfarin control. Aim:To assess the influence of fish oil and krill oil supplementation on warfarin control in AF and DVT patients by determining the influence of these supplements on TTR and bleeding events. Methods:A retrospective cohort analysis was conducted utilising patient information from a large private pathology practice in Queensland. AF and DVT patients receiving warfarin management by the pathology practice were identified and their TTR calculated using the Rosendaal method. Concurrent medications were analysed and patients taking no other interacting medicines were identified and divided according to users of fish oil and krill oil supplements and those taking no supplements. Study variables included TTR and the incidence of bleeding with exclusion criteria being less than 30 days of treatment with warfarin. Subject characteristics were reported as the mean and standard deviation for continuous data and number and percentages for nominal or categorical data. Data was analysed using GraphPad InStat Version 3 with a p value of <0.05 considered to be statistically significant. Results:Of the 2081 patients assessed for inclusion into this study, a total of 573 warfarin users met the inclusion criteria. Of these, 416 (72.6%) patients were AF patients and 157 (27.4%) DVT patients and overall there were 316 (55.1%) male and 257 (44.9%) female patients. 145 patients were included in the fish oil/krill oil group (supplement) and 428 were included in the control group. The mean TTR of supplement users was 86.9% and for the control group 84.7% with no significant difference between these groups. Control patients experienced 1.6 times the number of minor bleeds per person compared to supplement patients and 1.2 times the number of major bleeds per person. However, this was not statistically significant nor was the comparison between thrombotic events. Conclusion: No significant difference was found between supplement and control patients in terms of mean TTR, the number of bleeds and thrombotic events. Fish oil and krill oil supplements when used concurrently with warfarin do not significantly affect warfarin control as measured by TTR and bleeding incidence.Keywords: atrial fibrillation, deep vein thormbosis, fish oil, krill oil, warfarin
Procedia PDF Downloads 30526914 Double Row Taper Roller Bearing Wheel-end System in Rigid Rear Drive Axle in Heavy Duty SUV Passenger Vehicle
Authors: Mohd Imtiaz S, Saurabh Jain, Pothiraj K.
Abstract:
In today’s highly competitive passenger vehicle market, comfortable driving experience is one of the key parameters significantly weighed by the customer. Smooth ride and handling of the vehicle with exceptionally reliable wheel end solution is a paramount requirement in passenger Sports Utility Vehicle (SUV) vehicles subjected to challenging terrains and loads with rigid rear drive axle configuration. Traditional wheel-end bearing systems in passenger segment rigid rear drive axle utilizes the semi-floating layout, which imparts vertical bending loads and torsion to the axle shafts. The wheel-end bearing is usually a Single or Double Row Deep-Groove Ball Bearing (DRDGBB) or Double Row Angular Contact Ball Bearing (DRACBB). This solution is cost effective and simple in architecture. However, it lacks effectiveness against the heavy loads subjected to a SUV vehicle, especially the axial trust at high-speed cornering. This paper describes the solution of Double Row Taper Roller Bearing (DRTRB) wheel-end for a SUV vehicle in the rigid rear drive axle and improvement in terms of maximizing its load carrying capacity along with better reliability in terms of axial thrust in high-speed cornering. It describes the advantage of geometry of DRTRB over DRDGBB and DRACBB highlighting contact and load flow. The paper also highlights the vehicle level considerations affecting the B10 life of the bearing system for better selection of the DRTRB wheel-ends systems. This paper also describes real time vehicle level results along with theoretical improvements.Keywords: axial thrust, b10 life, deep-groove ball bearing, taper roller bearing, semi-floating layout.
Procedia PDF Downloads 7426913 The Internet of Things in Luxury Hotels: Generating Customized Multisensory Guest Experiences
Authors: Jean-Eric Pelet, Erhard Lick, Basma Taieb
Abstract:
Purpose This research bridges the gap between sensory marketing and the use of the Internet of Things (IoT) in luxury hotels. We investigated how stimulating guests’ senses through IoT devices influenced their emotions, affective experiences, eudaimonism (well-being), and, ultimately, guest behavior. We examined potential moderating effects of gender. Design/methodology/approach We adopted a mixed method approach, combining qualitative research (semi-structured interviews) to explore hotel managers’ perspectives on the potential use of IoT in luxury hotels and quantitative research (surveying hotel guests; n=357). Findings The results showed that while the senses of smell, hearing, and sight had an impact on guests’ emotions, the senses of touch, hearing, and sight impacted guests’ affective experiences. The senses of smell and taste influenced guests’ eudaimonism. The sense of smell had a greater effect on eudaimonism and behavioral intentions among women compared to men. Originality IoT can be applied in creating customized multi-sensory hotel experiences. For example, hotels may offer unique and diverse ambiences in their rooms and suites to improve guest experiences. Research limitations/implications This study concentrated on luxury hotels located in Europe. Further research may explore the generalizability of the findings (e.g., in other cultures, comparison between high-end and low-end hotels). Practical implications Context awareness and hyper-personalization, through intensive and continuous data collection (hyper-connectivity) and real time processing, are key trends in the service industry. Therefore, big data plays a crucial role in the collection of information since it allows hoteliers to retrieve, analyze, and visualize data to provide personalized services in real time. Together with their guests, hotels may co-create customized sensory experiences. For instance, if the hotel knows about the guest’s music preferences based on social media as well as their age and gender, etc. and considers the temperature and size (standard, suite, etc.) of the guest room, this may determine the playlist of the concierge-tablet made available in the guest room. Furthermore, one may record the guest’s voice to use it for voice command purposes once the guest arrives at the hotel. Based on our finding that the sense of smell has a greater impact on eudaimonism and behavioral intentions among women than men, hotels may deploy subtler scents with lower intensities, or even different scents, for female guests in comparison to male guests.Keywords: affective experience, emotional value, eudaimonism, hospitality industry, Internet of Things, sensory marketing
Procedia PDF Downloads 5726912 On the Approximate Solution of Continuous Coefficients for Solving Third Order Ordinary Differential Equations
Authors: A. M. Sagir
Abstract:
This paper derived four newly schemes which are combined in order to form an accurate and efficient block method for parallel or sequential solution of third order ordinary differential equations of the form y^'''= f(x,y,y^',y^'' ), y(α)=y_0,〖y〗^' (α)=β,y^('' ) (α)=μ with associated initial or boundary conditions. The implementation strategies of the derived method have shown that the block method is found to be consistent, zero stable and hence convergent. The derived schemes were tested on stiff and non-stiff ordinary differential equations, and the numerical results obtained compared favorably with the exact solution.Keywords: block method, hybrid, linear multistep, self-starting, third order ordinary differential equations
Procedia PDF Downloads 27126911 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network
Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang
Abstract:
As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.Keywords: GUI, deep learning, GAN, data augmentation
Procedia PDF Downloads 18426910 Modelling Rainfall-Induced Shallow Landslides in the Northern New South Wales
Authors: S. Ravindran, Y.Liu, I. Gratchev, D.Jeng
Abstract:
Rainfall-induced shallow landslides are more common in the northern New South Wales (NSW), Australia. From 2009 to 2017, around 105 rainfall-induced landslides occurred along the road corridors and caused temporary road closures in the northern NSW. Rainfall causing shallow landslides has different distributions of rainfall varying from uniform, normal, decreasing to increasing rainfall intensity. The duration of rainfall varied from one day to 18 days according to historical data. The objective of this research is to analyse slope instability of some of the sites in the northern NSW by varying cumulative rainfall using SLOPE/W and SEEP/W and compare with field data of rainfall causing shallow landslides. The rainfall data and topographical data from public authorities and soil data obtained from laboratory tests will be used for this modelling. There is a likelihood of shallow landslides if the cumulative rainfall is between 100 mm to 400 mm in accordance with field data.Keywords: landslides, modelling, rainfall, suction
Procedia PDF Downloads 17926909 Machine Learning-Enabled Classification of Climbing Using Small Data
Authors: Nicholas Milburn, Yu Liang, Dalei Wu
Abstract:
Athlete performance scoring within the climbing do-main presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.Keywords: classification, climbing, data imbalance, data scarcity, machine learning, time sequence
Procedia PDF Downloads 14326908 Effect of Gravity on the Controlled Cooling of a Steel Block by Impinging Water Jets
Authors: E.K.K. Agyeman, P. Mousseau, A. Sarda, D. Edelin
Abstract:
The uniform and controlled cooling of hot metals by the circulation of water in canals remains a challenge due to the phase change of the water and the high heat fluxes associated with the phase change. This is because, during the cooling process, the phases are not uniformly distributed along the canals with the liquid phase dominating at the entrances of the canals and the gaseous phase dominating towards the exits. The difference in thermal properties between both phases leads to a heterogeneous temperature distribution in the part being cooled. Slowing down the cooling process is also a challenge due to the high heat fluxes associated with the phase change of water. This study investigates the use of multiple water jets for the controlled and homogenous cooling of hot metal parts and the effect of gravity on the effectiveness of the cooling process with a potential application in the cooling of composite forming moulds. A hole is bored at the centre of a steel block along its length. The jets are generated from the holes of a perforated steel pipe which is placed along the centre of the hole bored in the steel block. The evolution of the temperature with respect to time on the external surface of the steel block is measured simultaneously by thermocouples and an infrared camera. Different jet positions are tested in order to identify the jet placement configuration that ensures the most homogenous cooling of the block while the cooling speed is controlled by an intermittent impingement of the jets. In order to study the effect of gravity on the cooling process, a scenario where the jets are oriented in the opposite direction to that of gravity is compared to one where the jets are aligned in the same direction as gravity. It’s observed that orienting the jets in the direction of gravity reduces the effectiveness of the cooling process on the face of the block facing the impinging jets. This is due to the formation of a deeper pool of water due to the effect gravity and of the curved surface of the canal. This deeper pool of water influences the boiling regime characterized by a slower bubble evacuation when compared to the scenario where the jets are opposed to gravity.Keywords: cooling speed, gravity, homogenous cooling, jet impingement
Procedia PDF Downloads 12126907 Price Effect Estimation of Tobacco on Low-wage Male Smokers: A Causal Mediation Analysis
Authors: Kawsar Ahmed, Hong Wang
Abstract:
The study's goal was to estimate the causal mediation impact of tobacco tax before and after price hikes among low-income male smokers, with a particular emphasis on the effect estimating pathways framework for continuous and dichotomous variables. From July to December 2021, a cross-sectional investigation of observational data (n=739) was collected from Bangladeshi low-wage smokers. The Quasi-Bayesian technique, binomial probit model, and sensitivity analysis using a simulation of the computational tools R mediation package had been used to estimate the effect. After a price rise for tobacco products, the average number of cigarettes or bidis sticks taken decreased from 6.7 to 4.56. Tobacco product rising prices have a direct effect on low-income people's decisions to quit or lessen their daily smoking habits of Average Causal Mediation Effect (ACME) [effect=2.31, 95 % confidence interval (C.I.) = (4.71-0.00), p<0.01], Average Direct Effect (ADE) [effect=8.6, 95 percent (C.I.) = (6.8-0.11), p<0.001], and overall significant effects (p<0.001). Tobacco smoking choice is described by the mediated proportion of income effect, which is 26.1% less of following price rise. The curve of ACME and ADE is based on observational figures of the coefficients of determination that asses the model of hypothesis as the substantial consequence after price rises in the sensitivity analysis. To reduce smoking product behaviors, price increases through taxation have a positive causal mediation with income that affects the decision to limit tobacco use and promote low-income men's healthcare policy.Keywords: causal mediation analysis, directed acyclic graphs, tobacco price policy, sensitivity analysis, pathway estimation
Procedia PDF Downloads 11226906 Income-Consumption Relationships in Pakistan (1980-2011): A Cointegration Approach
Authors: Himayatullah Khan, Alena Fedorova
Abstract:
The present paper analyses the income-consumption relationships in Pakistan using annual time series data from 1980-81 to 2010-1. The paper uses the Augmented Dickey-Fuller test to check the unit root and stationarity in these two time series. The paper finds that the two time series are nonstationary but stationary at their first difference levels. The Augmented Engle-Granger test and the Cointegrating Regression Durbin-Watson test imply that the two time series of consumption and income are cointegrated and that long-run marginal propensity to consume is 0.88 which is given by the estimated (static) equilibrium relation. The paper also used the error correction mechanism to find out to model dynamic relationship. The purpose of the ECM is to indicate the speed of adjustment from the short-run equilibrium to the long-run equilibrium state. The results show that MPC is equal to 0.93 and is highly significant. The coefficient of Engle-Granger residuals is negative but insignificant. Statistically, the equilibrium error term is zero, which suggests that consumption adjusts to changes in GDP in the same period. The short-run changes in GDP have a positive impact on short-run changes in consumption. The paper concludes that we may interpret 0.93 as the short-run MPC. The pair-wise Granger Causality test shows that both GDP and consumption Granger cause each other.Keywords: cointegrating regression, Augmented Dickey Fuller test, Augmented Engle-Granger test, Granger causality, error correction mechanism
Procedia PDF Downloads 41426905 Analysis of Expression Data Using Unsupervised Techniques
Authors: M. A. I Perera, C. R. Wijesinghe, A. R. Weerasinghe
Abstract:
his study was conducted to review and identify the unsupervised techniques that can be employed to analyze gene expression data in order to identify better subtypes of tumors. Identifying subtypes of cancer help in improving the efficacy and reducing the toxicity of the treatments by identifying clues to find target therapeutics. Process of gene expression data analysis described under three steps as preprocessing, clustering, and cluster validation. Feature selection is important since the genomic data are high dimensional with a large number of features compared to samples. Hierarchical clustering and K Means are often used in the analysis of gene expression data. There are several cluster validation techniques used in validating the clusters. Heatmaps are an effective external validation method that allows comparing the identified classes with clinical variables and visual analysis of the classes.Keywords: cancer subtypes, gene expression data analysis, clustering, cluster validation
Procedia PDF Downloads 14926904 Contribution to the Study of Phenotypic, Reproduction and Growth Parameters of Sheep in Eastern Algeria
Authors: Mohammed Titaouine, Toufik Meziane, Kahramen Deghnouche, Hanane Mohamdi, Nabil Mohamdi
Abstract:
In order to better understand the morphological characters and the zootechniques measures of sheeps races in the in South-East Algeria, a study that was conducted on 1344 heads, taken from 8 farms in different parts of the region, namely T’kout 1, T’kout 2, Tafrent, Barika, Sidi-Okba, Biskra, Ouled-Djellal and Msila. The results from the present study showed significant differences in the group of 14 morphological studied variables, the body length is the most important variable. Reproduction performance of 160 ewes and growth performances of 56 lambs were analysed. The analyses of the data showed that the ewes have a fertility level of 69%, a prolificacy level of 114% and a fecundity level of 79%. Lambs weigh 3.5kg at birth, 9.38kg at 30d, 13.45kg at 60d, 16.91kg at 90d and 21.51 kg at 120d. The speed of the growth level 0.20kg/d from birth to 30d, 0.14 kg/d between 30d and 60d, 0.12kg/d between 60d and 90d and 0.15kg/d between 90d and 120d. The simple born lambs were more heavy than the double born lambs. By contrast, sex was not significant for all the variables except the weight at 60d, the birth month has a significant effect on the weight at birth, at 30d, at 60d and it was no significant for the weight at 90d and at 120d.The flocks born on September, October, November, and December were more heavy than the flocks born on January, February, and March.Keywords: morphological characterization, reproduction performance, growth performances, algeria
Procedia PDF Downloads 49826903 Topography Effects on Wind Turbines Wake Flow
Authors: H. Daaou Nedjari, O. Guerri, M. Saighi
Abstract:
A numerical study was conducted to optimize the positioning of wind turbines over complex terrains. Thus, a two-dimensional disk model was used to calculate the flow velocity deficit in wind farms for both flat and complex configurations. The wind turbine wake was assessed using the hybrid methods that combine CFD (Computational Fluid Dynamics) with the actuator disc model. The wind turbine rotor has been defined with a thrust force, coupled with the Navier-Stokes equations that were resolved by an open source computational code (Code_Saturne V3.0 developed by EDF) The simulations were conducted in atmospheric boundary layer condition considering a two-dimensional region located at the north of Algeria at 36.74°N longitude, 02.97°E latitude. The topography elevation values were collected according to a longitudinal direction of 1km downwind. The wind turbine sited over topography was simulated for different elevation variations. The main of this study is to determine the topography effect on the behavior of wind farm wake flow. For this, the wake model applied in complex terrain needs to selects the singularity effects of topography on the vertical wind flow without rotor disc first. This step allows to determine the existence of mixing scales and friction forces zone near the ground. So, according to the ground relief the wind flow waS disturbed by turbulence and a significant speed variation. Thus, the singularities of the velocity field were thoroughly collected and thrust coefficient Ct was calculated using the specific speed. In addition, to evaluate the land effect on the wake shape, the flow field was also simulated considering different rotor hub heights. Indeed, the distance between the ground and the hub height of turbine (Hhub) was tested in a flat terrain for different locations as Hhub=1.125D, Hhub = 1.5D and Hhub=2D (D is rotor diameter) considering a roughness value of z0=0.01m. This study has demonstrated that topographical farm induce a significant effect on wind turbines wakes, compared to that on flat terrain.Keywords: CFD, wind turbine wake, k-epsilon model, turbulence, complex topography
Procedia PDF Downloads 56326902 Learning Analytics in a HiFlex Learning Environment
Authors: Matthew Montebello
Abstract:
Student engagement within a virtual learning environment generates masses of data points that can significantly contribute to the learning analytics that lead to decision support. Ideally, similar data is collected during student interaction with a physical learning space, and as a consequence, data is present at a large scale, even in relatively small classes. In this paper, we report of such an occurrence during classes held in a HiFlex modality as we investigate the advantages of adopting such a methodology. We plan to take full advantage of the learner-generated data in an attempt to further enhance the effectiveness of the adopted learning environment. This could shed crucial light on operating modalities that higher education institutions around the world will switch to in a post-COVID era.Keywords: HiFlex, big data in higher education, learning analytics, virtual learning environment
Procedia PDF Downloads 201