Search results for: permanent magnet machine
343 Identification of Candidate Congenital Heart Defects Biomarkers by Applying a Random Forest Approach on DNA Methylation Data
Authors: Kan Yu, Khui Hung Lee, Eben Afrifa-Yamoah, Jing Guo, Katrina Harrison, Jack Goldblatt, Nicholas Pachter, Jitian Xiao, Guicheng Brad Zhang
Abstract:
Background and Significance of the Study: Congenital Heart Defects (CHDs) are the most common malformation at birth and one of the leading causes of infant death. Although the exact etiology remains a significant challenge, epigenetic modifications, such as DNA methylation, are thought to contribute to the pathogenesis of congenital heart defects. At present, no existing DNA methylation biomarkers are used for early detection of CHDs. The existing CHD diagnostic techniques are time-consuming and costly and can only be used to diagnose CHDs after an infant was born. The present study employed a machine learning technique to analyse genome-wide methylation data in children with and without CHDs with the aim to find methylation biomarkers for CHDs. Methods: The Illumina Human Methylation EPIC BeadChip was used to screen the genome‐wide DNA methylation profiles of 24 infants diagnosed with congenital heart defects and 24 healthy infants without congenital heart defects. Primary pre-processing was conducted by using RnBeads and limma packages. The methylation levels of top 600 genes with the lowest p-value were selected and further investigated by using a random forest approach. ROC curves were used to analyse the sensitivity and specificity of each biomarker in both training and test sample sets. The functionalities of selected genes with high sensitivity and specificity were then assessed in molecular processes. Major Findings of the Study: Three genes (MIR663, FGF3, and FAM64A) were identified from both training and validating data by random forests with an average sensitivity and specificity of 85% and 95%. GO analyses for the top 600 genes showed that these putative differentially methylated genes were primarily associated with regulation of lipid metabolic process, protein-containing complex localization, and Notch signalling pathway. The present findings highlight that aberrant DNA methylation may play a significant role in the pathogenesis of congenital heart defects.Keywords: biomarker, congenital heart defects, DNA methylation, random forest
Procedia PDF Downloads 158342 The Development of a Digitally Connected Factory Architecture to Enable Product Lifecycle Management for the Assembly of Aerostructures
Authors: Nicky Wilson, Graeme Ralph
Abstract:
Legacy aerostructure assembly is defined by large components, low build rates, and manual assembly methods. With an increasing demand for commercial aircraft and emerging markets such as the eVTOL (electric vertical take-off and landing) market, current methods of manufacturing are not capable of efficiently hitting these higher-rate demands. This project will look at how legacy manufacturing processes can be rate enabled by taking a holistic view of data usage, focusing on how data can be collected to enable fully integrated digital factories and supply chains. The study will focus on how data is flowed both up and down the supply chain to create a digital thread specific to each part and assembly while enabling machine learning through real-time, closed-loop feedback systems. The study will also develop a bespoke architecture to enable connectivity both within the factory and the wider PLM (product lifecycle management) system, moving away from traditional point-to-point systems used to connect IO devices to a hub and spoke architecture that will exploit report-by-exception principles. This paper outlines the key issues facing legacy aircraft manufacturers, focusing on what future manufacturing will look like from adopting Industry 4 principles. The research also defines the data architecture of a PLM system to enable the transfer and control of a digital thread within the supply chain and proposes a standardised communications protocol to enable a scalable solution to connect IO devices within a production environment. This research comes at a critical time for aerospace manufacturers, who are seeing a shift towards the integration of digital technologies within legacy production environments, while also seeing build rates continue to grow. It is vital that manufacturing processes become more efficient in order to meet these demands while also securing future work for many manufacturers.Keywords: Industry 4, digital transformation, IoT, PLM, automated assembly, connected factories
Procedia PDF Downloads 79341 Management Practices and Economic Performance of Smallholder Dairy Cattle Farms in Southern Vietnam
Authors: Ngoc-Hieu Vu
Abstract:
Although dairy production in Vietnam is a relatively new agricultural activity, milk production increased remarkably in recent years. Smallholders are still the main drivers for this development, especially in the southern part of the country. However, information on the farming practices is very limited. Therefore, this study aimed to characterize husbandry practices, educational experiences, decision-making practices, constraints, income and expenses of smallholder dairy farms in Southern Vietnam. A total of 200 farms, located in the regions Ho Chi Minh (HCM, N=80 farms), Lam Dong (N=40 farms), Binh Duong (N=40 farms) and Long An (N=40 farms) were included. Between October 2013 and December 2014 farmers were interviewed twice. On average, farms owned 3.200m2, 2.000m2, and 193m2 of pasture, cropping and housing area, respectively. The number of total, milking and dry cows, heifers, and calves were 20.4, 11.6, 4.7, 3.3, and 2.9 head. The number of lactating dairy cows was higher (p<0.001) in HCM (15.5) and Lam Dong (14.7) than in Binh Duong (6.7) and Long An (10.7). Animals were mainly crossbred Holstein-Friesian (HF) cows with at least 75% HF origin (84%), whereas a higher (P<0.001) percentage of purebred HF was found in HCM and Lam Dong and crossbreds in Binh Duong and Long An. Animals were mainly raised in tie-stalls (94%) and machine-milked (80%). Farmers used their own replacement animals (76%), and both genetic and phenotypic information (67%) for selecting sires. Farmers were predominantly educated at primary school level (53%). Major constraints for dairy farming were the lack of capital (43%), diseases (17%), marketing (22%), lack of knowledge (8%) and feed (7%). Monthly profit per lactating cow was superior in Lam Dong (2,817 thousand VND) and HCM (2,798 thousand VND) compared to other regions in Long An (2,597 thousand VND), and Binh Duong (1,775 thousand VND). Regional differences may be mainly attributed to environmental factors, urbanization, and particularly governmental support and the availability of extension and financial institutions. Results from this study provide important information on farming practices of smallholders in Southern Vietnam that are useful in determining regions that need to be addressed by authorities in order to improve dairy production.Keywords: dairy farms, milk yield, Southern Vietnam, socio-economics
Procedia PDF Downloads 465340 Analysis of Friction Stir Welding Process for Joining Aluminum Alloy
Authors: A. M. Khourshid, I. Sabry
Abstract:
Friction Stir Welding (FSW), a solid state joining technique, is widely being used for joining Al alloys for aerospace, marine automotive and many other applications of commercial importance. FSW were carried out using a vertical milling machine on Al 5083 alloy pipe. These pipe sections are relatively small in diameter, 5mm, and relatively thin walled, 2 mm. In this study, 5083 aluminum alloy pipe were welded as similar alloy joints using (FSW) process in order to investigate mechanical and microstructural properties .rotation speed 1400 r.p.m and weld speed 10,40,70 mm/min. In order to investigate the effect of welding speeds on mechanical properties, metallographic and mechanical tests were carried out on the welded areas. Vickers hardness profile and tensile tests of the joints as a metallurgical feasibility of friction stir welding for joining Al 6061 aluminum alloy welding was performed on pipe with different thickness 2, 3 and 4 mm,five rotational speeds (485,710,910,1120 and 1400) rpm and a traverse speed (4, 8 and 10)mm/min was applied. This work focuses on two methods such as artificial neural networks using software (pythia) and response surface methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminum alloy. An artificial neural network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. The tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters Tool rotation speed, material thickness and travel speed as a function. A comparison was made between measured and predicted data. Response surface methodology (RSM) also developed and the values obtained for the response Tensile strengths, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameter on mechanical properties of 6061 aluminum alloy has been analyzed in detail.Keywords: friction stir welding (FSW), al alloys, mechanical properties, microstructure
Procedia PDF Downloads 462339 Rapid Detection of the Etiology of Infection as Bacterial or Viral Using Infrared Spectroscopy of White Blood Cells
Authors: Uraib Sharaha, Guy Beck, Joseph Kapelushnik, Adam H. Agbaria, Itshak Lapidot, Shaul Mordechai, Ahmad Salman, Mahmoud Huleihel
Abstract:
Infectious diseases cause a significant burden on the public health and the economic stability of societies all over the world for several centuries. A reliable detection of the causative agent of infection is not possible based on clinical features, since some of these infections have similar symptoms, including fever, sneezing, inflammation, vomiting, diarrhea, and fatigue. Moreover, physicians usually encounter difficulties in distinguishing between viral and bacterial infections based on symptoms. Therefore, there is an ongoing need for sensitive, specific, and rapid methods for identification of the etiology of the infection. This intricate issue perplex doctors and researchers since it has serious repercussions. In this study, we evaluated the potential of the mid-infrared spectroscopic method for rapid and reliable identification of bacterial and viral infections based on simple peripheral blood samples. Fourier transform infrared (FTIR) spectroscopy is considered a successful diagnostic method in the biological and medical fields. Many studies confirmed the great potential of the combination of FTIR spectroscopy and machine learning as a powerful diagnostic tool in medicine since it is a very sensitive method, which can detect and monitor the molecular and biochemical changes in biological samples. We believed that this method would play a major role in improving the health situation, raising the level of health in the community, and reducing the economic burdens in the health sector resulting from the indiscriminate use of antibiotics. We collected peripheral blood samples from young 364 patients, of which 93 were controls, 126 had bacterial infections, and 145 had viral infections, with ages lower than18 years old, limited to those who were diagnosed with fever-producing illness. Our preliminary results showed that it is possible to determine the infectious agent with high success rates of 82% for sensitivity and 80% for specificity, based on the WBC data.Keywords: infectious diseases, (FTIR) spectroscopy, viral infections, bacterial infections.
Procedia PDF Downloads 139338 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling
Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal
Abstract:
Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.Keywords: ABET, accreditation, benchmark collection, machine learning, program educational objectives, student outcomes, supervised multi-class classification, text mining
Procedia PDF Downloads 173337 Three Issues for Integrating Artificial Intelligence into Legal Reasoning
Authors: Fausto Morais
Abstract:
Artificial intelligence has been widely used in law. Programs are able to classify suits, to identify decision-making patterns, to predict outcomes, and to formalize legal arguments as well. In Brazil, the artificial intelligence victor has been classifying cases to supreme court’s standards. When those programs act doing those tasks, they simulate some kind of legal decision and legal arguments, raising doubts about how artificial intelligence can be integrated into legal reasoning. Taking this into account, the following three issues are identified; the problem of hypernormatization, the argument of legal anthropocentrism, and the artificial legal principles. Hypernormatization can be seen in the Brazilian legal context in the Supreme Court’s usage of the Victor program. This program generated efficiency and consistency. On the other hand, there is a feasible risk of over standardizing factual and normative legal features. Then legal clerks and programmers should work together to develop an adequate way to model legal language into computational code. If this is possible, intelligent programs may enact legal decisions in easy cases automatically cases, and, in this picture, the legal anthropocentrism argument takes place. Such an argument argues that just humans beings should enact legal decisions. This is so because human beings have a conscience, free will, and self unity. In spite of that, it is possible to argue against the anthropocentrism argument and to show how intelligent programs may work overcoming human beings' problems like misleading cognition, emotions, and lack of memory. In this way, intelligent machines could be able to pass legal decisions automatically by classification, as Victor in Brazil does, because they are binding by legal patterns and should not deviate from them. Notwithstanding, artificial intelligent programs can be helpful beyond easy cases. In hard cases, they are able to identify legal standards and legal arguments by using machine learning. For that, a dataset of legal decisions regarding a particular matter must be available, which is a reality in Brazilian Judiciary. Doing such procedure, artificial intelligent programs can support a human decision in hard cases, providing legal standards and arguments based on empirical evidence. Those legal features claim an argumentative weight in legal reasoning and should serve as references for judges when they must decide to maintain or overcome a legal standard.Keywords: artificial intelligence, artificial legal principles, hypernormatization, legal anthropocentrism argument, legal reasoning
Procedia PDF Downloads 145336 Effect of Primer on Bonding between Resin Cement and Zirconia Ceramic
Authors: Deog-Gyu Seo, Jin-Soo Ahn
Abstract:
Objectives: Recently, the development of adhesive primers on stable bonding between zirconia and resin cement has been on the increase. The bond strength of zirconia-resin cement can be effectively increased with the treatment of primer composed of the adhesive monomer that can chemically bond with the oxide layer, which forms on the surface of zirconia. 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) that contains phosphate ester and acidic monomer 4-methacryloxyethyl trimellitic anhydride(4-META) have been suggested as monomers that can form chemical bond with the surface oxide layer of zirconia. Also, these suggested monomers have proved to be effective zirconia surface treatment for bonding to resin cement. The purpose of this study is to evaluate the effects of primer treatment on the bond strength of Zirconia-resin cement by using three different kinds of primers on the market. Methods: Zirconia blocks were prepared into 60 disk-shaped specimens by using a diamond saw. Specimens were divided into four different groups: first three groups were treated with zirconiaLiner(Sun Medical Co., Ltd., Furutaka-cho, Moriyama, Shiga, Japan), Alloy primer (Kuraray Noritake Dental Inc., Sakaju, Kurashiki, Okayama, Japan), and Universal primer (Tokuyama dental Corp., Taitou, Taitou-ku, Tokyo, Japan) respectively. The last group was the control with no surface treatment. Dual cured resin cement (Biscem, Bisco Inc., Schaumburg, IL, USA) was luted to each group of specimens. And then, shear bond strengths were measured by universal tesing machine. The significance of the result was statistically analyzed by one-way ANOVA and Tukey test. The failure sites in each group were inspected under a magnifier. Results: Mean shear bond strength were 0.60, 1.39, 1.03, 1.38 MPa for control, Zirconia Liner (ZL), Alloy primer (AP), Universal primer (UP), respectively. Groups with application of each of the three primers showed significantly higher shear bond strength compared to the control group (p < 0.05). Among the three groups with the treatment, ZL and UP showed significantly higher shear bond strength than AP (p < 0.05), and there were no significant differences in mean shear bond strength between ZL and UP (p < 0.05). While the most specimens of control groups showed adhesive failure (80%), the most specimens of three primer-treated groups showed cohesive or mixed failure (80%).Keywords: primer, resin cement, shear bond strength, zirconia
Procedia PDF Downloads 202335 Kinematic Analysis of Human Gait for Typical Postures of Walking, Running and Cart Pulling
Authors: Nupur Karmaker, Hasin Aupama Azhari, Abdul Al Mortuza, Abhijit Chanda, Golam Abu Zakaria
Abstract:
Purpose: The purpose of gait analysis is to determine the biomechanics of the joint, phases of gait cycle, graphical and analytical analysis of degree of rotation, analysis of the electrical activity of muscles and force exerted on the hip joint at different locomotion during walking, running and cart pulling. Methods and Materials: Visual gait analysis and electromyography method has been used to detect the degree of rotation of joints and electrical activity of muscles. In cinematography method an object is observed from different sides and takes its video. Cart pulling length has been divided into frames with respect to time by using video splitter software. Phases of gait cycle, degree of rotation of joints, EMG profile and force analysis during walking and running has been taken from different papers. Gait cycle and degree of rotation of joints during cart pulling has been prepared by using video camera, stop watch, video splitter software and Microsoft Excel. Results and Discussion: During the cart pulling the force exerted on hip is the resultant of various forces. The force on hip is the vector sum of the force Fg= mg, due the body of weight of the person and Fa= ma, due to the velocity. Maximum stance phase shows during cart pulling and minimum shows during running. During cart pulling shows maximum degree of rotation of hip joint, knee: running, and ankle: cart pulling. During walking, it has been observed minimum degree of rotation of hip, ankle: during running. During cart pulling, dynamic force depends on the walking velocity, body weight and load weight. Conclusions: 80% people suffer gait related disease with increasing their age. Proper care should take during cart pulling. It will be better to establish the gait laboratory to determine the gait related diseases. If the way of cart pulling is changed i.e the design of cart pulling machine, load bearing system is changed then it would possible to reduce the risk of limb loss, flat foot syndrome and varicose vein in lower limb.Keywords: kinematic, gait, gait lab, phase, force analysis
Procedia PDF Downloads 576334 The Impact of Neighborhood Effects on the Economic Mobility of the Inhabitants of Three Segregated Communities in Salvador (Brazil)
Authors: Stephan Treuke
Abstract:
The paper analyses the neighbourhood effects on the economic mobility of the inhabitants of three segregated communities of Salvador (Brazil), in other words, the socio-economic advantages and disadvantages affecting the lives of poor people due to their embeddedness in specific socio-residential contexts. Recent studies performed in Brazilian metropolis have concentrated on the structural dimensions of negative externalities in order to explain neighbourhood-level variations in a field of different phenomena (delinquency, violence, access to the labour market and education) in spatial isolated and socially homogeneous slum areas (favelas). However, major disagreement remains whether the contiguity between residents of poor neighbourhoods and higher-class condominio-dwellers provides structures of opportunities or whether it fosters socio-spatial stigmatization. Based on a set of interviews, investigating the variability of interpersonal networks and their activation in the struggle for economic inclusion, the study confirms that the proximity of Nordeste de Amaralina to middle-/upper-class communities affects positively the access to labour opportunities. Nevertheless, residential stigmatization, as well as structures of social segmentation, annihilate these potentials. The lack of exposition to individuals and groups extrapolating from the favela’s social, educational and cultural context restricts the structures of opportunities to local level. Therefore, residents´ interpersonal networks reveal a high degree of redundancy and localism, based on bonding ties connecting family and neighbourhood members. The resilience of segregational structures in Plataforma contributes to the naturalization of social distance patters. It’s embeddedness in a socially homogeneous residential area (Subúrbio Ferroviário), growing informally and beyond official urban politics, encourages the construction of isotopic patterns of sociability, sharing the same values, social preferences, perspectives and behaviour models. Whereas it’s spatial isolation correlates with the scarcity of economic opportunities, the social heterogeneity of Fazenda Grande II interviewees and the socialising effects of public institutions mitigate the negative repercussions of segregation. The networks’ composition admits a higher degree of heterophilia and a greater proportion of bridging ties accounting for the access to broader information actives and facilitating economic mobility. The variability observed within the three different scenarios urges to reflect about the responsability of urban politics when it comes to the prevention or consolidation of the social segregation process in Salvador. Instead of promoting the local development of the favela Plataforma, public housing programs priorize technocratic habitational solutions without providing the residents’ socio-economic integration. The impact of negative externalities related to the homogeneously poor neighbourhood is potencialized in peripheral areas, turning its’ inhabitants socially invisible, thus being isolated from other social groups. The example of Nordeste de Amaralina portrays the failing interest of urban politics to bridge the social distances structuring the brazilian society’s rigid stratification model, founded on mecanisms of segmentation (unequal access to labour market and education system, public transport, social security and law protection) and generating permanent conflicts between the two socioeconomically distant groups living in geographic contiguity. Finally, in the case of Fazenda Grande II, the public investments in both housing projects and complementary infrastructure (e.g. schools, hospitals, community center, police stations, recreation areas) contributes to the residents’ socio-economic inclusion.Keywords: economic mobility, neighborhood effects, Salvador, segregation
Procedia PDF Downloads 279333 Exploring Pre-Trained Automatic Speech Recognition Model HuBERT for Early Alzheimer’s Disease and Mild Cognitive Impairment Detection in Speech
Authors: Monica Gonzalez Machorro
Abstract:
Dementia is hard to diagnose because of the lack of early physical symptoms. Early dementia recognition is key to improving the living condition of patients. Speech technology is considered a valuable biomarker for this challenge. Recent works have utilized conventional acoustic features and machine learning methods to detect dementia in speech. BERT-like classifiers have reported the most promising performance. One constraint, nonetheless, is that these studies are either based on human transcripts or on transcripts produced by automatic speech recognition (ASR) systems. This research contribution is to explore a method that does not require transcriptions to detect early Alzheimer’s disease (AD) and mild cognitive impairment (MCI). This is achieved by fine-tuning a pre-trained ASR model for the downstream early AD and MCI tasks. To do so, a subset of the thoroughly studied Pitt Corpus is customized. The subset is balanced for class, age, and gender. Data processing also involves cropping the samples into 10-second segments. For comparison purposes, a baseline model is defined by training and testing a Random Forest with 20 extracted acoustic features using the librosa library implemented in Python. These are: zero-crossing rate, MFCCs, spectral bandwidth, spectral centroid, root mean square, and short-time Fourier transform. The baseline model achieved a 58% accuracy. To fine-tune HuBERT as a classifier, an average pooling strategy is employed to merge the 3D representations from audio into 2D representations, and a linear layer is added. The pre-trained model used is ‘hubert-large-ls960-ft’. Empirically, the number of epochs selected is 5, and the batch size defined is 1. Experiments show that our proposed method reaches a 69% balanced accuracy. This suggests that the linguistic and speech information encoded in the self-supervised ASR-based model is able to learn acoustic cues of AD and MCI.Keywords: automatic speech recognition, early Alzheimer’s recognition, mild cognitive impairment, speech impairment
Procedia PDF Downloads 127332 Disentangling the Sources and Context of Daily Work Stress: Study Protocol of a Comprehensive Real-Time Modelling Study Using Portable Devices
Authors: Larissa Bolliger, Junoš Lukan, Mitja Lustrek, Dirk De Bacquer, Els Clays
Abstract:
Introduction and Aim: Chronic workplace stress and its health-related consequences like mental and cardiovascular diseases have been widely investigated. This project focuses on the sources and context of psychosocial daily workplace stress in a real-world setting. The main objective is to analyze and model real-time relationships between (1) psychosocial stress experiences within the natural work environment, (2) micro-level work activities and events, and (3) physiological signals and behaviors in office workers. Methods: An Ecological Momentary Assessment (EMA) protocol has been developed, partly building on machine learning techniques. Empatica® wristbands will be used for real-life detection of stress from physiological signals; micro-level activities and events at work will be based on smartphone registrations, further processed according to an automated computer algorithm. A field study including 100 office-based workers with high-level problem-solving tasks like managers and researchers will be implemented in Slovenia and Belgium (50 in each country). Data mining and state-of-the-art statistical methods – mainly multilevel statistical modelling for repeated data – will be used. Expected Results and Impact: The project findings will provide novel contributions to the field of occupational health research. While traditional assessments provide information about global perceived state of chronic stress exposure, the EMA approach is expected to bring new insights about daily fluctuating work stress experiences, especially micro-level events and activities at work that induce acute physiological stress responses. The project is therefore likely to generate further evidence on relevant stressors in a real-time working environment and hence make it possible to advise on workplace procedures and policies for reducing stress.Keywords: ecological momentary assessment, real-time, stress, work
Procedia PDF Downloads 161331 Advancing Aviation: A Multidisciplinary Approach to Innovation, Management, and Technology Integration in the 21st Century
Authors: Fatih Frank Alparslan
Abstract:
The aviation industry is at a crucial turning point due to modern technologies, environmental concerns, and changing ways of transporting people and goods globally. The paper examines these challenges and opportunities comprehensively. It emphasizes the role of innovative management and advanced technology in shaping the future of air travel. This study begins with an overview of the current state of the aviation industry, identifying key areas where innovation and technology could be highly beneficial. It explores the latest advancements in airplane design, propulsion, and materials. These technological advancements are shown to enhance aircraft performance and environmental sustainability. The paper also discusses the use of artificial intelligence and machine learning in improving air traffic control, enhancing safety, and making flight operations more efficient. The management of these technologies is critically important. Therefore, the research delves into necessary changes in organization, culture, and operations to support innovation. It proposes a management approach that aligns with these modern technologies, underlining the importance of forward-thinking leaders who collaborate across disciplines and embrace innovative ideas. The paper addresses challenges in adopting these innovations, such as regulatory barriers, the need for industry-wide standards, and the impact of technological changes on jobs and society. It recommends that governments, aviation businesses, and educational institutions collaborate to address these challenges effectively, paving the way for a more innovative and eco-friendly aviation industry. In conclusion, the paper argues that the future of aviation relies on integrating new management practices with innovative technologies. It urges a collective effort to push beyond current capabilities, envisioning an aviation industry that is safer, more efficient, and environmentally responsible. By adopting a broad approach, this research contributes to the ongoing discussion about resolving the complex issues facing today's aviation sector, offering insights and guidance to prepare for future advancements.Keywords: aviation innovation, technology integration, environmental sustainability, management strategies, multidisciplinary approach
Procedia PDF Downloads 49330 Investigation of the Mechanical and Thermal Properties of a Silver Oxalate Nanoporous Structured Sintered Joint for Micro-joining in Relation to the Sintering Process Parameters
Authors: L. Vivet, L. Benabou, O. Simon
Abstract:
With highly demanding applications in the field of power electronics, there is an increasing need to have interconnection materials with properties that can ensure both good mechanical assembly and high thermal/electrical conductivities. So far, lead-free solders have been considered an attractive solution, but recently, sintered joints based on nano-silver paste have been used for die attach and have proved to be a promising solution offering increased performances in high-temperature applications. In this work, the main parameters of the bonding process using silver oxalates are studied, i.e., the heating rate and the bonding pressure mainly. Their effects on both the mechanical and thermal properties of the sintered layer are evaluated following an experimental design. Pairs of copper substrates with gold metallization are assembled through the sintering process to realize the samples that are tested using a micro-traction machine. In addition, the obtained joints are examined through microscopy to identify the important microstructural features in relation to the measured properties. The formation of an intermetallic compound at the junction between the sintered silver layer and the gold metallization deposited on copper is also analyzed. Microscopy analysis exhibits a nanoporous structure of the sintered material. It is found that higher temperature and bonding pressure result in higher densification of the sintered material, with higher thermal conductivity of the joint but less mechanical flexibility to accommodate the thermo-mechanical stresses arising during service. The experimental design allows hence the determination of the optimal process parameters to reach sufficient thermal/mechanical properties for a given application. It is also found that the interphase formed between silver and gold metallization is the location where the fracture occurred after the mechanical testing, suggesting that the inter-diffusion mechanism between the different elements of the assembly leads to the formation of a relatively brittle compound.Keywords: nanoporous structure, silver oxalate, sintering, mechanical strength, thermal conductivity, microelectronic packaging
Procedia PDF Downloads 94329 Embedded Visual Perception for Autonomous Agricultural Machines Using Lightweight Convolutional Neural Networks
Authors: René A. Sørensen, Søren Skovsen, Peter Christiansen, Henrik Karstoft
Abstract:
Autonomous agricultural machines act in stochastic surroundings and therefore, must be able to perceive the surroundings in real time. This perception can be achieved using image sensors combined with advanced machine learning, in particular Deep Learning. Deep convolutional neural networks excel in labeling and perceiving color images and since the cost of high-quality RGB-cameras is low, the hardware cost of good perception depends heavily on memory and computation power. This paper investigates the possibility of designing lightweight convolutional neural networks for semantic segmentation (pixel wise classification) with reduced hardware requirements, to allow for embedded usage in autonomous agricultural machines. Using compression techniques, a lightweight convolutional neural network is designed to perform real-time semantic segmentation on an embedded platform. The network is trained on two large datasets, ImageNet and Pascal Context, to recognize up to 400 individual classes. The 400 classes are remapped into agricultural superclasses (e.g. human, animal, sky, road, field, shelterbelt and obstacle) and the ability to provide accurate real-time perception of agricultural surroundings is studied. The network is applied to the case of autonomous grass mowing using the NVIDIA Tegra X1 embedded platform. Feeding case-specific images to the network results in a fully segmented map of the superclasses in the image. As the network is still being designed and optimized, only a qualitative analysis of the method is complete at the abstract submission deadline. Proceeding this deadline, the finalized design is quantitatively evaluated on 20 annotated grass mowing images. Lightweight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show competitive performance with regards to accuracy and speed. It is feasible to provide cost-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.Keywords: autonomous agricultural machines, deep learning, safety, visual perception
Procedia PDF Downloads 397328 The Psychometric Properties of an Instrument to Estimate Performance in Ball Tasks Objectively
Authors: Kougioumtzis Konstantin, Rylander Pär, Karlsteen Magnus
Abstract:
Ball skills as a subset of fundamental motor skills are predictors for performance in sports. Currently, most tools evaluate ball skills utilizing subjective ratings. The aim of this study was to examine the psychometric properties of a newly developed instrument to objectively measure ball handling skills (BHS-test) utilizing digital instrument. Participants were a convenience sample of 213 adolescents (age M = 17.1 years, SD =3.6; 55% females, 45% males) recruited from upper secondary schools and invited to a sports hall for the assessment. The 8-item instrument incorporated both accuracy-based ball skill tests and repetitive-performance tests with a ball. Testers counted performance manually in the four tests (one throwing and three juggling tasks). Furthermore, assessment was technologically enhanced in the other four tests utilizing a ball machine, a Kinect camera and balls with motion sensors (one balancing and three rolling tasks). 3D printing technology was used to construct equipment, while all results were administered digitally with smart phones/tablets, computers and a specially constructed application to send data to a server. The instrument was deemed reliable (α = .77) and principal component analysis was used in a random subset (53 of the participants). Furthermore, latent variable modeling was employed to confirm the structure with the remaining subset (160 of the participants). The analysis showed good factorial-related validity with one factor explaining 57.90 % of the total variance. Four loadings were larger than .80, two more exceeded .76 and the other two were .65 and .49. The one factor solution was confirmed by a first order model with one general factor and an excellent fit between model and data (χ² = 16.12, DF = 20; RMSEA = .00, CI90 .00–.05; CFI = 1.00; SRMR = .02). The loadings on the general factor ranged between .65 and .83. Our findings indicate good reliability and construct validity for the BHS-test. To develop the instrument further, more studies are needed with various age-groups, e.g. children. We suggest using the BHS-test for diagnostic or assessment purpose for talent development and sports participation interventions that focus on ball games.Keywords: ball-handling skills, ball-handling ability, technologically-enhanced measurements, assessment
Procedia PDF Downloads 94327 A Method for Clinical Concept Extraction from Medical Text
Authors: Moshe Wasserblat, Jonathan Mamou, Oren Pereg
Abstract:
Natural Language Processing (NLP) has made a major leap in the last few years, in practical integration into medical solutions; for example, extracting clinical concepts from medical texts such as medical condition, medication, treatment, and symptoms. However, training and deploying those models in real environments still demands a large amount of annotated data and NLP/Machine Learning (ML) expertise, which makes this process costly and time-consuming. We present a practical and efficient method for clinical concept extraction that does not require costly labeled data nor ML expertise. The method includes three steps: Step 1- the user injects a large in-domain text corpus (e.g., PubMed). Then, the system builds a contextual model containing vector representations of concepts in the corpus, in an unsupervised manner (e.g., Phrase2Vec). Step 2- the user provides a seed set of terms representing a specific medical concept (e.g., for the concept of the symptoms, the user may provide: ‘dry mouth,’ ‘itchy skin,’ and ‘blurred vision’). Then, the system matches the seed set against the contextual model and extracts the most semantically similar terms (e.g., additional symptoms). The result is a complete set of terms related to the medical concept. Step 3 –in production, there is a need to extract medical concepts from the unseen medical text. The system extracts key-phrases from the new text, then matches them against the complete set of terms from step 2, and the most semantically similar will be annotated with the same medical concept category. As an example, the seed symptom concepts would result in the following annotation: “The patient complaints on fatigue [symptom], dry skin [symptom], and Weight loss [symptom], which can be an early sign for Diabetes.” Our evaluations show promising results for extracting concepts from medical corpora. The method allows medical analysts to easily and efficiently build taxonomies (in step 2) representing their domain-specific concepts, and automatically annotate a large number of texts (in step 3) for classification/summarization of medical reports.Keywords: clinical concepts, concept expansion, medical records annotation, medical records summarization
Procedia PDF Downloads 135326 Methodical Approach for the Integration of a Digital Factory Twin into the Industry 4.0 Processes
Authors: R. Hellmuth
Abstract:
The orientation of flexibility and adaptability with regard to factory planning is at machine and process level. Factory buildings are not the focus of current research. Factory planning has the task of designing products, plants, processes, organization, areas and the construction of a factory. The adaptability of a factory can be divided into three types: spatial, organizational and technical adaptability. Spatial adaptability indicates the ability to expand and reduce the size of a factory. Here, the area-related breathing capacity plays the essential role. It mainly concerns the factory site, the plant layout and the production layout. The organizational ability to change enables the change and adaptation of organizational structures and processes. This includes structural and process organization as well as logistical processes and principles. New and reconfigurable operating resources, processes and factory buildings are referred to as technical adaptability. These three types of adaptability can be regarded independently of each other as undirected potentials of different characteristics. If there is a need for change, the types of changeability in the change process are combined to form a directed, complementary variable that makes change possible. When planning adaptability, importance must be attached to a balance between the types of adaptability. The vision of the intelligent factory building and the 'Internet of Things' presupposes the comprehensive digitalization of the spatial and technical environment. Through connectivity, the factory building must be empowered to support a company's value creation process by providing media such as light, electricity, heat, refrigeration, etc. In the future, communication with the surrounding factory building will take place on a digital or automated basis. In the area of industry 4.0, the function of the building envelope belongs to secondary or even tertiary processes, but these processes must also be included in the communication cycle. An integrative view of a continuous communication of primary, secondary and tertiary processes is currently not yet available and is being developed with the aid of methods in this research work. A comparison of the digital twin from the point of view of production and the factory building will be developed. Subsequently, a tool will be elaborated to classify digital twins from the perspective of data, degree of visualization, and the trades. Thus a contribution is made to better integrate the secondary and tertiary processes in a factory into the added value.Keywords: adaptability, digital factory twin, factory planning, industry 4.0
Procedia PDF Downloads 156325 Crime Prevention with Artificial Intelligence
Authors: Mehrnoosh Abouzari, Shahrokh Sahraei
Abstract:
Today, with the increase in quantity and quality and variety of crimes, the discussion of crime prevention has faced a serious challenge that human resources alone and with traditional methods will not be effective. One of the developments in the modern world is the presence of artificial intelligence in various fields, including criminal law. In fact, the use of artificial intelligence in criminal investigations and fighting crime is a necessity in today's world. The use of artificial intelligence is far beyond and even separate from other technologies in the struggle against crime. Second, its application in criminal science is different from the discussion of prevention and it comes to the prediction of crime. Crime prevention in terms of the three factors of the offender, the offender and the victim, following a change in the conditions of the three factors, based on the perception of the criminal being wise, and therefore increasing the cost and risk of crime for him in order to desist from delinquency or to make the victim aware of self-care and possibility of exposing him to danger or making it difficult to commit crimes. While the presence of artificial intelligence in the field of combating crime and social damage and dangers, like an all-seeing eye, regardless of time and place, it sees the future and predicts the occurrence of a possible crime, thus prevent the occurrence of crimes. The purpose of this article is to collect and analyze the studies conducted on the use of artificial intelligence in predicting and preventing crime. How capable is this technology in predicting crime and preventing it? The results have shown that the artificial intelligence technologies in use are capable of predicting and preventing crime and can find patterns in the data set. find large ones in a much more efficient way than humans. In crime prediction and prevention, the term artificial intelligence can be used to refer to the increasing use of technologies that apply algorithms to large sets of data to assist or replace police. The use of artificial intelligence in our debate is in predicting and preventing crime, including predicting the time and place of future criminal activities, effective identification of patterns and accurate prediction of future behavior through data mining, machine learning and deep learning, and data analysis, and also the use of neural networks. Because the knowledge of criminologists can provide insight into risk factors for criminal behavior, among other issues, computer scientists can match this knowledge with the datasets that artificial intelligence uses to inform them.Keywords: artificial intelligence, criminology, crime, prevention, prediction
Procedia PDF Downloads 76324 Quantification of the Erosion Effect on Small Caliber Guns: Experimental and Numerical Analysis
Authors: Dhouibi Mohamed, Stirbu Bogdan, Chabotier André, Pirlot Marc
Abstract:
Effects of erosion and wear on the performance of small caliber guns have been analyzed throughout numerical and experimental studies. Mainly, qualitative observations were performed. Correlations between the volume change of the chamber and the maximum pressure are limited. This paper focuses on the development of a numerical model to predict the maximum pressure evolution when the interior shape of the chamber changes in the different weapon’s life phases. To fulfill this goal, an experimental campaign, followed by a numerical simulation study, is carried out. Two test barrels, « 5.56x45mm NATO » and « 7.62x51mm NATO,» are considered. First, a Coordinate Measuring Machine (CMM) with a contact scanning probe is used to measure the interior profile of the barrels after each 300-shots cycle until their worn out. Simultaneously, the EPVAT (Electronic Pressure Velocity and Action Time) method with a special WEIBEL radar are used to measure: (i) the chamber pressure, (ii) the action time, (iii) and the bullet velocity in each barrel. Second, a numerical simulation study is carried out. Thus, a coupled interior ballistic model is developed using the dynamic finite element program LS-DYNA. In this work, two different models are elaborated: (i) coupled Eularien Lagrangian method using fluid-structure interaction (FSI) techniques and a coupled thermo-mechanical finite element using a lumped parameter model (LPM) as a subroutine. Those numerical models are validated and checked through three experimental results, such as (i) the muzzle velocity, (ii) the chamber pressure, and (iii) the surface morphology of fired projectiles. Results show a good agreement between experiments and numerical simulations. Next, a comparison between the two models is conducted. The projectile motions, the dynamic engraving resistances and the maximum pressures are compared and analyzed. Finally, using this obtained database, a statistical correlation between the muzzle velocity, the maximum pressure and the chamber volume is established.Keywords: engraving process, finite element analysis, gun barrel erosion, interior ballistics, statistical correlation
Procedia PDF Downloads 216323 Modelling Tyre Rubber Materials for High Frequency FE Analysis
Authors: Bharath Anantharamaiah, Tomas Bouda, Elke Deckers, Stijn Jonckheere, Wim Desmet, Juan J. Garcia
Abstract:
Automotive tyres are gaining importance recently in terms of their noise emission, not only with respect to reduction in noise, but also their perception and detection. Tyres exhibit a mechanical noise generation mechanism up to 1 kHz. However, owing to the fact that tyre is a composite of several materials, it has been difficult to model it using finite elements to predict noise at high frequencies. The currently available FE models have a reliability of about 500 Hz, the limit which, however, is not enough to perceive the roughness or sharpness of noise from tyre. These noise components are important in order to alert pedestrians on the street about passing by slow, especially electric vehicles. In order to model tyre noise behaviour up to 1 kHz, its dynamic behaviour must be accurately developed up to a 1 kHz limit using finite elements. Materials play a vital role in modelling the dynamic tyre behaviour precisely. Since tyre is a composition of several components, their precise definition in finite element simulations is necessary. However, during the tyre manufacturing process, these components are subjected to various pressures and temperatures, due to which these properties could change. Hence, material definitions are better described based on the tyre responses. In this work, the hyperelasticity of tyre component rubbers is calibrated, using the design of experiments technique from the tyre characteristic responses that are measured on a stiffness measurement machine. The viscoelasticity of rubbers are defined by the Prony series for rubbers, which are determined from the loss factor relationship between the loss and storage moduli, assuming that the rubbers are excited within the linear viscoelasticity ranges. These values of loss factor are measured and theoretically expressed as a function of rubber shore hardness or hyperelasticities. From the results of the work, there exists a good correlation between test and simulation vibrational transfer function up to 1 kHz. The model also allows flexibility, i.e., the frequency limit can also be extended, if required, by calibrating the Prony parameters of rubbers corresponding to the frequency of interest. As future work, these tyre models are used for noise generation at high frequencies and thus for tyre noise perception.Keywords: tyre dynamics, rubber materials, prony series, hyperelasticity
Procedia PDF Downloads 194322 Advancements in Mathematical Modeling and Optimization for Control, Signal Processing, and Energy Systems
Authors: Zahid Ullah, Atlas Khan
Abstract:
This abstract focuses on the advancements in mathematical modeling and optimization techniques that play a crucial role in enhancing the efficiency, reliability, and performance of these systems. In this era of rapidly evolving technology, mathematical modeling and optimization offer powerful tools to tackle the complex challenges faced by control, signal processing, and energy systems. This abstract presents the latest research and developments in mathematical methodologies, encompassing areas such as control theory, system identification, signal processing algorithms, and energy optimization. The abstract highlights the interdisciplinary nature of mathematical modeling and optimization, showcasing their applications in a wide range of domains, including power systems, communication networks, industrial automation, and renewable energy. It explores key mathematical techniques, such as linear and nonlinear programming, convex optimization, stochastic modeling, and numerical algorithms, that enable the design, analysis, and optimization of complex control and signal processing systems. Furthermore, the abstract emphasizes the importance of addressing real-world challenges in control, signal processing, and energy systems through innovative mathematical approaches. It discusses the integration of mathematical models with data-driven approaches, machine learning, and artificial intelligence to enhance system performance, adaptability, and decision-making capabilities. The abstract also underscores the significance of bridging the gap between theoretical advancements and practical applications. It recognizes the need for practical implementation of mathematical models and optimization algorithms in real-world systems, considering factors such as scalability, computational efficiency, and robustness. In summary, this abstract showcases the advancements in mathematical modeling and optimization techniques for control, signal processing, and energy systems. It highlights the interdisciplinary nature of these techniques, their applications across various domains, and their potential to address real-world challenges. The abstract emphasizes the importance of practical implementation and integration with emerging technologies to drive innovation and improve the performance of control, signal processing, and energy.Keywords: mathematical modeling, optimization, control systems, signal processing, energy systems, interdisciplinary applications, system identification, numerical algorithms
Procedia PDF Downloads 112321 Suitability of Wood Sawdust Waste Reinforced Polymer Composite for Fireproof Doors
Authors: Timine Suoware, Sylvester Edelugo, Charles Amgbari
Abstract:
The susceptibility of natural fibre polymer composites to flame has necessitated research to improve and develop flame retardant (FR) to delay the escape of combustible volatiles. Previous approaches relied mostly on FR such as aluminium tri-hydroxide (ATH) and ammonium polyphosphate (APP) to improve fire performances of wood sawdust polymer composites (WSPC) with emphasis on non-structural building applications. In this paper, APP was modified with gum Arabic powder (GAP) and then hybridized with ATH at 0, 12 and 18% loading ratio to form new FR species; WSPC12%APP-GAP and WSPC18%ATH/APP-GAP. The FR species were incorporated in wood sawdust waste reinforced in polyester resin to form panels for fireproof doors. The panels were produced using hand lay compression moulding technique and cured at room temperature. Specimen cut from panels were then tested for tensile strength (TS), flexural strength (FS) and impact strength (IS) using universal testing machine and impact tester; thermal stability using (TGA/DSC 1: Metler Toledo); time-to-ignition (Tig), heat release rates (HRR); peak HRR (HRRp), average HRR (HRRavg), total HRR (THR), peak mass loss rate (MLRp), average smoke production rate (SPRavg) and carbon monoxide production (COP ) were obtained using the cone calorimeter apparatus. From the mechanical properties obtained, improvements of IS for the panels were not noticeable whereas TS and FS for WSPC12%APP-GAP respectively stood at 12.44 MPa and 85.58 MPa more than those without FR (WSPC0%). For WSC18%ATH/APP-GAP TS and FS respectively stood at 16.45 MPa and 50.49 MPa more compared to (WSPC0%). From the thermal analysis, the panels did not exhibit any significant change as early degradation was observed. At 900 OC, the char residues improved by 15% for WSPC12%APP-GAP and 19% for WSPC18%ATH/APP-GAP more than (WSC0%) at 5%, confirming the APP-GAP to be a good FR. At 50 kW/m2 heat flux (HF), WSPC12%APP-GAP improved better the fire behaviour of the panels when compared to WSC0% as follows; Tig = 46 s, HRRp = 56.1 kW/2, HRRavg = 32.8 kW/m2, THR = 66.6 MJ/m2, MLRp = 0.103 g/s, TSR = 0.04 m2/s and COP = 0.051 kg/kg. These were respectively more than WSC0%. It can be concluded that the new concept of modifying FR with GAP in WSC could meet the requirement of a fireproof door for building applications.Keywords: composite, flame retardant, wood sawdust, fireproof doors
Procedia PDF Downloads 107320 Load-Deflecting Characteristics of a Fabricated Orthodontic Wire with 50.6Ni 49.4Ti Alloy Composition
Authors: Aphinan Phukaoluan, Surachai Dechkunakorn, Niwat Anuwongnukroh, Anak Khantachawana, Pongpan Kaewtathip, Julathep Kajornchaiyakul, Peerapong Tua-Ngam
Abstract:
Aims: The objectives of this study was to determine the load-deflecting characteristics of a fabricated orthodontic wire with alloy composition of 50.6% (atomic weight) Ni and 49.4% (atomic weight) Ti and to compare the results with Ormco, a commercially available pre-formed NiTi orthodontic archwire. Materials and Methods: The ingots alloys with atomic weight ratio 50.6 Ni: 49.4 Ti alloy were used in this study. Three specimens were cut to have wire dimensions of 0.016 inch x0.022 inch. For comparison, a commercially available pre-formed NiTi archwire, Ormco, with dimensions of 0.016 inch x 0.022 inch was used. Three-point bending tests were performed at the temperature 36+1 °C using a Universal Testing Machine on the newly fabricated and commercial archwires to assess the characteristics of the load-deflection curve with loading and unloading forces. The loading and unloading features at the deflection points 0.25, 0.50, 0.75. 1.0, 1.25, and 1.5 mm were compared. Descriptive statistics was used to evaluate each variables, and independent t-test at p < 0.05 was used to analyze the mean differences between the two groups. Results: The load-deflection curve of the 50.6Ni: 49.4Ti wires exhibited the characteristic features of superelasticity. The curves at the loading and unloading slope of Ormco NiTi archwire were more parallel than the newly fabricated NiTi wires. The average deflection force of the 50.6Ni: 49.4Ti wire was 304.98 g and 208.08 g for loading and unloading, respectively. Similarly, the values were 358.02 g loading and 253.98 g for unloading of Ormco NiTi archwire. The interval difference forces between each deflection points were in the range 20.40-121.38 g and 36.72-92.82 g for the loading and unloading curve of 50.6Ni: 49.4Ti wire, respectively, and 4.08-157.08 g and 14.28-90.78 g for the loading and unloading curve of commercial wire, respectively. The average deflection force of the 50.6Ni: 49.4Ti wire was less than that of Ormco NiTi archwire, which could have been due to variations in the wire dimensions. Although a greater force was required for each deflection point of loading and unloading for the 50.6Ni: 49.4Ti wire as compared to Ormco NiTi archwire, the values were still within the acceptable limits to be clinically used in orthodontic treatment. Conclusion: The 50.6Ni: 49.4Ti wires presented the characteristics of a superelastic orthodontic wire. The loading and unloading force were also suitable for orthodontic tooth movement. These results serve as a suitable foundation for further studies in the development of new orthodontic NiTi archwires.Keywords: 50.6 ni 49.4 Ti alloy wire, load deflection curve, loading and unloading force, orthodontic
Procedia PDF Downloads 303319 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling
Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha
Abstract:
The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat
Procedia PDF Downloads 55318 Novel Uses of Discarded Work Rolls of Cold Rolling Mills in Hot Strip Mill of Tata Steel India
Authors: Uday Shanker Goel, Vinay Vasant Mahashabde, Biswajit Ghosh, Arvind Jha, Amit Kumar, Sanjay Kumar Patel, Uma Shanker Pattanaik, Vinit Kumar Shah, Chaitanya Bhanu
Abstract:
Pinch rolls of the Hot Mills must possess resistance to wear, thermal stability, high thermal conductivity and through hardness. Conventionally, pinch rolls have been procured either as new ones or refurbished ones. Discarded Work Rolls from the Cold Mill were taken and machined inhouse at Tata Steel to be used subsequently as the bottom pinch rolls of the Hot Mill. The hardness of the scrapped work rolls from CRM is close to 55HRC and the typical composition is ( C - 0.8% , Mn - 0.40 % , Si - 0.40% , Cr - 3.5% , Mo - 0.5% & V - 0.1% ).The Innovation was the use of a roll which would otherwise have been otherwise discarded as scrap. Also, the innovation helped in using the scrapped roll which had better wear and heat resistance. In a conventional Pinch roil (Hardness 50 HRC and typical chemistry - C - 10% , Mo+Co+V+Nb ~ 5 % ) , Pick-up is a condition whereby foreign material becomes adhered to the surface of the pinch roll during service. The foreign material is usually adhered metal from the actual product being rolled. The main attributes of the weld overlay rolls are wear resistance and crack resistance. However, the weld overlay roll has a strong tendency for strip pick-up particularly in the area of bead overlap. However, the greatest disadvantage is the depth of weld deposit, which is less than half of the usable shell thickness in most mills. Because of this, the stainless rolls require re-welding on a routine basis. By providing a significantly cheaper in house and more robust alternative of the existing bottom pinch rolls , this innovation results in significant lower worries for the roll shop. Pinch rolls now don't have to be sent outside Jamshedpur for refurbishment or for procuring new ones. Scrapped rolls from adjacent Cold Mill are procured and sent for machining to our Machine Shop inside Tata Steel works in Jamshedpur. This is far more convenient than the older methodology. The idea is also being deployed to the other hot mills of Tata Steel. Multiple campaigns have been tried out at both down coilers of Hot Strip with significantly lower wear.Keywords: hot rolling flat, cold mill work roll, hot strip pinch roll, strip surface
Procedia PDF Downloads 128317 A Comprehensive Framework for Fraud Prevention and Customer Feedback Classification in E-Commerce
Authors: Samhita Mummadi, Sree Divya Nagalli, Harshini Vemuri, Saketh Charan Nakka, Sumesh K. J.
Abstract:
One of the most significant challenges faced by people in today’s digital era is an alarming increase in fraudulent activities on online platforms. The fascination with online shopping to avoid long queues in shopping malls, the availability of a variety of products, and home delivery of goods have paved the way for a rapid increase in vast online shopping platforms. This has had a major impact on increasing fraudulent activities as well. This loop of online shopping and transactions has paved the way for fraudulent users to commit fraud. For instance, consider a store that orders thousands of products all at once, but what’s fishy about this is the massive number of items purchased and their transactions turning out to be fraud, leading to a huge loss for the seller. Considering scenarios like these underscores the urgent need to introduce machine learning approaches to combat fraud in online shopping. By leveraging robust algorithms, namely KNN, Decision Trees, and Random Forest, which are highly effective in generating accurate results, this research endeavors to discern patterns indicative of fraudulent behavior within transactional data. Introducing a comprehensive solution to this problem in order to empower e-commerce administrators in timely fraud detection and prevention is the primary motive and the main focus. In addition to that, sentiment analysis is harnessed in the model so that the e-commerce admin can tailor to the customer’s and consumer’s concerns, feedback, and comments, allowing the admin to improve the user’s experience. The ultimate objective of this study is to ramp up online shopping platforms against fraud and ensure a safer shopping experience. This paper underscores a model accuracy of 84%. All the findings and observations that were noted during our work lay the groundwork for future advancements in the development of more resilient and adaptive fraud detection systems, which will become crucial as technologies continue to evolve.Keywords: behavior analysis, feature selection, Fraudulent pattern recognition, imbalanced classification, transactional anomalies
Procedia PDF Downloads 29316 Effects of Test Environment on the Sliding Wear Behaviour of Cast Iron, Zinc-Aluminium Alloy and Its Composite
Authors: Mohammad M. Khan, Gajendra Dixit
Abstract:
Partially lubricated sliding wear behaviour of a zinc-based alloy reinforced with 10wt% SiC particles has been studied as a function of applied load and solid lubricant particle size and has been compared with that of matrix alloy and conventionally used grey cast iron. The wear tests were conducted at the sliding velocities of 2.1m/sec in various partial lubricated conditions using pin on disc machine as per ASTM G-99-05. Base oil (SAE 20W-40) or mixture of the base oil with 5wt% graphite of particle sizes (7-10 µm) and (100 µm) were used for creating lubricated conditions. The matrix alloy revealed primary dendrites of a and eutectoid a + h and Î phases in the Inter dendritic regions. Similar microstructure has been depicted by the composite with an additional presence of the dispersoid SiC particles. In the case of cast iron, flakes of graphite were observed in the matrix; the latter comprised of (majority of) pearlite and (limited quantity of) ferrite. Results show a large improvement in wear resistance of the zinc-based alloy after reinforcement with SiC particles. The cast iron shows intermediate response between the matrix alloy and composite. The solid lubrication improved the wear resistance and friction behaviour of both the reinforced and base alloy. Moreover, minimum wear rate is obtained in oil+ 5wt % graphite (7-10 µm) lubricated environment for the matrix alloy and composite while for cast iron addition of solid lubricant increases the wear rate and minimum wear rate is obtained in case of oil lubricated environment. The cast iron experienced higher frictional heating than the matrix alloy and composite in all the cases especially at higher load condition. As far as friction coefficient is concerned, a mixed trend of behaviour was noted. The wear rate and frictional heating increased with load while friction coefficient was affected in an opposite manner. Test duration influenced the frictional heating and friction coefficient of the samples in a mixed manner.Keywords: solid lubricant, sliding wear, grey cast iron, zinc based metal matrix composites
Procedia PDF Downloads 317315 Experimental Study and Numerical Modelling of Failure of Rocks Typical for Kuzbass Coal Basin
Authors: Mikhail O. Eremin
Abstract:
Present work is devoted to experimental study and numerical modelling of failure of rocks typical for Kuzbass coal basin (Russia). The main goal was to define strength and deformation characteristics of rocks on the base of uniaxial compression and three-point bending loadings and then to build a mathematical model of failure process for both types of loading. Depending on particular physical-mechanical characteristics typical rocks of Kuzbass coal basin (sandstones, siltstones, mudstones, etc. of different series – Kolchuginsk, Tarbagansk, Balohonsk) manifest brittle and quasi-brittle character of failure. The strength characteristics for both tension and compression are found. Other characteristics are also found from the experiment or taken from literature reviews. On the base of obtained characteristics and structure (obtained from microscopy) the mathematical and structural models are built and numerical modelling of failure under different types of loading is carried out. Effective characteristics obtained from modelling and character of failure correspond to experiment and thus, the mathematical model was verified. An Instron 1185 machine was used to carry out the experiments. Mathematical model includes fundamental conservation laws of solid mechanics – mass, impulse, energy. Each rock has a sufficiently anisotropic structure, however, each crystallite might be considered as isotropic and then a whole rock model has a quasi-isotropic structure. This idea gives an opportunity to use the Hooke’s law inside of each crystallite and thus explicitly accounting for the anisotropy of rocks and the stress-strain state at loading. Inelastic behavior is described in frameworks of two different models: von Mises yield criterion and modified Drucker-Prager yield criterion. The damage accumulation theory is also implemented in order to describe a failure process. Obtained effective characteristics of rocks are used then for modelling of rock mass evolution when mining is carried out both by an open-pit or underground opening.Keywords: damage accumulation, Drucker-Prager yield criterion, failure, mathematical modelling, three-point bending, uniaxial compression
Procedia PDF Downloads 175314 Data and Model-based Metamodels for Prediction of Performance of Extended Hollo-Bolt Connections
Authors: M. Cabrera, W. Tizani, J. Ninic, F. Wang
Abstract:
Open section beam to concrete-filled tubular column structures has been increasingly utilized in construction over the past few decades due to their enhanced structural performance, as well as economic and architectural advantages. However, the use of this configuration in construction is limited due to the difficulties in connecting the structural members as there is no access to the inner part of the tube to install standard bolts. Blind-bolted systems are a relatively new approach to overcome this limitation as they only require access to one side of the tubular section to tighten the bolt. The performance of these connections in concrete-filled steel tubular sections remains uncharacterized due to the complex interactions between concrete, bolt, and steel section. Over the last years, research in structural performance has moved to a more sophisticated and efficient approach consisting of machine learning algorithms to generate metamodels. This method reduces the need for developing complex, and computationally expensive finite element models, optimizing the search for desirable design variables. Metamodels generated by a data fusion approach use numerical and experimental results by combining multiple models to capture the dependency between the simulation design variables and connection performance, learning the relations between different design parameters and predicting a given output. Fully characterizing this connection will transform high-rise and multistorey construction by means of the introduction of design guidance for moment-resisting blind-bolted connections, which is currently unavailable. This paper presents a review of the steps taken to develop metamodels generated by means of artificial neural network algorithms which predict the connection stress and stiffness based on the design parameters when using Extended Hollo-Bolt blind bolts. It also provides consideration of the failure modes and mechanisms that contribute to the deformability as well as the feasibility of achieving blind-bolted rigid connections when using the blind fastener.Keywords: blind-bolted connections, concrete-filled tubular structures, finite element analysis, metamodeling
Procedia PDF Downloads 158