Search results for: statistical potential
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14983

Search results for: statistical potential

11863 Earthquakes' Magnitude and Density Controls by Mechanical Stratigraphy in the Zagros, Iran

Authors: Asaad Pireh

Abstract:

The Zagros fold and thrust belt is one of the most active seismic zones of Iran where hosts many people and considerable oil and gas resources. The Zagros fold and thrust belt, based on its stratigraphy has been divided into three provinces. Mechanical stratigraphy of these provinces is different together. Statistical analyses all of earthquakes which has happened in the Zagros fold and thrust belt from 1964 up to December 2014, shows that strong earthquakes have occurred within the southeastern part of these subdivisions which has a smaller ratio of incompetent to competent thickness and in the northwestern part of these subdivisions which has a greater ratio of incompetent to competent thickness has occurred the weakest earthquakes. The southeastern part of the Zagros has a higher seismic risk and northwestern part of these fold belt have a lower seismic risk.

Keywords: earthquake, mechanical stratigraphy, seismic risk, Zagros

Procedia PDF Downloads 145
11862 Electrochemical Modification of Boron Doped Carbon Nanowall Electrodes for Biosensing Purposes

Authors: M. Kowalski, M. Brodowski, K. Dziabowska, E. Czaczyk, W. Bialobrzeska, N. Malinowska, S. Zoledowska, R. Bogdanowicz, D. Nidzworski

Abstract:

Boron-doped-carbon nanowall (BCNW) electrodes are recently in much interest among scientists. BCNWs are good candidates for biosensor purposes as they possess interesting electrochemical characteristics like a wide potential range and the low difference between redox peaks. Moreover, from technical parameters, they are mechanically resistant and very tough. The production process of the microwave plasma-enhanced chemical vapor deposition (MPECVD) allows boron to build into the structure of the diamond being formed. The effect is the formation of flat, long structures with sharp ends. The potential of these electrodes was checked in the biosensing field. The procedure of simple carbon electrodes modification by antibodies was adopted to BCNW for specific antigen recognition. Surface protein D deriving from H. influenzae pathogenic bacteria was chosen as a target analyte. The electrode was first modified with the aminobenzoic acid diazonium salt by electrografting (electrochemical reduction), next anti-protein D antibodies were linked via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) chemistry, and free sites were blocked by BSA. Cyclic voltammetry measurements confirmed the proper electrode modification. Electrochemical impedance spectroscopy records indicated protein detection. The sensor was proven to detect protein D in femtograms. This work was supported by the National Centre for Research and Development (NCBR) TECHMATSTRATEG 1/347324/12/NCBR/ 2017.

Keywords: anti-protein D antibodies, boron-doped carbon nanowall, impedance spectroscopy, Haemophilus influenzae.

Procedia PDF Downloads 173
11861 A Study of Body Weight and Type Traits Recorded on Hairy Goat in Punjab, Pakistan

Authors: A. Qayyum, G. Bilal, H. M. Waheed

Abstract:

The objectives of the study were to determine phenotypic variations in Hairy goats for quantitative and qualitative traits and to analyze the relationship between different body measurements and body weight in Hairy goats. Data were collected from the Barani Livestock Production Research Institute (BLPRI) at Kherimurat, Attock and potential farmers who were raising hairy goats in the Potohar region. Twelve (12) phenotypic parameters were measured on 99 adult Hairy goat (18 male and 81 female). Four qualitative and 8 quantitative traits were investigated. Qualitative traits were visually observed and expressed as percentages. Descriptive analysis was done on quantitative variables. All hairy goats had predominately black body coat color (72%), whereas white (11%) and brown (11%) body coat color were also observed. Both the pigmented (45.5%) and non-pigmented (54.5%) type of body skin were observed in the goat breed. Horns were present in the majority (91%) of animals. Most of the animals (83%) had straight facial head profiles. Analysis was performed in SAS On-Demand for Academics using PROC mixed model procedure. Overall means ± SD of body weight (BW), body length (BL), height at wither (HAW), ear length (EL), head length (HL), heart girth (HG), tail length (TL) and MC (muzzle circumference) were 41.44 ± 12.21 kg, 66.40 ± 7.87 cm, 75.17 ± 7.83 cm, 22.99 ± 6.75 cm, 15.07 ± 3.44 cm, 76.54 ± 8.80 cm, 18.28 ± 4.18 cm, and 26.24 ± 5.192 cm, respectively. Sex had a significant effect on BL and HG (P < 0.05), whereas BW, HAW, EL, HL, TL, and MC were not significantly affected (P > 0.05). The herd had a significant effect on BW, BL, HAW, HL, HG, and TL (P < 0.05) except EL and MC (P > 0.05). Hairy goats appear to have the potential for selection as mutton breeds in the Potohar region of Punjab. The findings of the present study would help in the characterization and conservation of hairy goats using genetic and genomic tools in the future.

Keywords: body weight, Hairy goat, type traits Punjab, Pakistan

Procedia PDF Downloads 66
11860 Role of Teachers in Fostering the Culture of Peace in Higher Education Context: A Literature Review

Authors: Maliheh Rezaei

Abstract:

Peace education has been introduced into many higher educational contexts by designing different programs, expecting to result in constructive changes, specifically in post-conflict countries. Teachers are the potential agents of positive change who play a major role in fostering the culture of peace in their classes. The purpose of this literature review was thus to evaluate the implementation of peace pedagogies by teachers in the context of higher education. More specifically, it addressed a) the role and characteristics of teachers and b) the pedagogies that they used to construct the culture of peace. The systematic literature review was used and several inclusion criteria were applied. Only papers published in English, which contained the keywords of university, higher education, peace, peace education, and similar derivatives such as ‘peacebuilding’ in their title and/or abstract, were included in this review. Moreover, only papers that dealt with the actual implementation of peace education theories were investigated. Findings highlighted that most teachers relied on pedagogies adopted from social justice, global citizenship, and positive psychology practices aiming to foster positive human traits such as resilience, empathy and reflection that were also believed to play an important role in peacebuilding efforts. Nevertheless, the incorporation of peace remained peripheral. The main challenge to incorporate the tenets of peace education was the shortage of teachers who were skilled and qualified enough to incorporate and promote the culture of peace in their classes. This literature review presents the body of research that has linked peace education to Higher Education. Therefore, it informs teachers about the potential roles they have in creating a peaceful and sustainable future. It also presents them with more effective pedagogies and practices to successfully integrate peace-related activities in Higher Education.

Keywords: culture of peace, higher education, teacher, pedogogy

Procedia PDF Downloads 197
11859 Navigating the Future: Evaluating the Market Potential and Drivers for High-Definition Mapping in the Autonomous Vehicle Era

Authors: Loha Hashimy, Isabella Castillo

Abstract:

In today's rapidly evolving technological landscape, the importance of precise navigation and mapping systems cannot be understated. As various sectors undergo transformative changes, the market potential for Advanced Mapping and Management Systems (AMMS) emerges as a critical focus area. The Galileo/GNSS-Based Autonomous Mobile Mapping System (GAMMS) project, specifically targeted toward high-definition mapping (HDM), endeavours to provide insights into this market within the broader context of the geomatics and navigation fields. With the growing integration of Autonomous Vehicles (AVs) into our transportation systems, the relevance and demand for sophisticated mapping solutions like HDM have become increasingly pertinent. The research employed a meticulous, lean, stepwise, and interconnected methodology to ensure a comprehensive assessment. Beginning with the identification of pivotal project results, the study progressed into a systematic market screening. This was complemented by an exhaustive desk research phase that delved into existing literature, data, and trends. To ensure the holistic validity of the findings, extensive consultations were conducted. Academia and industry experts provided invaluable insights through interviews, questionnaires, and surveys. This multi-faceted approach facilitated a layered analysis, juxtaposing secondary data with primary inputs, ensuring that the conclusions were both accurate and actionable. Our investigation unearthed a plethora of drivers steering the HD maps landscape. These ranged from technological leaps, nuanced market demands, and influential economic factors to overarching socio-political shifts. The meteoric rise of Autonomous Vehicles (AVs) and the shift towards app-based transportation solutions, such as Uber, stood out as significant market pull factors. A nuanced PESTEL analysis further enriched our understanding, shedding light on political, economic, social, technological, environmental, and legal facets influencing the HD maps market trajectory. Simultaneously, potential roadblocks were identified. Notable among these were barriers related to high initial costs, concerns around data quality, and the challenges posed by a fragmented and evolving regulatory landscape. The GAMMS project serves as a beacon, illuminating the vast opportunities that lie ahead for the HD mapping sector. It underscores the indispensable role of HDM in enhancing navigation, ensuring safety, and providing pinpoint, accurate location services. As our world becomes more interconnected and reliant on technology, HD maps emerge as a linchpin, bridging gaps and enabling seamless experiences. The research findings accentuate the imperative for stakeholders across industries to recognize and harness the potential of HD mapping, especially as we stand on the cusp of a transportation revolution heralded by Autonomous Vehicles and advanced geomatic solutions.

Keywords: high-definition mapping (HDM), autonomous vehicles, PESTEL analysis, market drivers

Procedia PDF Downloads 84
11858 Role of Transient Receptor Potential Vanilloid 1 in Electroacupuncture Analgesia on Chronic Inflammatory Pain in Mice

Authors: Jun Yang, Ching-Liang Hsieh, Yi-Wen Lin

Abstract:

Chronic inflammatory pain results from peripheral tissue injury or local inflammation to increase the release of protons, histamines, adenosine triphosphate, and several proinflammatory cytokines. Transient receptor potential vanilloid 1 (TRPV1) is involved in fibromyalgia, neuropathic, and inflammatory pain; however, its exact mechanisms in chronic inflammatory pain are still unclear. We investigate the analgesic effect of EA by injecting complete Freund’s adjuvant (CFA) in the hind paw of mice to induce chronic inflammatory pain ( > 14 d). Our results showed that EA significantly reduced chronic mechanical and thermal hyperalgesia in the chronic inflammatory pain model. Chronic mechanical and thermal hyperalgesia was also abolished in TRPV1−/− mice. TRPV1 increased in the dorsal root ganglion (DRG) and spinal cord (SC) at 2 weeks after CFA injection. The expression levels of downstream molecules such as pPKA, pPI3K, and pPKC increased, as did those of pERK, pp38, and pJNK. Transcription factors (pCREB and pNFκB) and nociceptive ion channels (Nav1.7 and Nav1.8) were involved in this process. Inflammatory mediators such as GFAP (Glial fibrillary acidic protein), S100B, and RAGE (Receptor for advanced glycation endproducts) were also involved. The expression levels of these molecules were reduced in EA (electroacupuncture) and TRPV1−/−mice but not in the sham EA group. The present study demonstrated that EA or TRPV1 gene deletion reduced chronic inflammatory pain through TRPV1 and related molecules. In addition, our data provided evidence to support the clinical use of EA for treating chronic inflammatory pain.

Keywords: auricular electric-stimulation, epileptic seizures, anti-inflammation, electroacupuncture

Procedia PDF Downloads 176
11857 A Taxonomy of the Informational Content of Virtual Heritage Serious Games

Authors: Laurence C. Hanes, Robert J. Stone

Abstract:

Video games have reached a point of huge commercial success as well as wide familiarity with audiences both young and old. Much attention and research have also been directed towards serious games and their potential learning affordances. It is little surprise that the field of virtual heritage has taken a keen interest in using serious games to present cultural heritage information to users, with applications ranging from museums and cultural heritage institutions, to academia and research, to schools and education. Many researchers have already documented their efforts to develop and distribute virtual heritage serious games. Although attempts have been made to create classifications of the different types of virtual heritage games (somewhat akin to the idea of game genres), no formal taxonomy has yet been produced to define the different types of cultural heritage and historical information that can be presented through these games at a content level, and how the information can be manifested within the game. This study proposes such a taxonomy. First the informational content is categorized as heritage or historical, then further divided into tangible, intangible, natural, and analytical. Next, the characteristics of the manifestation within the game are covered. The means of manifestation, level of demonstration, tone, and focus are all defined and explained. Finally, the potential learning outcomes of the content are discussed. A demonstration of the taxonomy is then given by describing the informational content and corresponding manifestations within several examples of virtual heritage serious games as well as commercial games. It is anticipated that this taxonomy will help designers of virtual heritage serious games to think about and clearly define the information they are presenting through their games, and how they are presenting it. Another result of the taxonomy is that it will enable us to frame cultural heritage and historical information presented in commercial games with a critical lens, especially where there may not be explicit learning objectives. Finally, the results will also enable us to identify shared informational content and learning objectives between any virtual heritage serious and/or commercial games.

Keywords: informational content, serious games, taxonomy, virtual heritage

Procedia PDF Downloads 367
11856 Effect of Natural and Urban Environments on the Perception of Thermal Pain – Experimental Research Using Virtual Environments

Authors: Anna Mucha, Ewa Wojtyna, Anita Pollak

Abstract:

The environment in which an individual resides and observes may play a meaningful role in well-being and related constructs. Contact with nature may have a positive influence of natural environments on individuals, impacting mood and psychophysical sensations, such as pain relief. Conversely, urban settings, dominated by concrete elements, might lead to mood decline and heightened stress levels. Similarly, the situation may appear in the case of the perception of virtual environments. However, this is a topic that requires further exploration, especially in the context of relationships with pain. The aforementioned matters served as the basis for formulating and executing the outlined experimental research within the realm of environmental psychology, leveraging new technologies, notably virtual reality (VR), which is progressively gaining prominence in the domain of mental health. The primary objective was to investigate the impact of a simulated virtual environment, mirroring a natural setting abundant in greenery, on the perception of acute pain induced by thermal stimuli (high temperature) – encompassing intensity, unpleasantness, and pain tolerance. Comparative analyses were conducted between the virtual natural environment (intentionally constructed in the likeness of a therapeutic garden), virtual urban environment, and a control group devoid of virtual projections. Secondary objectives aimed to determine the mutual relationships among variables such as positive and negative emotions, preferences regarding virtual environments, sense of presence, and restorative experience in the context of the perception of presented virtual environments and induced thermal pain. The study encompassed 126 physically healthy Polish adults, distributing 42 individuals across each of the three comparative groups. Oculus Rift VR technology and the TSA-II neurosensory analyzer facilitated the experiment. Alongside demographic data, participants' subjective feelings concerning virtual reality and pain were evaluated using the Visual Analogue Scale (VAS), the original Restorative Experience in the Virtual World questionnaire (Doświadczenie Regeneracji w Wirtualnym Świecie), and an adapted Slater-Usoh-Steed (SUS) questionnaire. Results of statistical and psychometric analyses, such as Kruskal-Wallis tests, Wilcoxon tests, and contrast analyses, underscored the positive impact of the virtual natural environment on individual pain perception and mood. The virtual natural environment outperformed the virtual urban environment and the control group without virtual projection, particularly in subjective pain components like intensity and unpleasantness. Variables such as restorative experience, sense of presence and virtual environment preference also proved pivotal in pain perception and pain tolerance threshold alterations, contingent on specific conditions. This implies considerable application potential for virtual natural environments across diverse realms of psychology and related fields, among others as a supportive analgesic approach and a form of relaxation following psychotherapeutic sessions.

Keywords: environmental psychology, nature, acute pain, emotions, vitrual reality, virtual environments

Procedia PDF Downloads 63
11855 The Agri-Environmental Instruments in Agricultural Policy to Reduce Nitrogen Pollution

Authors: Flavio Gazzani

Abstract:

Nitrogen is an important agricultural input that is critical for the production. However, the introduction of large amounts of nitrogen into the environment has a number of undesirable impacts such as: the loss of biodiversity, eutrophication of waters and soils, drinking water pollution, acidification, greenhouse gas emissions, human health risks. It is a challenge to sustain or increase food production and at the same time reduce losses of reactive nitrogen to the environment, but there are many potential benefits associated with improving nitrogen use efficiency. Reducing nutrient losses from agriculture is crucial to the successful implementation of agricultural policy. Traditional regulatory instruments applied to implement environmental policies to reduce environmental impacts from nitrogen fertilizers, despite some successes, failed to address many environmental challenges and imposed high costs on the society to achieve environmental quality objectives. As a result, economic instruments started to be recognized for their flexibility and cost-effectiveness. The objective of the research project is to analyze the potential for increased use of market-based instruments in nitrogen control policy. The report reviews existing knowledge, bringing different studies together to assess the global nitrogen situation and the most relevant environmental management policy that aims to reduce pollution in a sustainable way without affect negatively agriculture production and food price. This analysis provides some guidance on how different market based instruments might be orchestrated in an overall policy framework to the development and assessment of sustainable nitrogen management from the economics, environmental and food security point of view.

Keywords: nitrogen emissions, chemical fertilizers, eutrophication, non-point of source pollution, dairy farm

Procedia PDF Downloads 329
11854 Unraveling the Complexity of Hyperacusis: A Metric Dimension of a Graph Concept

Authors: Hassan Ibrahim

Abstract:

The prevalence of hyperacusis, an auditory condition characterized by heightened sensitivity to sounds, continues to rise, posing challenges for effective diagnosis and intervention. It is believed that this work deepens will deepens the understanding of hyperacusis etiology by employing graph theory as a novel analytical framework. it constructed a comprehensive graph wherein nodes represent various factors associated with hyperacusis, including aging, head or neck trauma, infection/virus, depression, migraines, ear infection, anxiety, and other potential contributors. Relationships between factors are modeled as edges, allowing us to visualize and quantify the interactions within the etiological landscape of hyperacusis. it employ the concept of the metric dimension of a connected graph to identify key nodes (landmarks) that serve as critical influencers in the interconnected web of hyperacusis causes. This approach offers a unique perspective on the relative importance and centrality of different factors, shedding light on the complex interplay between physiological, psychological, and environmental determinants. Visualization techniques were also employed to enhance the interpretation and facilitate the identification of the central nodes. This research contributes to the growing body of knowledge surrounding hyperacusis by offering a network-centric perspective on its multifaceted causes. The outcomes hold the potential to inform clinical practices, guiding healthcare professionals in prioritizing interventions and personalized treatment plans based on the identified landmarks within the etiological network. Through the integration of graph theory into hyperacusis research, the complexity of this auditory condition was unraveled and pave the way for more effective approaches to its management.

Keywords: auditory condition, connected graph, hyperacusis, metric dimension

Procedia PDF Downloads 24
11853 Traditional Practices and Indigenous Knowledge for Sustainable Food Waste Reduction: A Lesson from Africa

Authors: Gabriel Sunday Ayayia

Abstract:

Food waste has reached alarming levels worldwide, contributing to food insecurity, resource depletion, and environmental degradation. While numerous strategies exist to mitigate this issue, the role of traditional practices and indigenous knowledge remains underexplored. There is a need to investigate how these age-old practices can contribute to sustainable food waste reduction, particularly in the African context. This study explores the potential of traditional practices and indigenous knowledge in Africa to address this challenge sustainably. The study examines traditional African food management practices and indigenous knowledge related to food preservation and utilization; assess the impact of traditional practices on reducing food waste and its broader implications for sustainable development, and identify key factors influencing the continued use and effectiveness of traditional practices in contemporary African societies. Thus, the study argues that traditional practices and indigenous knowledge in Africa offer valuable insights and strategies for sustainable food waste reduction that can be adapted and integrated into global initiatives This research will employ a mixed-methods approach, combining qualitative and quantitative research techniques. Data collection will involve in-depth interviews, surveys, and participant observations in selected African communities. Moreover, a comprehensive review of literature on traditional food management practices and their impact on food waste reduction will be conducted. The significance of this study lies in its potential to bridge the gap between traditional knowledge and modern sustainability efforts. By uncovering the value of traditional practices in reducing food waste, this research can inform policies, interventions, and awareness campaigns aimed at achieving sustainable food systems worldwide.

Keywords: traditional practices, indigenous knowledge, food waste reduction, sustainability

Procedia PDF Downloads 76
11852 Digital Twin Smart Hospital: A Guide for Implementation and Improvements

Authors: Enido Fabiano de Ramos, Ieda Kanashiro Makiya, Francisco I. Giocondo Cesar

Abstract:

This study investigates the application of Digital Twins (DT) in Smart Hospital Environments (SHE), through a bibliometric study and literature review, including comparison with the principles of Industry 4.0. It aims to analyze the current state of the implementation of digital twins in clinical and non-clinical operations in healthcare settings, identifying trends and challenges, comparing these practices with Industry 4.0 concepts and technologies, in order to present a basic framework including stages and maturity levels. The bibliometric methodology will allow mapping the existing scientific production on the theme, while the literature review will synthesize and critically analyze the relevant studies, highlighting pertinent methodologies and results, additionally the comparison with Industry 4.0 will provide insights on how the principles of automation, interconnectivity and digitalization can be applied in healthcare environments/operations, aiming at improvements in operational efficiency and quality of care. The results of this study will contribute to a deeper understanding of the potential of Digital Twins in Smart Hospitals, in addition to the future potential from the effective integration of Industry 4.0 concepts in this specific environment, presented through the practical framework, after all, the urgent need for changes addressed in this article is undeniable, as well as all their value contribution to human sustainability, designed in SDG3 – Health and well-being: ensuring that all citizens have a healthy life and well-being, at all ages and in all situations. We know that the validity of these relationships will be constantly discussed, and technology can always change the rules of the game.

Keywords: digital twin, smart hospital, healthcare operations, industry 4.0, SDG3, technology

Procedia PDF Downloads 53
11851 Least Squares Method Identification of Corona Current-Voltage Characteristics and Electromagnetic Field in Electrostatic Precipitator

Authors: H. Nouri, I. E. Achouri, A. Grimes, H. Ait Said, M. Aissou, Y. Zebboudj

Abstract:

This paper aims to analysis the behaviour of DC corona discharge in wire-to-plate electrostatic precipitators (ESP). Current-voltage curves are particularly analysed. Experimental results show that discharge current is strongly affected by the applied voltage. The proposed method of current identification is to use the method of least squares. Least squares problems that of into two categories: linear or ordinary least squares and non-linear least squares, depending on whether or not the residuals are linear in all unknowns. The linear least-squares problem occurs in statistical regression analysis; it has a closed-form solution. A closed-form solution (or closed form expression) is any formula that can be evaluated in a finite number of standard operations. The non-linear problem has no closed-form solution and is usually solved by iterative.

Keywords: electrostatic precipitator, current-voltage characteristics, least squares method, electric field, magnetic field

Procedia PDF Downloads 431
11850 Potential Use of Leaching Gravel as a Raw Material in the Preparation of Geo Polymeric Material as an Alternative to Conventional Cement Materials

Authors: Arturo Reyes Roman, Daniza Castillo Godoy, Francisca Balarezo Olivares, Francisco Arriagada Castro, Miguel Maulen Tapia

Abstract:

Mining waste–based geopolymers are a sustainable alternative to conventional cement materials due to their contribution to the valorization of mining wastes as well as to the new construction materials with reduced fingerprints. The objective of this study was to determine the potential of leaching gravel (LG) from hydrometallurgical copper processing to be used as a raw material in the manufacture of geopolymer. NaOH, Na2SiO3 (modulus 1.5), and LG were mixed and then wetted with an appropriate amount of tap water, then stirred until a homogenous paste was obtained. A liquid/solid ratio of 0.3 was used for preparing mixtures. The paste was then cast in cubic moulds of 50 mm for the determination of compressive strengths. The samples were left to dry for 24h at room temperature, then unmoulded before analysis after 28 days of curing time. The compressive test was conducted in a compression machine (15/300 kN). According to the laser diffraction spectroscopy (LDS) analysis, 90% of LG particles were below 500 μm. The X-ray diffraction (XRD) analysis identified crystalline phases of albite (30 %), Quartz (16%), Anorthite (16 %), and Phillipsite (14%). The X-ray fluorescence (XRF) determinations showed mainly 55% of SiO2, 13 % of Al2O3, and 9% of CaO. ICP (OES) concentrations of Fe, Ca, Cu, Al, As, V, Zn, Mo, and Ni were 49.545; 24.735; 6.172; 14.152, 239,5; 129,6; 41,1;15,1, and 13,1 mg kg-1, respectively. The geopolymer samples showed resistance ranging between 2 and 10 MPa. In comparison with the raw material composition, the amorphous percentage of materials in the geopolymer was 35 %, whereas the crystalline percentage of main mineral phases decreased. Further studies are needed to find the optimal combinations of materials to produce a more resistant and environmentally safe geopolymer. Particularly are necessary compressive resistance higher than 15 MPa are necessary to be used as construction unit such as bricks.

Keywords: mining waste, geopolymer, construction material, alkaline activation

Procedia PDF Downloads 94
11849 Commercial Management vs. Quantity Surveying: Hoax or Harmonization

Authors: Zelda Jansen Van Rensburg

Abstract:

Purpose: This study investigates the perceived disparities between Quantity Surveying and Commercial Management in the construction industry, questioning if these differences are substantive or merely semantic. It aims to challenge the conventional notion of Commercial Managers’ superiority by critically evaluating QS and CM roles, exploring CM integration possibilities, examining qualifications for aspiring Commercial Managers, assessing regulatory frameworks, and considering terminology redefinition for global QS professional enhancement. Design: Utilizing mixed methods like literature reviews, surveys, interviews, and document analyses, this research examines the QS-CM relationship. Insights from industry professionals, academics, and regulatory bodies inform the investigation into changing QS roles. Findings: Empirical data highlight evolving roles, showcasing areas of convergence and divergence between QSs and CM. Potential CM integration into QS practice and qualifications for aspiring Commercial Managers are identified. Limitations/Implications: Limitations include potential bias in self-reported data and findings. Nevertheless, the research informs future practices and educational approaches in QS and CM, reflecting the changing roles and responsibilities of Quantity Surveyors. Practical Implications: Findings inform industry practitioners, educators, and regulators, stressing the need to adapt to changing QS roles and integrate CM principles where applicable. Value to the Conference Theme: Aligned with ‘Evolving roles and responsibilities of Quantity Surveyors,’ this research offers insights crucial for understanding the changing dynamics within the QS profession and informs strategies to navigate these shifts effectively.

Keywords: quantity surveying, commercial management, cost engineering, quantity survey

Procedia PDF Downloads 40
11848 Evaluation and Possibilities of Valorization of Ecotourism Potentials in the Mbam and Djerem National Park

Authors: Rinyu Shei Mercy

Abstract:

Protected areas are the potential areas for the development of ecotourism because of their biodiversity, landscapes, waterfalls, lakes, caves, salt lick and cultural heritage of local or indigenous people. These potentials have not yet been valorized, so this study will enable to investigate the evaluation and possibilities of valorization of ecotourism potentials in the Mbam and Djerem National Park. Hence, this was done by employing a combination of field observations, examination, data collection and evaluation, using a SWOT analysis. The SWOT provides an analysis to determine the strengths, weaknesses, opportunities and threats, and strategic suggestions for ecological planning. The study helps to determine an ecotouristic inventory and mapping of ecotourism potentials of the park, evaluate the degree of valorization of these potentials and the possibilities of valorization. Finally, the study has proven that the park has much natural potentials such as rivers, salt licks, waterfall and rapids, lakes, caves and rocks, etc. Also, from the study, it was realized that as concerns the degree of valorization of these ecotourism potentials, 50% of the population visit the salt lick of Pkayere because it’s a biodiversity hotspot and rich in mineral salt attracting a lot of animals and the least is the lake Miyere with 1% due to the fact that it is sacred. Moreover, from the results, there are possibilities that these potentials can be valorized and put into use because of their attractive nature such as creating good roads and bridges, good infrastructural facilities, good communication network etc. So, the study recommends that, in this process, MINTOUR, WCS, tour operators must interact sufficiently in order to develop the potential interest to ecotourism, ecocultural tourism and scientific tourism.

Keywords: ecotourism, national park Mbam and Djerem, valorization of biodiversity, protected areas of Cameroon

Procedia PDF Downloads 137
11847 The Relation Between Social Capital and Trust with Social Network Analysis (SNA)

Authors: Safak Baykal

Abstract:

The purpose of this study is analyzing the relationship between self leadership and social capital of people with using Social Network Analysis. In this study, two aspects of social capital will be focused: bonding, homophilous social capital (BoSC) which implies better, strong, dense or closed network ties, and bridging, heterophilous social capital (BrSC) which implies weak ties, bridging the structural holes. The other concept of the study is Trust (Tr), namely interpersonal trust, willingness to ascribe good intentions to and have confidence in the words and actions of other people. In this study, the sample group, 61 people, was selected from a private firm from the defense industry. The relation between BoSC/BrSC and Tr is shown by using Social Network Analysis (SNA) and statistical analysis with Likert type-questionnaire. The results of the analysis show the Cronbach’s alpha value is 0.73 and social capital values (BoSC/BrSC) is highly correlated with Tr values of the people.

Keywords: bonding social capital, bridging social capital, trust, social network analysis (SNA)

Procedia PDF Downloads 529
11846 A Simulation Model to Analyze the Impact of Virtual Responsiveness in an E-Commerce Supply Chain

Authors: T. Godwin

Abstract:

The design of a supply chain always entails the trade-off between responsiveness and efficiency. The launch of e-commerce has not only changed the way of shopping but also altered the supply chain design while trading off efficiency with responsiveness. A concept called ‘virtual responsiveness’ is introduced in the context of e-commerce supply chain. A simulation model is developed to compare actual responsiveness and virtual responsiveness to the customer in an e-commerce supply chain. The simulation is restricted to the movement of goods from the e-tailer to the customer. Customer demand follows a statistical distribution and is generated using inverse transformation technique. The two responsiveness schemes of the supply chain are compared in terms of the minimum number of inventory required at the e-tailer to fulfill the orders. Computational results show the savings achieved through virtual responsiveness. The insights gained from this study could be used to redesign e-commerce supply chain by incorporating virtual responsiveness. A part of the achieved cost savings could be passed back to the customer, thereby making the supply chain both effective and competitive.

Keywords: e-commerce, simulation modeling, supply chain, virtual responsiveness

Procedia PDF Downloads 344
11845 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms

Authors: Bliss Singhal

Abstract:

Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.

Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression

Procedia PDF Downloads 82
11844 LEDs Based Indoor Positioning by Distances Derivation from Lambertian Illumination Model

Authors: Yan-Ren Chen, Jenn-Kaie Lain

Abstract:

This paper proposes a novel indoor positioning algorithm based on visible light communications, implemented by light-emitting diode fixtures. In the proposed positioning algorithm, distances between light-emitting diode fixtures and mobile terminal are derived from the assumption of ideal Lambertian optic radiation model, and Trilateration positioning method is proceeded immediately to get the coordinates of mobile terminal. The proposed positioning algorithm directly obtains distance information from the optical signal modeling, and therefore, statistical distribution of received signal strength at different positions in interior space has no need to be pre-established. Numerically, simulation results have shown that the proposed indoor positioning algorithm can provide accurate location coordinates estimation.

Keywords: indoor positioning, received signal strength, trilateration, visible light communications

Procedia PDF Downloads 411
11843 DNA Prime/MVTT Boost Enhances Broadly Protective Immune Response against Mosaic HIV-1 Gag

Authors: Wan Liu, Haibo Wang, Cathy Huang, Zhiwu Tan, Zhiwei Chen

Abstract:

The tremendous diversity of HIV-1 has been a major challenge for an effective AIDS vaccine development. Mosaic approach presents the potential for vaccine design aiming for global protection. The mosaic antigen of HIV-1 Gag allows antigenic breadth for vaccine-elicited immune response against a wider spectrum of viral strains. However, the enhancement of immune response using vaccines is dependent on the strategy used. Heterologous prime/boost regimen has been shown to elicit high levels of immune responses. Here, we investigated whether priming using plasmid DNA with electroporation followed by boosting with the live replication-competent modified vaccinia virus vector TianTan (MVTT) combined with the mosaic antigenic sequence could elicit a greater and broader antigen-specific response against HIV-1 Gag in mice. When compared to DNA or MVTT alone, or MVTT/MVTT group, DNA/MVTT group resulted in coincidentally high frequencies of broadly reactive, Gag-specific, polyfunctional, long-lived, and cytotoxic CD8+ T cells and increased anti-Gag antibody titer. Meanwhile, the vaccination could upregulate PD-1+, and Tim-3+ CD8+ T cell, myeloid-derived suppressive cells and Treg cells to balance the stronger immune response induced. Importantly, the prime/boost vaccination could help control the EcoHIV and mesothelioma AB1-gag challenge. The stronger protective Gag-specific immunity induced by a Mosaic DNA/MVTT vaccine corroborate the promise of the mosaic approach, and the potential of two acceptably safe vectors to enhance anti-HIV immunity and cancer prevention.

Keywords: DNA/MVTT vaccine, EcoHIV, mosaic antigen, mesothelioma AB1-gag

Procedia PDF Downloads 242
11842 A Comparative Assessment Method For Map Alignment Techniques

Authors: Rema Daher, Theodor Chakhachiro, Daniel Asmar

Abstract:

In the era of autonomous robot mapping, assessing the goodness of the generated maps is important, and is usually performed by aligning them to ground truth. Map alignment is difficult for two reasons: first, the query maps can be significantly distorted from ground truth, and second, establishing what constitutes ground truth for different settings is challenging. Most map alignment techniques to this date have addressed the first problem, while paying too little importance to the second. In this paper, we propose a benchmark dataset, which consists of synthetically transformed maps with their corresponding displacement fields. Furthermore, we propose a new system for comparison, where the displacement field of any map alignment technique can be computed and compared to the ground truth using statistical measures. The local information in displacement fields renders the evaluation system applicable to any alignment technique, whether it is linear or not. In our experiments, the proposed method was applied to different alignment methods from the literature, allowing for a comparative assessment between them all.

Keywords: assessment methods, benchmark, image deformation, map alignment, robot mapping, robot motion

Procedia PDF Downloads 117
11841 A Case Study of Alkali-Silica Reaction Induced Consistent Damage and Strength Degradation Evaluation in a Textile Mill Building Due to Slow-Reactive Aggregates

Authors: Ahsan R. Khokhar, Fizza Hassan

Abstract:

Alkali-Silica Reaction (ASR) has been recognized as a potential cause of concrete degradation in the world since the 1940s. In Pakistan, mega hydropower structures like dams, weirs constructed from aggregates extracted from a local riverbed exhibited different levels of alkali-silica reactivity over an extended service period. The concrete expansion potential due to such aggregates has been categorized as slow-reactive. Apart from hydropower structures, ASR existence has been identified in the concrete structural elements of a Textile Mill building which used aggregates extracted from the nearby riverbed. The original structure of the Textile Mill was erected in the 80s with the addition of a textile ‘sizing and wrapping’ hall constructed in the 90s. In the years to follow, intensive spalling was observed in the structural members of the subject hall; enough to threat to the overall stability of the building. Limitations such as incomplete building data posed hurdles during the detailed structural investigation. The paper lists observations made while assessing the extent of damage and its effect on the building hall structure. Core testing and Petrographic tests were carried out as per the ASTM standards for strength degradation analysis followed by the identifying its root cause. Results confirmed significant structural strength reduction because of ASR which necessitated the formulation of an immediate re-strengthening solution. The paper also discusses the possible tracks of rehabilitative measures which are being adapted to stabilize the structure and seize further concrete expansion.

Keywords: Alkali-Silica Reaction (ASR), concrete strength degradation, damage assessment, damage evaluation

Procedia PDF Downloads 129
11840 Estimation of State of Charge, State of Health and Power Status for the Li-Ion Battery On-Board Vehicle

Authors: S. Sabatino, V. Calderaro, V. Galdi, G. Graber, L. Ippolito

Abstract:

Climate change is a rapidly growing global threat caused mainly by increased emissions of carbon dioxide (CO₂) into the atmosphere. These emissions come from multiple sources, including industry, power generation, and the transport sector. The need to tackle climate change and reduce CO₂ emissions is indisputable. A crucial solution to achieving decarbonization in the transport sector is the adoption of electric vehicles (EVs). These vehicles use lithium (Li-Ion) batteries as an energy source, making them extremely efficient and with low direct emissions. However, Li-Ion batteries are not without problems, including the risk of overheating and performance degradation. To ensure its safety and longevity, it is essential to use a battery management system (BMS). The BMS constantly monitors battery status, adjusts temperature and cell balance, ensuring optimal performance and preventing dangerous situations. From the monitoring carried out, it is also able to optimally manage the battery to increase its life. Among the parameters monitored by the BMS, the main ones are State of Charge (SoC), State of Health (SoH), and State of Power (SoP). The evaluation of these parameters can be carried out in two ways: offline, using benchtop batteries tested in the laboratory, or online, using batteries installed in moving vehicles. Online estimation is the preferred approach, as it relies on capturing real-time data from batteries while operating in real-life situations, such as in everyday EV use. Actual battery usage conditions are highly variable. Moving vehicles are exposed to a wide range of factors, including temperature variations, different driving styles, and complex charge/discharge cycles. This variability is difficult to replicate in a controlled laboratory environment and can greatly affect performance and battery life. Online estimation captures this variety of conditions, providing a more accurate assessment of battery behavior in real-world situations. In this article, a hybrid approach based on a neural network and a statistical method for real-time estimation of SoC, SoH, and SoP parameters of interest is proposed. These parameters are estimated from the analysis of a one-day driving profile of an electric vehicle, assumed to be divided into the following four phases: (i) Partial discharge (SoC 100% - SoC 50%), (ii) Partial discharge (SoC 50% - SoC 80%), (iii) Deep Discharge (SoC 80% - SoC 30%) (iv) Full charge (SoC 30% - SoC 100%). The neural network predicts the values of ohmic resistance and incremental capacity, while the statistical method is used to estimate the parameters of interest. This reduces the complexity of the model and improves its prediction accuracy. The effectiveness of the proposed model is evaluated by analyzing its performance in terms of square mean error (RMSE) and percentage error (MAPE) and comparing it with the reference method found in the literature.

Keywords: electric vehicle, Li-Ion battery, BMS, state-of-charge, state-of-health, state-of-power, artificial neural networks

Procedia PDF Downloads 67
11839 Copula-Based Estimation of Direct and Indirect Effects in Path Analysis Model

Authors: Alam Ali, Ashok Kumar Pathak

Abstract:

Path analysis is a statistical technique used to evaluate the strength of the direct and indirect effects of variables. One or more structural regression equations are used to estimate a series of parameters in order to find the better fit of data. Sometimes, exogenous variables do not show a significant strength of their direct and indirect effect when the assumption of classical regression (ordinary least squares (OLS)) are violated by the nature of the data. The main motive of this article is to investigate the efficacy of the copula-based regression approach over the classical regression approach and calculate the direct and indirect effects of variables when data violates the OLS assumption and variables are linked through an elliptical copula. We perform this study using a well-organized numerical scheme. Finally, a real data application is also presented to demonstrate the performance of the superiority of the copula approach.

Keywords: path analysis, copula-based regression models, direct and indirect effects, k-fold cross validation technique

Procedia PDF Downloads 72
11838 Circular Economy Initiatives in Denmark for the Recycling of Household Plastic Wastes

Authors: Rikke Lybæk

Abstract:

This paper delves into the intricacies of recycling household plastic waste within Denmark, employing an exploratory case study methodology to shed light on the technical, strategic, and market dynamics of the plastic recycling value chain. Focusing on circular economy principles, the research identifies critical gaps and opportunities in recycling processes, particularly regarding plastic packaging waste derived from households, with a notable absence in food packaging reuse initiatives. The study uncovers the predominant practice of downcycling in the current value chain, underscoring a disconnect between the potential for high-quality plastic recycling and the market's readiness to embrace such materials. Through detailed examination of three leading companies in Denmark's plastic industry, the paper highlights the existing support for recycling initiatives, yet points to the necessity of assured quality in sorted plastics to foster broader adoption. The analysis further explores the importance of reuse strategies to complement recycling efforts, aiming to alleviate the pressure on virgin feedstock. The paper ventures into future perspectives, discussing different approaches such as biological degradation methods, watermark technology for plastic traceability, and the potential for bio-based and PtX plastics. These avenues promise not only to enhance recycling efficiency but also to contribute to a more sustainable circular economy by reducing reliance on virgin materials. Despite the challenges outlined, the research demonstrates a burgeoning market for recycled plastics within Denmark, propelled by both environmental considerations and customer demand. However, the study also calls for a more harmonized and effective waste collection and sorting system to elevate the quality and quantity of recyclable plastics. By casting a spotlight on successful case studies and potential technological advancements, the paper advocates for a multifaceted approach to plastic waste management, encompassing not only recycling but also innovative reuse and reduction strategies to foster a more sustainable future. In conclusion, this study underscores the urgent need for innovative, coordinated efforts in the recycling and management of plastic waste to move towards a more sustainable and circular economy in Denmark. It calls for the adoption of comprehensive strategies that include improving recycling technologies, enhancing waste collection systems, and fostering a market environment that values recycled materials, thereby contributing significantly to environmental sustainability goals.

Keywords: case study, circular economy, Denmark, plastic waste, sustainability, waste management

Procedia PDF Downloads 103
11837 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 136
11836 Electrical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: electrical disaggregation, DTW, general appliance modeling, event detection

Procedia PDF Downloads 78
11835 Autism Awareness Among School Students and the Violent Reaction of the Autist Toward Society in Egypt

Authors: Naglaa Baskhroun Thabet Wasef

Abstract:

Specific education services for students with Autism remains in its early developmental stages in Egypt. In spite of many more children with autism are attending schools since The Egyptian government introduced the Education Provision for Students with Disabilities Act in 2010, the services students with autism and their families receive are generally not enough. This pointed study used Attitude and Reaction to Teach Students with Autism Scale to investigate 50 primary school teachers’ attitude and reaction to teach students with autism in the general education classroom. Statistical analysis of the data found that student behavior was the most noticeable factor in building teachers’ wrong attitudes students with autism. The minority of teachers also indicated that their service education did not prepare them to meet the learning needs of children with autism in special, those who are non-vocal. The study is descriptive and provides direction for increasing teacher awareness for inclusivity in Egypt.

Keywords: attitude, autism, teachers, sports activates, movement skills, motor skills, autism attitude

Procedia PDF Downloads 64
11834 Thai Primary School Teachers’ Attitude and Preparedness to Teach Students with Autism in the General Education Classroom

Authors: Sunanta Klibthong

Abstract:

Inclusive education services for students with Autism remains in its early developmental stages in Thailand. Despite many more children with autism are attending schools since the Thai government introduced the Education Provision for People with Disabilities Act in 2008, the services students with autism and their families receive are generally lacking. This quantitative study used Attitude and Preparedness to Teach Students with Autism Scale (APTSAS) to investigate 110 primary school teachers’ attitude and preparedness to teach students with autism in the general education classroom. Descriptive statistical analysis of the data found that student behaviour was the most significant factor in building teachers’ negative attitudes students with autism. The majority of teachers also indicated that their pre-service education did not prepare them to meet the learning needs of children with autism in particular, those who are non-verbal. The study is significant and provides direction for enhancing teacher education for inclusivity in Thailand.

Keywords: attitude, autism, teachers, Thailand

Procedia PDF Downloads 276