Search results for: Grey prediction model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18049

Search results for: Grey prediction model

14899 Synthesis of a Model Predictive Controller for Artificial Pancreas

Authors: Mohamed El Hachimi, Abdelhakim Ballouk, Ilyas Khelafa, Abdelaziz Mouhou

Abstract:

Introduction: Type 1 diabetes occurs when beta cells are destroyed by the body's own immune system. Treatment of type 1 diabetes mellitus could be greatly improved by applying a closed-loop control strategy to insulin delivery, also known as an Artificial Pancreas (AP). Method: In this paper, we present a new formulation of the cost function for a Model Predictive Control (MPC) utilizing a technic which accelerates the speed of control of the AP and tackles the nonlinearity of the control problem via asymmetric objective functions. Finding: The finding of this work consists in a new Model Predictive Control algorithm that leads to good performances like decreasing the time of hyperglycaemia and avoiding hypoglycaemia. Conclusion: These performances are validated under in silico trials.

Keywords: artificial pancreas, control algorithm, biomedical control, MPC, objective function, nonlinearity

Procedia PDF Downloads 309
14898 A Self-Coexistence Strategy for Spectrum Allocation Using Selfish and Unselfish Game Models in Cognitive Radio Networks

Authors: Noel Jeygar Robert, V. K.Vidya

Abstract:

Cognitive radio is a software-defined radio technology that allows cognitive users to operate on the vacant bands of spectrum allocated to licensed users. Cognitive radio plays a vital role in the efficient utilization of wireless radio spectrum available between cognitive users and licensed users without making any interference to licensed users. The spectrum allocation followed by spectrum sharing is done in a fashion where a cognitive user has to wait until spectrum holes are identified and allocated when the licensed user moves out of his own allocated spectrum. In this paper, we propose a self –coexistence strategy using bargaining and Cournot game model for achieving spectrum allocation in cognitive radio networks. The game-theoretic model analyses the behaviour of cognitive users in both cooperative and non-cooperative scenarios and provides an equilibrium level of spectrum allocation. Game-theoretic models such as bargaining game model and Cournot game model produce a balanced distribution of spectrum resources and energy consumption. Simulation results show that both game theories achieve better performance compared to other popular techniques

Keywords: cognitive radio, game theory, bargaining game, Cournot game

Procedia PDF Downloads 304
14897 Modeling and Experimental Verification of Crystal Growth Kinetics in Glass Forming Alloys

Authors: Peter K. Galenko, Stefanie Koch, Markus Rettenmayr, Robert Wonneberger, Evgeny V. Kharanzhevskiy, Maria Zamoryanskaya, Vladimir Ankudinov

Abstract:

We analyze the structure of undercooled melts, crystal growth kinetics and amorphous/crystalline microstructure of rapidly solidifying glass-forming Pd-based and CuZr-based alloys. A dendrite growth model is developed using a combination of the kinetic phase-field model and mesoscopic sharp interface model. The model predicts features of crystallization kinetics in alloys from thermodynamically controlled growth (governed by the Gibbs free energy change on solidification) to the kinetically limited regime (governed by atomic attachment-detachment processes at the solid/liquid interface). Comparing critical undercoolings observed in the crystallization kinetics with experimental data on melt viscosity, atomistic simulation's data on liquid microstructure and theoretically predicted dendrite growth velocity allows us to conclude that the dendrite growth kinetics strongly depends on the cluster structure changes of the melt. The obtained data of theoretical and experimental investigations are used for interpretation of microstructure of samples processed in electro-magnetic levitator on board International Space Station in the frame of the project "MULTIPHAS" (European Space Agency and German Aerospace Center, 50WM1941) and "KINETIKA" (ROSKOSMOS).

Keywords: dendrite, kinetics, model, solidification

Procedia PDF Downloads 125
14896 Numerical Modeling and Prediction of Nanoscale Transport Phenomena in Vertically Aligned Carbon Nanotube Catalyst Layers by the Lattice Boltzmann Simulation

Authors: Seungho Shin, Keunwoo Choi, Ali Akbar, Sukkee Um

Abstract:

In this study, the nanoscale transport properties and catalyst utilization of vertically aligned carbon nanotube (VACNT) catalyst layers are computationally predicted by the three-dimensional lattice Boltzmann simulation based on the quasi-random nanostructural model in pursuance of fuel cell catalyst performance improvement. A series of catalyst layers are randomly generated with statistical significance at the 95% confidence level to reflect the heterogeneity of the catalyst layer nanostructures. The nanoscale gas transport phenomena inside the catalyst layers are simulated by the D3Q19 (i.e., three-dimensional, 19 velocities) lattice Boltzmann method, and the corresponding mass transport characteristics are mathematically modeled in terms of structural properties. Considering the nanoscale reactant transport phenomena, a transport-based effective catalyst utilization factor is defined and statistically analyzed to determine the structure-transport influence on catalyst utilization. The tortuosity of the reactant mass transport path of VACNT catalyst layers is directly calculated from the streaklines. Subsequently, the corresponding effective mass diffusion coefficient is statistically predicted by applying the pre-estimated tortuosity factors to the Knudsen diffusion coefficient in the VACNT catalyst layers. The statistical estimation results clearly indicate that the morphological structures of VACNT catalyst layers reduce the tortuosity of reactant mass transport path when compared to conventional catalyst layer and significantly improve consequential effective mass diffusion coefficient of VACNT catalyst layer. Furthermore, catalyst utilization of the VACNT catalyst layer is substantially improved by enhanced mass diffusion and electric current paths despite the relatively poor interconnections of the ion transport paths.

Keywords: Lattice Boltzmann method, nano transport phenomena, polymer electrolyte fuel cells, vertically aligned carbon nanotube

Procedia PDF Downloads 202
14895 Mathematical Modeling Pressure Losses of Trapezoidal Labyrinth Channel and Bi-Objective Optimization of the Design Parameters

Authors: Nina Philipova

Abstract:

The influence of the geometric parameters of trapezoidal labyrinth channel on the pressure losses along the labyrinth length is investigated in this work. The impact of the dentate height is studied at fixed values of the dentate angle and the dentate spacing. The objective of the work presented in this paper is to derive a mathematical model of the pressure losses along the labyrinth length depending on the dentate height. The numerical simulations of the water flow movement are performed by using Commercial codes ANSYS GAMBIT and FLUENT. Dripper inlet pressure is set up to be 1 bar. As a result, the mathematical model of the pressure losses is determined as a second-order polynomial by means Commercial code STATISTIKA. Bi-objective optimization is performed by using the mean algebraic function of utility. The optimum value of the dentate height is defined at fixed values of the dentate angle and the dentate spacing. The derived model of the pressure losses and the optimum value of the dentate height are used as a basis for a more successful emitter design.

Keywords: drip irrigation, labyrinth channel hydrodynamics, numerical simulations, Reynolds stress model

Procedia PDF Downloads 156
14894 Earnings vs Cash Flows: The Valuation Perspective

Authors: Megha Agarwal

Abstract:

The research paper is an effort to compare the earnings based and cash flow based methods of valuation of an enterprise. The theoretically equivalent methods based on either earnings such as Residual Earnings Model (REM), Abnormal Earnings Growth Model (AEGM), Residual Operating Income Method (ReOIM), Abnormal Operating Income Growth Model (AOIGM) and its extensions multipliers such as price/earnings ratio, price/book value ratio; or cash flow based models such as Dividend Valuation Method (DVM) and Free Cash Flow Method (FCFM) all provide different estimates of valuation of the Indian giant corporate Reliance India Limited (RIL). An ex-post analysis of published accounting and financial data for four financial years from 2008-09 to 2011-12 has been conducted. A comparison of these valuation estimates with the actual market capitalization of the company shows that the complex accounting based model AOIGM provides closest forecasts. These different estimates may be derived due to inconsistencies in discount rate, growth rates and the other forecasted variables. Although inputs for earnings based models may be available to the investor and analysts through published statements, precise estimation of free cash flows may be better undertaken by the internal management. The estimation of value from more stable parameters as residual operating income and RNOA could be considered superior to the valuations from more volatile return on equity.

Keywords: earnings, cash flows, valuation, Residual Earnings Model (REM)

Procedia PDF Downloads 381
14893 Exploring the Spatial Relationship between Built Environment and Ride-hailing Demand: Applying Street-Level Images

Authors: Jingjue Bao, Ye Li, Yujie Qi

Abstract:

The explosive growth of ride-hailing has reshaped residents' travel behavior and plays a crucial role in urban mobility within the built environment. Contributing to the research of the spatial variation of ride-hailing demand and its relationship to the built environment and socioeconomic factors, this study utilizes multi-source data from Haikou, China, to construct a Multi-scale Geographically Weighted Regression model (MGWR), considering spatial scale heterogeneity. The regression results showed that MGWR model was demonstrated superior interpretability and reliability with an improvement of 3.4% on R2 and from 4853 to 4787 on AIC, compared with Geographically Weighted Regression model (GWR). Furthermore, to precisely identify the surrounding environment of sampling point, DeepLabv3+ model is employed to segment street-level images. Features extracted from these images are incorporated as variables in the regression model, further enhancing its rationality and accuracy by 7.78% improvement on R2 compared with the MGWR model only considered region-level variables. By integrating multi-scale geospatial data and utilizing advanced computer vision techniques, this study provides a comprehensive understanding of the spatial dynamics between ride-hailing demand and the urban built environment. The insights gained from this research are expected to contribute significantly to urban transportation planning and policy making, as well as ride-hailing platforms, facilitating the development of more efficient and effective mobility solutions in modern cities.

Keywords: travel behavior, ride-hailing, spatial relationship, built environment, street-level image

Procedia PDF Downloads 86
14892 Magneto-Rheological Damper Based Semi-Active Robust H∞ Control of Civil Structures with Parametric Uncertainties

Authors: Vedat Senol, Gursoy Turan, Anders Helmersson, Vortechz Andersson

Abstract:

In developing a mathematical model of a real structure, the simulation results of the model may not match the real structural response. This is a general problem that arises during dynamic motion of the structure, which may be modeled by means of parameter variations in the stiffness, damping, and mass matrices. These changes in parameters need to be estimated, and the mathematical model is updated to obtain higher control performances and robustness. In this study, a linear fractional transformation (LFT) is utilized for uncertainty modeling. Further, a general approach to the design of an H∞ control of a magneto-rheological damper (MRD) for vibration reduction in a building with mass, damping, and stiffness uncertainties is presented.

Keywords: uncertainty modeling, structural control, MR Damper, H∞, robust control

Procedia PDF Downloads 144
14891 The Improvement of Environmental Protection through Motor Vehicle Noise Abatement

Authors: Z. Jovanovic, Z. Masonicic, S. Dragutinovic, Z. Sakota

Abstract:

In this paper, a methodology for noise reduction of motor vehicles in use is presented. The methodology relies on synergic model of noise generation as a function of time. The arbitrary number of motor vehicle noise sources act in concert yielding the generation of the overall noise level of motor vehicle thereafter. The number of noise sources participating in the overall noise level of motor vehicle is subjected to the constraint of the calculation of the acoustic potential of each noise source under consideration. It is the prerequisite condition for the calculation of the acoustic potential of the whole vehicle. The recast form of pertinent set of equations describing the synergic model is laid down and solved by dint of Gauss method. The bunch of results emerged and some of them i.e. those ensuing from model application to MDD FAP Priboj motor vehicle in use are particularly elucidated.

Keywords: noise abatement, MV noise sources, noise source identification, muffler

Procedia PDF Downloads 451
14890 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform

Authors: Reza Mohammadzadeh

Abstract:

The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.

Keywords: data model, geotechnical risks, machine learning, underground coal mining

Procedia PDF Downloads 280
14889 Development of Medical Intelligent Process Model Using Ontology Based Technique

Authors: Emmanuel Chibuogu Asogwa, Tochukwu Sunday Belonwu

Abstract:

An urgent demand for creative solutions has been created by the rapid expansion of medical knowledge, the complexity of patient care, and the requirement for more precise decision-making. As a solution to this problem, the creation of a Medical Intelligent Process Model (MIPM) utilizing ontology-based appears as a promising way to overcome this obstacle and unleash the full potential of healthcare systems. The development of a Medical Intelligent Process Model (MIPM) using ontology-based techniques is motivated by a lack of quick access to relevant medical information and advanced tools for treatment planning and clinical decision-making, which ontology-based techniques can provide. The aim of this work is to develop a structured and knowledge-driven framework that leverages ontology, a formal representation of domain knowledge, to enhance various aspects of healthcare. Object-Oriented Analysis and Design Methodology (OOADM) were adopted in the design of the system as we desired to build a usable and evolvable application. For effective implementation of this work, we used the following materials/methods/tools: the medical dataset for the test of our model in this work was obtained from Kaggle. The ontology-based technique was used with Confusion Matrix, MySQL, Python, Hypertext Markup Language (HTML), Hypertext Preprocessor (PHP), Cascaded Style Sheet (CSS), JavaScript, Dreamweaver, and Fireworks. According to test results on the new system using Confusion Matrix, both the accuracy and overall effectiveness of the medical intelligent process significantly improved by 20% compared to the previous system. Therefore, using the model is recommended for healthcare professionals.

Keywords: ontology-based, model, database, OOADM, healthcare

Procedia PDF Downloads 82
14888 Using TRACE and SNAP Codes to Establish the Model of Maanshan PWR for SBO Accident

Authors: B. R. Shen, J. R. Wang, J. H. Yang, S. W. Chen, C. Shih, Y. Chiang, Y. F. Chang, Y. H. Huang

Abstract:

In this research, TRACE code with the interface code-SNAP was used to simulate and analyze the SBO (station blackout) accident which occurred in Maanshan PWR (pressurized water reactor) nuclear power plant (NPP). There are four main steps in this research. First, the SBO accident data of Maanshan NPP were collected. Second, the TRACE/SNAP model of Maanshan NPP was established by using these data. Third, this TRACE/SNAP model was used to perform the simulation and analysis of SBO accident. Finally, the simulation and analysis of SBO with mitigation equipments was performed. The analysis results of TRACE are consistent with the data of Maanshan NPP. The mitigation equipments of Maanshan can maintain the safety of Maanshan in the SBO according to the TRACE predictions.

Keywords: pressurized water reactor (PWR), TRACE, station blackout (SBO), Maanshan

Procedia PDF Downloads 197
14887 The Potential Roles of Digital Technologies in Developing Children's Artistic Ability and Promoting Creative Activity in Children Aged

Authors: Aber Aboalgasm, Rupert Ward, Ruth Taylor, Jonathan Glazzard

Abstract:

Teaching art by digital means is a big challenge for the majority of teachers of art and artistic design courses in primary education schools. These courses can clearly identify relationships between art, technology, and creativity in the classroom .The aim of this article is to present a modern way of teaching art, using digital tools in the art classroom in order to improve creative ability in pupils aged between 9 and 11 years; it also presents a conceptual model for creativity based on digital art. The model could be useful for pupils interested in learning drawing and using an e-drawing package, and for teachers who are interested in teaching their students modern digital art, and improving children’s creativity. This model is designed to show the strategy of teaching art through technology, in order for children to learn how to be creative. This will also help education providers to make suitable choices about which technological approaches they should choose to teach students and enhance their creative ability. It is also expected that use of this model will help to develop social interactive qualities that may improve intellectual ability.

Keywords: digital tools, motivation, creative activity, education

Procedia PDF Downloads 346
14886 Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models

Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt

Abstract:

Producing faulty products can be costly for manufacturing companies and wastes resources. To reduce scrap rates in manufacturing, process parameters can be optimized using machine learning. Thus far, research mainly focused on optimizing specific processes using traditional algorithms. To develop a framework that enables real-time optimization based on a predictive model for an arbitrary production process, this study explores the application of reinforcement learning (RL) in this field. Based on a thorough review of literature about RL and process parameter optimization, a model based on maximum a posteriori policy optimization that can handle both numerical and categorical parameters is proposed. A case study compares the model to state–of–the–art traditional algorithms and shows that RL can find optima of similar quality while requiring significantly less time. These results are confirmed in a large-scale validation study on data sets from both production and other fields. Finally, multiple ways to improve the model are discussed.

Keywords: reinforcement learning, production process optimization, evolutionary algorithms, policy optimization, actor critic approach

Procedia PDF Downloads 103
14885 Study of Nitrogen Species Fate and Transport in Subsurface: To Assess the Impact of Wastewater Irrigation

Authors: C. Mekala, Indumathi M. Nambi

Abstract:

Nitrogen pollution in groundwater arising from wastewater and fertilizer application through vadose zone is a major problem and it causes a prime risk to groundwater based drinking water supplies. Nitrogenous compounds namely ammonium, nitrate and nitrite fate and transport in soil subsurface were studied experimentally. The major process like sorption, leaching, biotransformation involving microbial growth kinetics, and biological clogging due to biomass growth were assessed and modeled with advection-dispersion reaction equations for ammonium, nitrate and acetate in a saturated, heterogeneous soil medium. The transport process was coupled with freundlich sorption and monod inhibition kinetics for immobile bacteria and permeability reduction due to biomass growth will be verified and validated with the numerical model. This proposed mathematical model will be very helpful in the development of a management model for a sustainable and safe wastewater reuse strategies such as irrigation and groundwater recharge.

Keywords: nitrogen species transport, transformation, biological clogging, biokinetic parameters, contaminant transport model, saturated soil

Procedia PDF Downloads 404
14884 Comparative Study of Experimental and Theoretical Convective, Evaporative for Two Model Distiller

Authors: Khaoula Hidouri, Ali Benhmidene, Bechir Chouachi

Abstract:

The purification of brackish seawater becomes a necessity and not a choice against demographic and industrial growth especially in third world countries. Two models can be used in this work: simple solar still and simple solar still coupled with a heat pump. In this research, the productivity of water by Simple Solar Distiller (SSD) and Simple Solar Distiller Hybrid Heat Pump (SSDHP) was determined by the orientation, the use of heat pump, the simple or double glass cover. The productivity can exceed 1.2 L/m²h for the SSDHP and 0.5 L/m²h for SSD model. The result of the global efficiency is determined for two models SSD and SSDHP give respectively 30%, 50%. The internal efficiency attained 35% for SSD and 60% of the SSDHP models. Convective heat coefficient can be determined by attained 2.5 W/m²°C and 0.5 W/m²°C respectively for SSDHP and SSD models.

Keywords: productivity, efficiency, convective heat coefficient, SSD model, SSDHPmodel

Procedia PDF Downloads 216
14883 A Study on the Performance of 2-PC-D Classification Model

Authors: Nurul Aini Abdul Wahab, Nor Syamim Halidin, Sayidatina Aisah Masnan, Nur Izzati Romli

Abstract:

There are many applications of principle component method for reducing the large set of variables in various fields. Fisher’s Discriminant function is also a popular tool for classification. In this research, the researcher focuses on studying the performance of Principle Component-Fisher’s Discriminant function in helping to classify rice kernels to their defined classes. The data were collected on the smells or odour of the rice kernel using odour-detection sensor, Cyranose. 32 variables were captured by this electronic nose (e-nose). The objective of this research is to measure how well a combination model, between principle component and linear discriminant, to be as a classification model. Principle component method was used to reduce all 32 variables to a smaller and manageable set of components. Then, the reduced components were used to develop the Fisher’s Discriminant function. In this research, there are 4 defined classes of rice kernel which are Aromatic, Brown, Ordinary and Others. Based on the output from principle component method, the 32 variables were reduced to only 2 components. Based on the output of classification table from the discriminant analysis, 40.76% from the total observations were correctly classified into their classes by the PC-Discriminant function. Indirectly, it gives an idea that the classification model developed has committed to more than 50% of misclassifying the observations. As a conclusion, the Fisher’s Discriminant function that was built on a 2-component from PCA (2-PC-D) is not satisfying to classify the rice kernels into its defined classes.

Keywords: classification model, discriminant function, principle component analysis, variable reduction

Procedia PDF Downloads 336
14882 Statistical Analysis of the Impact of Maritime Transport Gross Domestic Product (GDP) on Nigeria’s Economy

Authors: Kehinde Peter Oyeduntan, Kayode Oshinubi

Abstract:

Nigeria is referred as the ‘Giant of Africa’ due to high population, land mass and large economy. However, it still trails far behind many smaller economies in the continent in terms of maritime operations. As we have seen that the maritime industry is the spark plug for national growth, because it houses the most crucial infrastructure that generates wealth for a nation, it is worrisome that a nation with six seaports lag in maritime activities. In this research, we have studied how the Gross Domestic Product (GDP) of the maritime transport influences the Nigerian economy. To do this, we applied Simple Linear Regression (SLR), Support Vector Machine (SVM), Polynomial Regression Model (PRM), Generalized Additive Model (GAM) and Generalized Linear Mixed Model (GLMM) to model the relationship between the nation’s Total GDP (TGDP) and the Maritime Transport GDP (MGDP) using a time series data of 20 years. The result showed that the MGDP is statistically significant to the Nigerian economy. Amongst the statistical tool applied, the PRM of order 4 describes the relationship better when compared to other methods. The recommendations presented in this study will guide policy makers and help improve the economy of Nigeria in terms of its GDP.

Keywords: maritime transport, economy, GDP, regression, port

Procedia PDF Downloads 159
14881 Simplified Modeling of Post-Soil Interaction for Roadside Safety Barriers

Authors: Charly Julien Nyobe, Eric Jacquelin, Denis Brizard, Alexy Mercier

Abstract:

The performance of road side safety barriers depends largely on the dynamic interactions between post and soil. These interactions play a key role in the response of barriers to crash testing. In the literature, soil-post interaction is modeled in crash test simulations using three approaches. Many researchers have initially used the finite element approach, in which the post is embedded in a continuum soil modelled by solid finite elements. This method represents a more comprehensive and detailed approach, employing a mesh-based continuum to model the soil’s behavior and its interaction with the post. Although this method takes all soil properties into account, it is nevertheless very costly in terms of simulation time. In the second approach, all the points of the post located at a predefined depth are fixed. Although this approach reduces CPU computing time, it overestimates soil-post stiffness. The third approach involves modeling the post as a beam supported by a set of nonlinear springs in the horizontal directions. For support in the vertical direction, the posts were constrained at a node at ground level. This approach is less costly, but the literature does not provide a simple procedure to determine the constitutive law of the springs The aim of this study is to propose a simple and low-cost procedure to obtain the constitutive law of nonlinear springs that model the soil-post interaction. To achieve this objective, we will first present a procedure to obtain the constitutive law of nonlinear springs thanks to the simulation of a soil compression test. The test consists in compressing the soil contained in the tank by a rigid solid, up to a vertical displacement of 200 mm. The resultant force exerted by the ground on the rigid solid and its vertical displacement are extracted and, a force-displacement curve was determined. The proposed procedure for replacing the soil with springs must be tested against a reference model. The reference model consists of a wooden post embedded into the ground and impacted with an impactor. Two simplified models with springs are studied. In the first model, called Kh-Kv model, the springs are attached to the post in the horizontal and vertical directions. The second Kh model is the one described in the literature. The two simplified models are compared with the reference model according to several criteria: the displacement of a node located at the top of the post in vertical and horizontal directions; displacement of the post's center of rotation and impactor velocity. The results given by both simplified models are very close to the reference model results. It is noticeable that the Kh-Kv model is slightly better than the Kh model. Further, the former model is more interesting than the latter as it involves less arbitrary conditions. The simplified models also reduce the simulation time by a factor 4. The Kh-Kv model can therefore be used as a reliable tool to represent the soil-post interaction in a future research and development of road safety barriers.

Keywords: crash tests, nonlinear springs, soil-post interaction modeling, constitutive law

Procedia PDF Downloads 36
14880 Using Eigenvalues and Eigenvectors in Population Growth and Stability Obtaining

Authors: Abubakar Sadiq Mensah

Abstract:

The Knowledge of the population growth of a nation is paramount to national planning. The population of a place is studied and a model developed over a period of time, Matrices is used to form model for population growth. The eigenvalue ƛ of the matrix A and its corresponding eigenvector X is such that AX = ƛX is calculated. The stable age distribution of the population is obtained using the eigenvalue and the characteristic polynomial. Hence, estimation could be made using eigenvalues and eigenvectors.

Keywords: eigenvalues, eigenvectors, population, growth/stability

Procedia PDF Downloads 528
14879 Perception-Oriented Model Driven Development for Designing Data Acquisition Process in Wireless Sensor Networks

Authors: K. Indra Gandhi

Abstract:

Wireless Sensor Networks (WSNs) have always been characterized for application-specific sensing, relaying and collection of information for further analysis. However, software development was not considered as a separate entity in this process of data collection which has posed severe limitations on the software development for WSN. Software development for WSN is a complex process since the components involved are data-driven, network-driven and application-driven in nature. This implies that there is a tremendous need for the separation of concern from the software development perspective. A layered approach for developing data acquisition design based on Model Driven Development (MDD) has been proposed as the sensed data collection process itself varies depending upon the application taken into consideration. This work focuses on the layered view of the data acquisition process so as to ease the software point of development. A metamodel has been proposed that enables reusability and realization of the software development as an adaptable component for WSN systems. Further, observing users perception indicates that proposed model helps in improving the programmer's productivity by realizing the collaborative system involved.

Keywords: data acquisition, model-driven development, separation of concern, wireless sensor networks

Procedia PDF Downloads 439
14878 A Finite Element Study of Laminitis in Horses

Authors: Naeim Akbari Shahkhosravi, Reza Kakavand, Helen M. S. Davies, Amin Komeili

Abstract:

Equine locomotion and performance are significantly affected by hoof health. One of the most critical diseases of the hoof is laminitis, which can lead to horse lameness in a severe condition. This disease exhibits the mechanical properties degradation of the laminar junction tissue within the hoof. Therefore, it is essential to investigate the biomechanics of the hoof, focusing specifically on excessive and cumulatively accumulated stresses within the laminar junction tissue. For this aim, the current study generated a novel equine hoof Finite Element (FE) model under dynamic physiological loading conditions and employing a hyperelastic material model. Associated tissues of the equine hoof were segmented from computed tomography scans of an equine forelimb, including the navicular bone, third phalanx, sole, frog, laminar junction, digital cushion, and medial- dorsal- lateral wall areas. The inner tissues were connected based on the hoof anatomy, and the hoof was under a dynamic loading over cyclic strides at the trot. The strain distribution on the hoof wall of the model was compared with the published in vivo strain measurements to validate the model. Then the validated model was used to study the development of laminitis. The ultimate stress tolerated by the laminar junction before rupture was considered as a stress threshold. The tissue damage was simulated through iterative reduction of the tissue’s mechanical properties in the presence of excessive maximum principal stresses. The findings of this investigation revealed how damage initiates from the medial and lateral sides of the tissue and propagates through the hoof dorsal area.

Keywords: horse hoof, laminitis, finite element model, continuous damage

Procedia PDF Downloads 190
14877 [Keynote Talk]: Analysis of One Dimensional Advection Diffusion Model Using Finite Difference Method

Authors: Vijay Kumar Kukreja, Ravneet Kaur

Abstract:

In this paper, one dimensional advection diffusion model is analyzed using finite difference method based on Crank-Nicolson scheme. A practical problem of filter cake washing of chemical engineering is analyzed. The model is converted into dimensionless form. For the grid Ω × ω = [0, 1] × [0, T], the Crank-Nicolson spatial derivative scheme is used in space domain and forward difference scheme is used in time domain. The scheme is found to be unconditionally convergent, stable, first order accurate in time and second order accurate in space domain. For a test problem, numerical results are compared with the analytical ones for different values of parameter.

Keywords: Crank-Nicolson scheme, Lax-Richtmyer theorem, stability, consistency, Peclet number, Greschgorin circle

Procedia PDF Downloads 227
14876 Supersonic Flow around a Dihedral Airfoil: Modeling and Experimentation Investigation

Authors: A. Naamane, M. Hasnaoui

Abstract:

Numerical modeling of fluid flows, whether compressible or incompressible, laminar or turbulent presents a considerable contribution in the scientific and industrial fields. However, the development of an approximate model of a supersonic flow requires the introduction of specific and more precise techniques and methods. For this purpose, the object of this paper is modeling a supersonic flow of inviscid fluid around a dihedral airfoil. Based on the thin airfoils theory and the non-dimensional stationary Steichen equation of a two-dimensional supersonic flow in isentropic evolution, we obtained a solution for the downstream velocity potential of the oblique shock at the second order of relative thickness that characterizes a perturbation parameter. This result has been dealt with by the asymptotic analysis and characteristics method. In order to validate our model, the results are discussed in comparison with theoretical and experimental results. Indeed, firstly, the comparison of the results of our model has shown that they are quantitatively acceptable compared to the existing theoretical results. Finally, an experimental study was conducted using the AF300 supersonic wind tunnel. In this experiment, we have considered the incident upstream Mach number over a symmetrical dihedral airfoil wing. The comparison of the different Mach number downstream results of our model with those of the existing theoretical data (relative margin between 0.07% and 4%) and with experimental results (concordance for a deflection angle between 1° and 11°) support the validation of our model with accuracy.

Keywords: asymptotic modelling, dihedral airfoil, supersonic flow, supersonic wind tunnel

Procedia PDF Downloads 138
14875 Modeling and Simulation of the Tripod Gait of a Hexapod Robot

Authors: El Hansali Hasnaa, Bennani Mohammed

Abstract:

Hexapod legged robot’s missions, particularly in irregular and dangerous areas, require high stability and high precision. In this paper, we consider the rectangular architecture body of legged robots with six legs distributed symmetrically along two sides, each leg contains three degrees of freedom for greater mobility. The aim of this work is planning tripod gait trajectory, based on the computing of the kinematic model to determine the joint variables in the lifting and the propelling phases. For this, appropriate coordinate frames are attached to the body and legs in order to obtain clear representation and efficient generation of the system equations. A simulation in MATLAB software platform is developed to confirm the kinematic model and various trajectories to the tripod gait adopted by the hexapod robot in its locomotion.

Keywords: hexapod legged robot, inverse kinematic model, simulation in MATLAB, tripod gait

Procedia PDF Downloads 281
14874 Role-Governed Categorization and Category Learning as a Result from Structural Alignment: The RoleMap Model

Authors: Yolina A. Petrova, Georgi I. Petkov

Abstract:

The paper presents a symbolic model for category learning and categorization (called RoleMap). Unlike the other models which implement learning in a separate working mode, role-governed category learning and categorization emerge in RoleMap while it does its usual reasoning. The model is based on several basic mechanisms known as reflecting the sub-processes of analogy-making. It steps on the assumption that in their everyday life people constantly compare what they experience and what they know. Various commonalities between the incoming information (current experience) and the stored one (long-term memory) emerge from those comparisons. Some of those commonalities are considered to be highly important, and they are transformed into concepts for further use. This process denotes the category learning. When there is missing knowledge in the incoming information (i.e. the perceived object is still not recognized), the model makes anticipations about what is missing, based on the similar episodes from its long-term memory. Various such anticipations may emerge for different reasons. However, with time only one of them wins and is transformed into a category member. This process denotes the act of categorization.

Keywords: analogy-making, categorization, category learning, cognitive modeling, role-governed categories

Procedia PDF Downloads 144
14873 Health Outcomes from Multidrug-Resistant Salmonella in High-Income Countries: A Systematic Review and Meta-Analysis

Authors: Andrea Parisi, Samantha Vilkins, Luis Furuya-Kanamori, John A. Crump, Benjamin P. Howden, Darren Gray, Kathryn Glass, Martyn Kirk

Abstract:

Objectives: Salmonella is a leading cause of foodborne enterocolitis worldwide. Nontyphoidal Salmonella (NTS) infections that are Multi-Drug Resistant (MDR) (non-susceptible to ≥1 agent in ≥3 antimicrobial categories) may result in more severe outcomes, although these effects have not been systematically examined. We conducted a systematic review and meta-analysis to examine impacts of MDR NTS on health in high-income settings. Methods: We systematically reviewed the literature from scientific databases, including PubMed, Scopus and grey literature sources, using PRISMA guidelines. We searched for data from case-control studies, cohorts, outbreaks, reports and theses, imposing no language restriction. We included only publications from January 1990 to September 2016 from high income countries as classified by World Bank. We extracted data from papers on duration of illness, hospitalisation rates, morbidity and mortality for MDR and non-MDR NTS strains. Results: After removing duplicates, the initial search revealed 4258 articles. After further screening, we identified 16 eligible studies for the systematic review, and 9 of these were included in meta-analysis. NTS serotypes differed among the reported studies but serotype Typhimurium, Enteritidis, Newport and Heidelberg were among the most often reported as MDR pathogens. Salmonella infections that were MDR were associated with excess bloodstream infections (OR 1.63; 95%CI 1.18-2.26), excess hospitalisations (OR 2.77; 95%CI 1.47-5.21) and higher mortality (OR 3.54; 95%CI 1.10-11.40). Conclusions: MDR NTS infections are a serious public health concern. With the emergence of MDR Salmonella strains in the high-income countries, it is crucial to restrict the use of antimicrobials both in animals and humans, and intervene to prevent foodborne infections.

Keywords: Antimicrobial Resistance, Bloodstream Infection, Health Outcomes, Hospitalisation, Invasive Disease, Multi-Drug Resistance (MDR), Mortality, Nontyphoidal Salmonella

Procedia PDF Downloads 387
14872 Modern Imputation Technique for Missing Data in Linear Functional Relationship Model

Authors: Adilah Abdul Ghapor, Yong Zulina Zubairi, Rahmatullah Imon

Abstract:

Missing value problem is common in statistics and has been of interest for years. This article considers two modern techniques in handling missing data for linear functional relationship model (LFRM) namely the Expectation-Maximization (EM) algorithm and Expectation-Maximization with Bootstrapping (EMB) algorithm using three performance indicators; namely the mean absolute error (MAE), root mean square error (RMSE) and estimated biased (EB). In this study, we applied the methods of imputing missing values in the LFRM. Results of the simulation study suggest that EMB algorithm performs much better than EM algorithm in both models. We also illustrate the applicability of the approach in a real data set.

Keywords: expectation-maximization, expectation-maximization with bootstrapping, linear functional relationship model, performance indicators

Procedia PDF Downloads 405
14871 Analytical Model for Columns in Existing Reinforced Concrete Buildings

Authors: Chang Seok Lee, Sang Whan Han, Girbo Ko, Debbie Kim

Abstract:

Existing reinforced concrete structures are designed and built without considering seismic loads. The columns in such buildings generally exhibit widely spaced transverse reinforcements without using seismic hooks. Due to the insufficient reinforcement details in columns, brittle shear failure is expected in columns that may cause pre-mature building collapse mechanism during earthquakes. In order to retrofit those columns, the accurate seismic behavior of the columns needs to be predicted with proper analytical models. In this study, an analytical model is proposed for accurately simulating the cyclic behavior of shear critical columns. The parameters for pinching and cyclic deterioration in strength and stiffness are calibrated using test data of column specimens failed by shear.

Keywords: analytical model, cyclic deterioration, existing reinforced concrete columns, shear failure

Procedia PDF Downloads 268
14870 Model of Cosserat Continuum Dispersion in a Half-Space with a Scatterer

Authors: Francisco Velez, Juan David Gomez

Abstract:

Dispersion effects on the Scattering for a semicircular canyon in a micropolar continuum are analyzed, by using a computational finite element scheme. The presence of microrotational waves and the dispersive SV waves affects the propagation of elastic waves. Here, a contrast with the classic model is presented, and the dependence with the micropolar parameters is studied.

Keywords: scattering, semicircular canyon, wave dispersion, micropolar medium, FEM modeling

Procedia PDF Downloads 550