Search results for: green transportation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3426

Search results for: green transportation

306 Advancing Women's Participation in SIDS' Renewable Energy Sector: A Multicriteria Evaluation Framework

Authors: Carolina Mayen Huerta, Clara Ivanescu, Paloma Marcos

Abstract:

Due to their unique geographic challenges and the imperative to combat climate change, Small Island Developing States (SIDS) are experiencing rapid growth in the renewable energy (RE) sector. However, women's representation in formal employment within this burgeoning field remains significantly lower than their male counterparts. Conventional methodologies often overlook critical geographic data that influence women's job prospects. To address this gap, this paper introduces a Multicriteria Evaluation (MCE) framework designed to identify spatially enabling environments and restrictions affecting women's access to formal employment and business opportunities in the SIDS' RE sector. The proposed MCE framework comprises 24 key factors categorized into four dimensions: Individual, Contextual, Accessibility, and Place Characterization. "Individual factors" encompass personal attributes influencing women's career development, including caregiving responsibilities, exposure to domestic violence, and disparities in education. "Contextual factors" pertain to the legal and policy environment, influencing workplace gender discrimination, financial autonomy, and overall gender empowerment. "Accessibility factors" evaluate women's day-to-day mobility, considering travel patterns, access to public transport, educational facilities, RE job opportunities, healthcare facilities, and financial services. Finally, "Place Characterization factors" enclose attributes of geographical locations or environments. This dimension includes walkability, public transport availability, safety, electricity access, digital inclusion, fragility, conflict, violence, water and sanitation, and climatic factors in specific regions. The analytical framework proposed in this paper incorporates a spatial methodology to visualize regions within countries where conducive environments for women to access RE jobs exist. In areas where these environments are absent, the methodology serves as a decision-making tool to reinforce critical factors, such as transportation, education, and internet access, which currently hinder access to employment opportunities. This approach is designed to equip policymakers and institutions with data-driven insights, enabling them to make evidence-based decisions that consider the geographic dimensions of disparity. These insights, in turn, can help ensure the efficient allocation of resources to achieve gender equity objectives.

Keywords: gender, women, spatial analysis, renewable energy, access

Procedia PDF Downloads 45
305 A Multicriteria Evaluation Framework for Enhancing Women's Participation in SIDS Renewable Energy Sector

Authors: Carolina Mayen Huerta, Clara Ivanescu, Paloma Marcos

Abstract:

Due to their unique geographic challenges and the imperative to combat climate change, Small Island Developing States (SIDS) are experiencing rapid growth in the renewable energy (RE) sector. However, women's representation in formal employment within this burgeoning field remains significantly lower than their male counterparts. Conventional methodologies often overlook critical geographic data that influence women's job prospects. To address this gap, this paper introduces a Multicriteria Evaluation (MCE) framework designed to identify spatially enabling environments and restrictions affecting women's access to formal employment and business opportunities in the SIDS' RE sector. The proposed MCE framework comprises 24 key factors categorized into four dimensions: Individual, Contextual, Accessibility, and Place Characterization. "Individual factors" encompass personal attributes influencing women's career development, including caregiving responsibilities, exposure to domestic violence, and disparities in education. "Contextual factors" pertain to the legal and policy environment, influencing workplace gender discrimination, financial autonomy, and overall gender empowerment. "Accessibility factors" evaluate women's day-to-day mobility, considering travel patterns, access to public transport, educational facilities, RE job opportunities, healthcare facilities, and financial services. Finally, "Place Characterization factors" enclose attributes of geographical locations or environments. This dimension includes walkability, public transport availability, safety, electricity access, digital inclusion, fragility, conflict, violence, water and sanitation, and climatic factors in specific regions. The analytical framework proposed in this paper incorporates a spatial methodology to visualize regions within countries where conducive environments for women to access RE jobs exist. In areas where these environments are absent, the methodology serves as a decision-making tool to reinforce critical factors, such as transportation, education, and internet access, which currently hinder access to employment opportunities. This approach is designed to equip policymakers and institutions with data-driven insights, enabling them to make evidence-based decisions that consider the geographic dimensions of disparity. These insights, in turn, can help ensure the efficient allocation of resources to achieve gender equity objectives.

Keywords: gender, women, spatial analysis, renewable energy, access

Procedia PDF Downloads 62
304 Implementation of the Circular Economy Concept in Greenhouse Production Systems: Microalgae and Biostimulant Production Using Soilless Crops’ Drainage Nutrient Solution

Authors: Nikolaos Katsoulas, Sofia Faliagka, George Kountrias, Eleni Dimitriou, Eleftheria Pechlivani

Abstract:

The challenges to feed the world in 2050 are becoming more and more apparent. This calls for producing more with fewer inputs (most of them under scarcity), higher resource efficiency, minimum or zero effect on the environment, and higher sustainability. Therefore, increasing the circularity of production systems is highly significant for their sustainability. Protected horticulture offers opportunities for maximum resource efficiency across various levels within and between farms and at the regional level), high-quality production, and contributes significantly to the nutrition security as part of the world food production. In greenhouses, closed soilless cultivation systems give the opportunity to increase the water and nutrient use efficiency and reduce the environmental impact of the cultivation system by the reuse of the drained water and nutrients. However, due to the low quality of the water used in the Mediterranean countries, a completely closed system is not feasible. Partial discharge of the drainage nutrient solution when the levels of electrical conductivity (EC) or of the toxic ions in the system are reached is still a necessity. Thus, in the frame of the circular economy concept, this work presents the utilisation of the drainage solution of soilless cultivation systems for microalgae and biofertilisers production. The system includes a greenhouse equipped with a soilless cultivation system, a drainage solution collection tank, a closed bioreactor for microalgae production, and a biocatalysis tank. The bioreactor tested in the frame of this work includes two closed tube loops of a capacity of 1000 L each where, after the initial inoculation, the microalgae is developed using as a growth medium the drainage solution collected from the greenhouse crops. The bioreactor includes light and temperature control while pH is still manually regulated. As soon as the microalgae culture reaches a certain density level, 20% of the culture is harvested, and the culture system is refiled by a drainage nutrient solution. The microalgae produced goes through a biocatalysis process, which leads to the production of a rich aminoacids (and nitrogen) biofertiliser. The produced biofertiliser is then used for the fertilisation of greenhouse crops. The complete production cycle along with the effects of the biofertiliser produced on crop growth and yield are presented and discussed in this manuscript. Acknowledgment: This work was carried out under the PestNu project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Green Deal grant agreement No. 101037128 — PestNu.

Keywords: soilless, water use efficiency, nutrients use efficiency, biostimulant

Procedia PDF Downloads 57
303 Act Local, Think Global: Superior Institute of Engineering of Porto Campaign for a Sustainable Campus

Authors: R. F. Mesquita Brandão

Abstract:

Act Local, Think Global is the name of a campaign implemented at Superior Institute of Engineering of Porto (ISEP), one of schools of Polytechnic of Porto, with the main objective of increase the sustainability of the campus. ISEP has a campus with 52.000 m2 and more than 7.000 students. The campaign started in 2019 and the results are very clear. In 2019 only 16% of the waste created in the campus was correctly separate for recycling and now almost 50% of waste goes to the correct waste container. Actions to reduce the energy consumption were implemented with significantly results. One of the major problems in the campus are the water leaks. To solve this problem was implemented a methodology for water monitoring during the night, a period of time where consumptions are normally low. If water consumption in the period is higher than a determinate value it may mean a water leak and an alarm is created to the maintenance teams. In terms of energy savings, some measurements were implemented to create savings in energy consumption and in equivalent CO₂ produced. In order to reduce the use of plastics in the campus, was implemented the prohibition of selling 33 cl plastic water bottles and in collaboration with the students association all meals served in the restaurants changed the water plastic bottle for a glass that can be refilled with water in the water dispensers. This measures created a reduction of use of more than 75.000 plastic bottles per year. In parallel was implemented the ISEP water glass bottle to be used in all scientific meetings and events. Has a way of involving all community in sustainability issues was developed and implemented a vertical garden in aquaponic system. In 2019, the first vertical garden without soil was installed inside a large campus building. The system occupies the entire exterior façade (3 floors) of the entrance to ISEP's G building. On each of these floors there is a planter with 42 positions available for plants. Lettuces, strawberries, peppers are examples of some vegetable produced that can be collected by the entire community. Associated to the vertical garden was developed a monitoring system were some parameters of the system are monitored. This project is under development because it will work in a stand-alone energy feeding, with the use of photovoltaic panels for production of energy necessities. All the system was, and still is, developed by students and teachers and is used in class projects of some ISEP courses. These and others measures implemented in the campus, will be more developed in the full paper, as well as all the results obtained, allowed ISEP to be the first Portuguese high school to obtain the certification “Coração Verde” (Green Heart), awarded by LIPOR, a Portuguese company with the mission of transform waste into new resources through the implementation of innovative and circular practices, generating and sharing value.

Keywords: aquaponics, energy efficiency, recycling, sustainability, waste separation

Procedia PDF Downloads 79
302 The Role of High Schools in Saudi Arabia in Supporting Young Adults with Intellectual Disabilities with Their Transition to Post-secondary Education

Authors: Sohil I. Alqazlan

Abstract:

Introduction and Objectives: There is limited research focusing on young adults with intellectual disabilities (ID) and their experiences after finishing compulsory education, especially in the Middle Eastern/Arab countries. This paper aims to further understand the lives of young adults with ID in Riyadh [the capital city of Saudi Arabia], particularly as they go on to access Post-Secondary Education [PSE]. As part of this study, it is important to understand the roles of high schools in Riyadh in terms of preparing their students for post-school life. To achieve this, the researcher has asked Saudi Arabia’s Ministry of Education to provide student transition plans (TPs) for post-school opportunities. However, and unfortunately, high schools in Riyadh do not use transition plans for their students. Therefore, the researcher has requested individual education plans (IEPs) for students with ID in their final year at high school to find the type of support the students had regarding both their long- and short-term goals that might help them access PSE or the labour market. Methods: The researcher analysed 10 IEPs of students in their final year at high school. To achieve the aim of the study, the researcher compared these IEPs with expectations set out in the official IEP framework of the MoE in Saudi Arabia, such as collaboration on the IEP sample and the focus on adult life. By analysing the students’ IEPs in terms of various goals, this study attempts to highlight skills that might offer students more independence after finishing compulsory education and going on to PSE. Results: Unfortunately, communication between IEP team members proved persistently absent in the sample. This was clear from the fact that none of the team members, apart from the SEN teachers, had signed any of the IEPs. Thus, none of the daily or weekly goals outlined were sent to parents to review at home. As a result of this, there were no goals in the IEPs that clearly referred to PSE. However, some long-term goals were set which might help those with ID become more independent in their adult life. For example, in the IEPs, which dealt with computer skills, the student had goals related to using Microsoft Word. Finally, just one goal of these IEPs set an important independent skill for the young adults with ID: “the student will learn how to use public transportation”. Conclusions: From analysing the ten IEPs, it was clear that SEN teachers in Riyadh schools were working without any help from other professionals. The students with ID, as well as their families, were not consulted on their views on important goals. Therefore, more work needs to be done with the students regarding their transition to PSE, perhaps by building partnerships between high schools and potential PSE institutions. Finally, more PSE programmes and a higher level of employer awareness could help create a bridge for students transferring from high school to PSE. Schools could also focus their IEP goals towards specific PSE programmes the student might attend, which could increase their chances of success.

Keywords: high school, post-secondary education, PSE, students with intellectual disabilities

Procedia PDF Downloads 154
301 A Study on Unplanned Settlement in Kabul City

Authors: Samir Ranjbar, Nasrullah Istanekzai

Abstract:

According to a report published in The Guardian, Kabul, the capital city of Afghanistan is the fifth fastest growing city in the world, whose population has increased fourfold since 2001 from 1.2 million to 4.8 million people. The main reason for this increment is identified as the return of Afghans migrated during the civil war. In addition to the return of immigrants, a steep economic growth due to foreign assistance in last decade creating lots of job opportunities in Kabul resulted in the attraction of individuals from the neighboring provinces as well. However, the development of urban facilities such as water supply system, housing transportation and waste management systems has yet to catch up with this rapid increase in population. Since Kabul city has developed traditionally and municipal governance had very limited capacity to implement municipal bylaws. As an unwanted consequence of this growth 70% of Kabul citizens contributed to developing informal settlement for which we can say that around three million people living in informally settled areas, lacking the very vital social and physical infrastructures of livelihood. This research focuses on a region with 30 ha area and 2100 people residents in the center of Kabul city. A comprehensive land readjustment concept plan has been formulated for this area. Through this concept plan, physical and social infrastructure has been demonstrated and analyzed. Findings of this paper propose a solution for the problems of this unplanned area in Kabul which is readjusting of unplanned area by a self-supporting process. This process does not need governmental budget and can be applied by government, private sectors and landowner associations. Furthermore, by implementing the Land Readjustment process, conceptual plans can be built for unplanned areas, maximum facilities can be brought to the residents’ urban life, improve the environment for the users’ benefit, promote the culture and sense of cooperation, participation and coexistence in the mind of people, improving the transport system, improvement in economic status (the value of land increases due to infrastructure availability and land legalization). In addition to all these benefits for the public, we can raise the revenue of government by collecting the taxes from landowners. This process is implemented in most of countries of the world, it was implemented for the first time in Germany and after that in most cities of Japan as well, and is known as one of the effective processes for infrastructural development. To sum up, the notable characteristic of the Land readjustment process is that it works on the concept of mutual interest in which both landowners and the government take advantage. However, in this process, the engagement of community is very important and without public cooperation, this process can face the failure.

Keywords: land readjustment, informal settlement, Kabul, Afghanistan

Procedia PDF Downloads 234
300 The Importance of Urban Pattern and Planting Design in Urban Transformation Projects

Authors: Mustafa Var, Yasin Kültiğin Yaman, Elif Berna Var, Müberra Pulatkan

Abstract:

This study deals with real application of an urban transformation project in Trabzon, Turkey. It aims to highlight the significance of using native species in terms of planting design of transformation projects which will also promote sustainability of urban identity. Urban identity is a phenomenon shaped not only by physical, but also by natural, spatial, social, historical and cultural factors. Urban areas face with continuous change which can be whether positive or negative way. If it occurs in a negative way that may have some destructive effects on urban identity. To solve this problematic issue, urban renewal movements initally started after 1840s around the world especially in the cities with ports. This process later followed by the places where people suffered a lot from fires and has expanded to all over the world. In Turkey, those processes have been experienced mostly after 1980s as country experienced the worst effects of unplanned urbanization especially in 1950-1990 period. Also old squares, streets, meeting points, green areas, Ottoman bazaars have changed slowly. This change was resulted in alienation of inhabitants to their environments. As a solution, several actions were taken like Mass Housing Laws which was enacted in 1981 and 1984 or urban transformation projects. Although projects between 1990-2000 were tried to satisfy the expectations of local inhabitants by the help of several design solutions to promote cultural identity; unfortunately those modern projects has also been resulted in alienation of urban environments to the inhabitants. Those projects were initially done by TOKI (Housing Development Administration of Turkey) and later followed by the Ministry of Environment and Urbanization after 2011. Although they had significant potentials to create healthy urban environments, they could not use this opportunity in an effective way. The reason for their failure is that their architectural styles and planting designs are unrespectful to local identity and environments. Generally, it can be said that the most of the urban transformation projects implementing in Turkey nearly have no concerns about the locality. However, those projects can be used as a positive tool for enhanching the urban identity of cities by means of local planting material. For instance, Kyoto can be identified by Japanese Maple trees or Seattle can be specified by Dahlia. In the same way, in Turkey, Istanbul city can be identified by Judas and Stone Pine trees or Giresun city can be identified by Cherry trees. Thus, in this paper, the importance of conserving urban identity is discussed specificly with the help of using local planting elements. After revealing the mistakes that are made during urban transformation projects, the techniques and design criterias for preserving and promoting urban identity are examined. In the end, it is emphasized that every city should have their own original, local character and specific planting design which can be used for highlighting its identity as well as architectural elements.

Keywords: urban identity, urban transformation, planting design, landscape architecture

Procedia PDF Downloads 529
299 Isolation of Clitorin and Manghaslin from Carica papaya L. Leaves by CPC and Its Quantitative Analysis by QNMR

Authors: Norazlan Mohmad Misnan, Maizatul Hasyima Omar, Mohd Isa Wasiman

Abstract:

Papaya (Carica papaya L., Caricaceae) is a tree which mainly cultivated for its fruits in many tropical regions including Australia, Brazil, China, Hawaii, and Malaysia. Beside of fruits, its leaves, seeds, and latex have also been traditionally used for treating diseases, which also reported to possess anti-cancer and anti- malaria properties. Its leaves have been reported to consist of various chemical compounds such as alkaloids, flavonoids and phenolics. Clitorin and manghaslin are among major flavonoids presence. Thus, the aim of this study is to quantify the purity of these isolated compounds (clitorin and manghsalin) by using quantitative Nuclear Magnetic Resonance (qNMR) analysis. Only fresh C. papaya leaves were used for juice extraction procedure and subsequently was freeze-dried to obtain a dark green powdered form of the extract prior to Centrifugal Partition Chromatography (CPC) separation. The CPC experiments were performed using a two-phase solvent system comprising ethyl acetate/butanol/water (1:4:5, v/v/v/v) solvent. The upper organic phase was used as the stationary phase, and the lower aqueous phase was employed as the mobile phase. Ten fractions were obtained after an hour runtime analysis. Fraction 6 and fraction 8 has been identified as clitorin (m/z 739.21 [M-H]-) and manghaslin (m/z 755.21 [M-H]-), respectively, based on LCMS data and full analysis of NMR (1H NMR, 13C NMR, HMBC, and HSQC). The 1H-qNMR measurements were carried out using a 400 MHz NMR spectrometer (JEOL ECS 400MHz, Japan) and deuterated methanol was used as a solvent. Quantification was performed using the AQARI method (Accurate Quantitative NMR) with deuterated 1,4-Bis(trimethylsilyl)benzene (BTMSB) as an internal reference substances. This AQARI protocol includes not only NMR measurement but also sample preparation that provide highest precision and accuracy than other qNMR methods. The 90° pulse length and the T1 relaxation times for compounds and BTMSB were determined prior to the quantification to give the best signal-to-noise ratio. Regions containing the two downfield signals from aromatic part (6.00–6.89 ppm), and the singlet signal, (18H) arising from BTMSB (0.63-1.05ppm) were selected for integration. The purity of clitorin and manghaslin were calculated to be 52.22% and 43.36%, respectively. Further purification is needed in order to increase its purity. This finding has demonstrated the use of qNMR for quality control and standardization of various plant extracts and which can be applied for NMR fingerprinting of other plant-based products with good reproducibility and in the case where commercial standards is not readily available.

Keywords: Carica papaya, clitorin, manghaslin, quantitative Nuclear Magnetic Resonance, Centrifugal Partition Chromatography

Procedia PDF Downloads 475
298 An Investigation on MgAl₂O₄ Based Mould System in Investment Casting Titanium Alloy

Authors: Chen Yuan, Nick Green, Stuart Blackburn

Abstract:

The investment casting process offers a great freedom of design combined with the economic advantage of near net shape manufacturing. It is widely used for the production of high value precision cast parts in particularly in the aerospace sector. Various combinations of materials have been used to produce the ceramic moulds, but most investment foundries use a silica based binder system in conjunction with fused silica, zircon, and alumino-silicate refractories as both filler and coarse stucco materials. However, in the context of advancing alloy technologies, silica based systems are struggling to keep pace, especially when net-shape casting titanium alloys. Study has shown that the casting of titanium based alloys presents considerable problems, including the extensive interactions between the metal and refractory, and the majority of metal-mould interaction is due to reduction of silica, present as binder and filler phases, by titanium in the molten state. Cleaner, more refractory systems are being devised to accommodate these changes. Although yttria has excellent chemical inertness to titanium alloy, it is not very practical in a production environment combining high material cost, short slurry life, and poor sintering properties. There needs to be a cost effective solution to these issues. With limited options for using pure oxides, in this work, a silica-free magnesia spinel MgAl₂O₄ was used as a primary coat filler and alumina as a binder material to produce facecoat in the investment casting mould. A comparison system was also studied with a fraction of the rare earth oxide Y₂O₃ adding into the filler to increase the inertness. The stability of the MgAl₂O₄/Al₂O₃ and MgAl₂O₄/Y₂O₃/Al₂O₃ slurries was assessed by tests, including pH, viscosity, zeta-potential and plate weight measurement, and mould properties such as friability were also measured. The interaction between the face coat and titanium alloy was studied by both a flash re-melting technique and a centrifugal investment casting method. The interaction products between metal and mould were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). The depth of the oxygen hardened layer was evaluated by micro hardness measurement. Results reveal that introducing a fraction of Y₂O₃ into magnesia spinel can significantly increase the slurry life and reduce the thickness of hardened layer during centrifugal casting.

Keywords: titanium alloy, mould, MgAl₂O₄, Y₂O₃, interaction, investment casting

Procedia PDF Downloads 94
297 An Integrated Approach to Handle Sour Gas Transportation Problems and Pipeline Failures

Authors: Venkata Madhusudana Rao Kapavarapu

Abstract:

The Intermediate Slug Catcher (ISC) facility was built to process nominally 234 MSCFD of export gas from the booster station on a day-to-day basis and to receive liquid slugs up to 1600 m³ (10,000 BBLS) in volume when the incoming 24” gas pipelines are pigged following upsets or production of non-dew-pointed gas from gathering centers. The maximum slug sizes expected are 812 m³ (5100 BBLS) in winter and 542 m³ (3400 BBLS) in summer after operating for a month or more at 100 MMSCFD of wet gas, being 60 MMSCFD of treated gas from the booster station, combined with 40 MMSCFD of untreated gas from gathering center. The water content is approximately 60% but may be higher if the line is not pigged for an extended period, owing to the relative volatility of the condensate compared to water. In addition to its primary function as a slug catcher, the ISC facility will receive pigged liquids from the upstream and downstream segments of the 14” condensate pipeline, returned liquids from the AGRP, pigged through the 8” pipeline, and blown-down fluids from the 14” condensate pipeline prior to maintenance. These fluids will be received in the condensate flash vessel or the condensate separator, depending on the specific operation, for the separation of water and condensate and settlement of solids scraped from the pipelines. Condensate meeting the colour and 200 ppm water specifications will be dispatched to the AGRP through the 14” pipeline, while off-spec material will be returned to BS-171 via the existing 10” condensate pipeline. When they are not in operation, the existing 24” export gas pipeline and the 10” condensate pipeline will be maintained under export gas pressure, ready for operation. The gas manifold area contains the interconnecting piping and valves needed to align the slug catcher with either of the 24” export gas pipelines from the booster station and to direct the gas to the downstream segment of either of these pipelines. The manifold enables the slug catcher to be bypassed if it needs to be maintained or if through-pigging of the gas pipelines is to be performed. All gas, whether bypassing the slug catcher or returning to the gas pipelines from it, passes through black powder filters to reduce the level of particulates in the stream. These items are connected to the closed drain vessel to drain the liquid collected. Condensate from the booster station is transported to AGRP through 14” condensate pipeline. The existing 10” condensate pipeline will be used as a standby and for utility functions such as returning condensate from AGRP to the ISC or booster station or for transporting off-spec fluids from the ISC back to booster station. The manifold contains block valves that allow the two condensate export lines to be segmented at the ISC, thus facilitating bi-directional flow independently in the upstream and downstream segments, which ensures complete pipeline integrity and facility integrity. Pipeline failures will be attended to with the latest technologies by remote techno plug techniques, and repair activities will be carried out as needed. Pipeline integrity will be evaluated with ili pigging to estimate the pipeline conditions.

Keywords: integrity, oil & gas, innovation, new technology

Procedia PDF Downloads 57
296 Environmental Impact of Autoclaved Aerated Concrete in Modern Construction: A Case Study from the New Egyptian Administrative Capital

Authors: Esraa A. Khalil, Mohamed N. AbouZeid

Abstract:

Building materials selection is critical for the sustainability of any project. The choice of building materials has a huge impact on the built environment and cost of projects. Building materials emit huge amount of carbon dioxide (CO2) due to the use of cement as a basic component in the manufacturing process and as a binder, which harms our environment. Energy consumption from buildings has increased in the last few years; a huge amount of energy is being wasted from using unsustainable building and finishing materials, as well as from the process of heating and cooling of buildings. In addition, the construction sector in Egypt is taking a good portion of the economy; however, there is a lack of awareness of buildings environmental impacts on the built environment. Using advanced building materials and different wall systems can help in reducing heat consumption, the project’s initial and long-term costs, and minimizing the environmental impacts. Red Bricks is one of the materials that are being used widely in Egypt. There are many other types of bricks such as Autoclaved Aerated Concrete (AAC); however, the use of Red Bricks is dominating the construction industry due to its affordability and availability. This research focuses on the New Egyptian Administrative Capital as a case study to investigate the potential of the influence of using different wall systems such as AAC on the project’s cost and the environment. The aim of this research is to conduct a comparative analysis between the traditional and most commonly used bricks in Egypt, which is Red Bricks, and AAC wall systems. Through an economic and environmental study, the difference between the two wall systems will be justified to encourage the utilization of uncommon techniques in the construction industry to build more affordable, energy efficient and sustainable buildings. The significance of this research is to show the potential of using AAC in the construction industry and its positive influences. The study analyzes the factors associated with choosing suitable building materials for different projects according to the need and criteria of each project and its nature without harming the environment and wasting materials that could be saved or recycled. The New Egyptian Administrative Capital is considered as the country’s new heart, where ideas regarding energy savings and environmental benefits are taken into consideration. Meaning that, Egypt is taking good steps to move towards more sustainable construction. According to the analysis and site visits, there is a potential in reducing the initial costs of buildings by 12.1% and saving energy by using different techniques up to 25%. Interviews with the mega structures project engineers and managers reveal that they are more open to introducing sustainable building materials that will help in saving the environment and moving towards green construction as well as to studying more effective techniques for energy conservation.

Keywords: AAC blocks, building material, environmental impact, modern construction, new Egyptian administrative capital

Procedia PDF Downloads 107
295 An Audit to Look at the Management of Paediatric Peri Orbital Cellulitis in a District General Hospital, Emergency Department

Authors: Ruth Green, Samantha Milton, Rinal Desai

Abstract:

Background/Aims: Eye pain/swelling/redness is a common presentation to Barnet General Hospital (a district general hospital), pediatric emergency department, and is managed by both the pediatric and emergency teams. The management of each child differs dramatically depending on the healthcare professional who reviews them. There also appears to be confusion in diagnosis between periorbital cellulitis, pre-septal cellulitis, and orbital cellulitis. Pre septal cellulitis refers to an inflammation of the eyelids and soft tissue anterior to the orbital septum. In contrast, orbital cellulitis is a serious, rapidly progressive infection of soft tissues located posterior to the orbital septum. Pre-septal cellulitis is more prevalent and less serious than orbital cellulitis, although it may be part of a continuous spectrum if untreated. Pre-septal cellulitis should there be diagnosed and treated urgently to prevent spread to the septum. For the purpose of the audit, the term periorbital cellulitis has been used as an umbrella term for all spectrums of this infection. The audit aimed to look at, how as a whole, the department is diagnosing and managing orbital and pre-septal cellulitis. Gold Standard: Patients of the same age and diagnosis should be treated with the same medication, advice, and follow-up. Method: Data was collected retrospectively from pediatric patients ( < 18years) who attended the emergency department from June 2019 to February 2020 who had been coded as pre-septal cellulitis, periorbital cellulitis, orbital cellulitis, or eye pain/swelling/redness. Demographics, signs and symptoms, management, and follow-up were recorded for all patients with any of the diagnoses of pre-septal, periorbital, or orbital cellulitis. A Microsoft Excel spreadsheet was used to record the anonymised data. Results: There were vast discrepancies in the diagnosis, management, and follow-up of patients with periorbital cellulitis. Conclusion/Discussion: The audit concluded there is no uniform approach to managing periorbital cellulitis in Barnet General Hospital Paediatric Emergency Department. Healthcare professionals misdiagnosed conjunctivitis as periorbital cellulitis, and adequate steps did not appear to be documented on excluding red flag signs and symptoms of patients presenting. There was no consistency in follow-up, with some patients having timely phone reviews or clinical reviews for mild symptoms. Advice given by the staff was appropriate, and patients did return when symptoms got worse and were treated accordingly. Plan: Given the inconsistency, a gold standard care pathway or local easily accessible clinical guideline can be developed to help with the diagnosis and management of periorbital cellulitis. Along with this, a teaching session can be carried out for the staff of the pediatric team and emergency department to disseminate the teaching. Following the introduction of a guideline and teaching sessions, patients notes can be re-reviewed to check improvement in patient care.

Keywords: periorbital cellulitis, preseptal cellulitis, orbital cellulitis, erythematous eyelid

Procedia PDF Downloads 113
294 Combat Plastic Entering in Kanpur City, Uttar Pradesh, India Marine Environment

Authors: Arvind Kumar

Abstract:

The city of Kanpur is located in the terrestrial plain area on the bank of the river Ganges and is the second largest city in the state of Uttar Pradesh. The city generates approximately 1400-1600 tons per day of MSW. Kanpur has been known as a major point and non-points-based pollution hotspot for the river Ganges. The city has a major industrial hub, probably the largest in the state, catering to the manufacturing and recycling of plastic and other dry waste streams. There are 4 to 5 major drains flowing across the city, which receive a significant quantity of waste leakage, which subsequently adds to the Ganges flow and is carried to the Bay of Bengal. A river-to-sea flow approach has been established to account for leaked waste into urban drains, leading to the build-up of marine litter. Throughout its journey, the river accumulates plastic – macro, meso, and micro, from various sources and transports it towards the sea. The Ganges network forms the second-largest plastic-polluting catchment in the world, with over 0.12 million tonnes of plastic discharged into marine ecosystems per year and is among 14 continental rivers into which over a quarter of global waste is discarded 3.150 Kilo tons of plastic waste is generated in Kanpur, out of which 10%-13% of plastic is leaked into the local drains and water flow systems. With the Support of Kanpur Municipal Corporation, 1TPD capacity MRF for drain waste management was established at Krishna Nagar, Kanpur & A German startup- Plastic Fisher, was identified for providing a solution to capture the drain waste and achieve its recycling in a sustainable manner with a circular economy approach. The team at Plastic Fisher conducted joint surveys and identified locations on 3 drains at Kanpur using GIS maps developed during the survey. It suggested putting floating 'Boom Barriers' across the drains with a low-cost material, which reduced their cost to only 2000 INR per barrier. The project was built upon the self-sustaining financial model. The project includes activities where a cost-efficient model is developed and adopted for a socially self-inclusive model. The project has recommended the use of low-cost floating boom barriers for capturing waste from drains. This involves a one-time time cost and has no operational cost. Manpower is engaged in fishing and capturing immobilized waste, whose salaries are paid by the Plastic Fisher. The captured material is sun-dried and transported to the designated place, where the shed and power connection, which act as MRF, are provided by the city Municipal corporation. Material aggregation, baling, and transportation costs to end-users are borne by Plastic Fisher as well.

Keywords: Kanpur, marine environment, drain waste management, plastic fisher

Procedia PDF Downloads 47
293 Superlyophobic Surfaces for Increased Heat Transfer during Condensation of CO₂

Authors: Ingrid Snustad, Asmund Ervik, Anders Austegard, Amy Brunsvold, Jianying He, Zhiliang Zhang

Abstract:

CO₂ capture, transport and storage (CCS) is essential to mitigate global anthropogenic CO₂ emissions. To make CCS a widely implemented technology in, e.g. the power sector, the reduction of costs is crucial. For a large cost reduction, every part of the CCS chain must contribute. By increasing the heat transfer efficiency during liquefaction of CO₂, which is a necessary step, e.g. ship transportation, the costs associated with the process are reduced. Heat transfer rates during dropwise condensation are up to one order of magnitude higher than during filmwise condensation. Dropwise condensation usually occurs on a non-wetting surface (Superlyophobic surface). The vapour condenses in discrete droplets, and the non-wetting nature of the surface reduces the adhesion forces and results in shedding of condensed droplets. This, again, results in fresh nucleation sites for further droplet condensation, effectively increasing the liquefaction efficiency. In addition, the droplets in themselves have a smaller heat transfer resistance than a liquid film, resulting in increased heat transfer rates from vapour to solid. Surface tension is a crucial parameter for dropwise condensation, due to its impact on the solid-liquid contact angle. A low surface tension usually results in a low contact angle, and again to spreading of the condensed liquid on the surface. CO₂ has very low surface tension compared to water. However, at relevant temperatures and pressures for CO₂ condensation, the surface tension is comparable to organic compounds such as pentane, a dropwise condensation of CO₂ is a completely new field of research. Therefore, knowledge of several important parameters such as contact angle and drop size distribution must be gained in order to understand the nature of the condensation. A new setup has been built to measure these relevant parameters. The main parts of the experimental setup is a pressure chamber in which the condensation occurs, and a high- speed camera. The process of CO₂ condensation is visually monitored, and one can determine the contact angle, contact angle hysteresis and hence, the surface adhesion of the liquid. CO₂ condensation on different surfaces can be analysed, e.g. copper, aluminium and stainless steel. The experimental setup is built for accurate measurements of the temperature difference between the surface and the condensing vapour and accurate pressure measurements in the vapour. The temperature will be measured directly underneath the condensing surface. The next step of the project will be to fabricate nanostructured surfaces for inducing superlyophobicity. Roughness is a key feature to achieve contact angles above 150° (limit for superlyophobicity) and controlled, and periodical roughness on the nanoscale is beneficial. Surfaces that are non- wetting towards organic non-polar liquids are candidates surface structures for dropwise condensation of CO₂.

Keywords: CCS, dropwise condensation, low surface tension liquid, superlyophobic surfaces

Procedia PDF Downloads 266
292 Isosorbide Bis-Methyl Carbonate: Opportunities for an Industrial Model Based on Biomass

Authors: Olga Gomez De Miranda, Jose R. Ochoa-Gomez, Stefaan De Wildeman, Luciano Monsegue, Soraya Prieto, Leire Lorenzo, Cristina Dineiro

Abstract:

The chemical industry is facing a new revolution. As long as processes based on the exploitation of fossil resources emerged with force in the XIX century, Society currently demands a new radical change that will lead to the complete and irreversible implementation of a circular sustainable economic model. The implementation of biorefineries will be essential for this. There, renewable raw materials as sugars and other biomass resources are exploited for the development of new materials that will partially replace their petroleum-derived homologs in a safer, and environmentally more benign approach. Isosorbide, (1,4:3,6-dianhydro-d-glucidol) is a primary bio-based derivative obtained from the plant (poly) saccharides and a very interesting example of a useful chemical produced in biorefineries. It can, in turn, be converted to other secondary monomers as isosorbide bis-methyl carbonate (IBMC), whose main field of application can be as a key biodegradable intermediary substitute of bisphenol-A in the manufacture of polycarbonates, or as an alternative to the toxic isocyanates in the synthesis of new polyurethanes (non-isocyanate polyurethanes) both with a huge application market. New products will present advantageous mechanical or optical properties, as well as improved behavior in non-toxicity and biodegradability aspects in comparison to their petro-derived alternatives. A robust production process of IBMC, a biomass-derived chemical, is here presented. It can be used with different raw material qualities using dimethyl carbonate (DMC) as both co-reactant and solvent. It consists of the transesterification of isosorbide with DMC under soft operational conditions, using different basic catalysts, always active with the isosorbide characteristics and purity. Appropriate isolation processes have been also developed to obtain crude IBMC yields higher than 90%, with oligomers production lower than 10%, independently of the quality of the isosorbide considered. All of them are suitable to be used in polycondensation reactions for polymers obtaining. If higher qualities of IBMC are needed, a purification treatment based on nanofiltration membranes has been also developed. The IBMC reaction-isolation conditions established in the laboratory have been successfully modeled using appropriate software programs and moved to a pilot-scale (production of 100 kg of IBMC). It has been demonstrated that a highly efficient IBMC production process able to be up-scaled under suitable market conditions has been obtained. Operational conditions involved the production of IBMC involve soft temperature and energy needs, no additional solvents, and high operational efficiency. All of them are according to green manufacturing rules.

Keywords: biomass, catalyst, isosorbide bis-methyl carbonate, polycarbonate, polyurethane, transesterification

Procedia PDF Downloads 116
291 Fatigue Truck Modification Factor for Design Truck (CL-625)

Authors: Mohamad Najari, Gilbert Grondin, Marwan El-Rich

Abstract:

Design trucks in standard codes are selected based on the amount of damage they cause on structures-specifically bridges- and roads to represent the real traffic loads. Some limited numbers of trucks are run on a bridge one at a time and the damage on the bridge is recorded for each truck. One design track is also run on the same bridge “n” times -“n” is the number of trucks used previously- to calculate the damage of the design truck on the same bridge. To make these damages equal a reduction factor is needed for that specific design truck in the codes. As the limited number of trucks cannot be the exact representative of real traffic through the life of the structure, these reduction factors are not accurately calculated and they should be modified accordingly. Started on July 2004, the vehicle load data were collected in six weigh in motion (WIM) sites owned by Alberta Transportation for eight consecutive years. This database includes more than 200 million trucks. Having these data gives the opportunity to compare the effect of any standard fatigue trucks weigh and the real traffic load on the fatigue life of the bridges which leads to a modification for the fatigue truck factor in the code. To calculate the damage for each truck, the truck is run on the bridge, moment history of the detail under study is recorded, stress range cycles are counted, and then damage is calculated using available S-N curves. A 2000 lines FORTRAN code has been developed to perform the analysis and calculate the damages of the trucks in the database for all eight fatigue categories according to Canadian Institute of Steel Construction (CSA S-16). Stress cycles are counted using rain flow counting method. The modification factors for design truck (CL-625) are calculated for two different bridge configurations and ten span lengths varying from 1 m to 200 m. The two considered bridge configurations are single-span bridge and four span bridge. This was found to be sufficient and representative for a simply supported span, positive moment in end spans of bridges with two or more spans, positive moment in interior spans of three or more spans, and the negative moment at an interior support of multi-span bridges. The moment history of the mid span is recorded for single-span bridge and, exterior positive moment, interior positive moment, and support negative moment are recorded for four span bridge. The influence lines are expressed by a polynomial expression obtained from a regression analysis of the influence lines obtained from SAP2000. It is found that for design truck (CL-625) fatigue truck factor is varying from 0.35 to 0.55 depending on span lengths and bridge configuration. The detail results will be presented in the upcoming papers. This code can be used for any design trucks available in standard codes.

Keywords: bridge, fatigue, fatigue design truck, rain flow analysis, FORTRAN

Procedia PDF Downloads 511
290 Developing a Roadmap by Integrating of Environmental Indicators with the Nitrogen Footprint in an Agriculture Region, Hualien, Taiwan

Authors: Ming-Chien Su, Yi-Zih Chen, Nien-Hsin Kao, Hideaki Shibata

Abstract:

The major component of the atmosphere is nitrogen, yet atmospheric nitrogen has limited availability for biological use. Human activities have produced different types of nitrogen related compounds such as nitrogen oxides from combustion, nitrogen fertilizers from farming, and the nitrogen compounds from waste and wastewater, all of which have impacted the environment. Many studies have indicated the N-footprint is dominated by food, followed by housing, transportation, and goods and services sectors. To solve the impact issues from agricultural land, nitrogen cycle research is one of the key solutions. The study site is located in Hualien County, Taiwan, a major rice and food production area of Taiwan. Importantly, environmentally friendly farming has been promoted for years, and an environmental indicator system has been established by previous authors based on the concept of resilience capacity index (RCI) and environmental performance index (EPI). Nitrogen management is required for food production, as excess N causes environmental pollution. Therefore it is very important to develop a roadmap of the nitrogen footprint, and to integrate it with environmental indicators. The key focus of the study thus addresses (1) understanding the environmental impact caused by the nitrogen cycle of food products and (2) uncovering the trend of the N-footprint of agricultural products in Hualien, Taiwan. The N-footprint model was applied, which included both crops and energy consumption in the area. All data were adapted from government statistics databases and crosschecked for consistency before modeling. The actions involved with agricultural production were evaluated and analyzed for nitrogen loss to the environment, as well as measuring the impacts to humans and the environment. The results showed that rice makes up the largest share of agricultural production by weight, at 80%. The dominant meat production is pork (52%) and poultry (40%); fish and seafood were at similar levels to pork production. The average per capita food consumption in Taiwan is 2643.38 kcal capita−1 d−1, primarily from rice (430.58 kcal), meats (184.93 kcal) and wheat (ca. 356.44 kcal). The average protein uptake is 87.34 g capita−1 d−1, and 51% is mainly from meat, milk, and eggs. The preliminary results showed that the nitrogen footprint of food production is 34 kg N per capita per year, congruent with the results of Shibata et al. (2014) for Japan. These results provide a better understanding of the nitrogen demand and loss in the environment, and the roadmap can furthermore support the establishment of nitrogen policy and strategy. Additionally, the results serve to develop a roadmap of the nitrogen cycle of an environmentally friendly farming area, thus illuminating the nitrogen demand and loss of such areas.

Keywords: agriculture productions, energy consumption, environmental indicator, nitrogen footprint

Procedia PDF Downloads 288
289 A Sustainable Pt/BaCe₁₋ₓ₋ᵧZrₓGdᵧO₃ Catalyst for Dry Reforming of Methane-Derived from Recycled Primary Pt

Authors: Alessio Varotto, Lorenzo Freschi, Umberto Pasqual Laverdura, Anastasia Moschovi, Davide Pumiglia, Iakovos Yakoumis, Marta Feroci, Maria Luisa Grilli

Abstract:

Dry reforming of Methane (DRM) is considered one of the most valuable technologies for green-house gas valorization thanks to the fact that through this reaction, it is possible to obtain syngas, a mixture of H₂ and CO in an H₂/CO ratio suitable for utilization in the Fischer-Tropsch process of high value-added chemicals and fuels. Challenges of the DRM process are the reduction of costs due to the high temperature of the process and the high cost of precious metals of the catalyst, the metal particles sintering, and carbon deposition on the catalysts’ surface. The aim of this study is to demonstrate the feasibility of the synthesis of catalysts using a leachate solution containing Pt coming directly from the recovery of spent diesel oxidation catalysts (DOCs) without further purification. An unusual perovskite support for DRM, the BaCe₁₋ₓ₋ᵧZrₓGdᵧO₃ (BCZG) perovskite, has been chosen as the catalyst support because of its high thermal stability and capability to produce oxygen vacancies, which suppress the carbon deposition and enhance the catalytic activity of the catalyst. BCZG perovskite has been synthesized by a sol-gel modified Pechini process and calcinated in air at 1100 °C. BCZG supports have been impregnated with a Pt-containing leachate solution of DOC, obtained by a mild hydrometallurgical recovery process, as reported elsewhere by some of the authors of this manuscript. For comparison reasons, a synthetic solution obtained by digesting commercial Pt-black powder in aqua regia was used for BCZG support impregnation. Pt nominal content was 2% in both BCZG-based catalysts formed by real and synthetic solutions. The structure and morphology of catalysts were characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Thermogravimetric Analysis (TGA) was used to study the thermal stability of the catalyst’s samples. Brunauer-Emmett-Teller (BET) analysis provided a high surface area of the catalysts. H₂-TPR (Temperature Programmed Reduction) analysis was used to study the consumption of hydrogen for reducibility, and it was associated with H₂-TPD characterization to study the dispersion of Pt on the surface of the support and calculate the number of active sites used by the precious metal. Dry reforming of methane (DRM) reaction, carried out in a fixed bed reactor, showed a high conversion efficiency of CO₂ and CH4. At 850°C, CO₂ and CH₄ conversion were close to 100% for the catalyst obtained with the aqua regia-based solution of commercial Pt-black, and ~70% (for CH₄) and ~80 % (for CO₂) in the case of real HCl-based leachate solution. H₂/CO ratios were ~0.9 and ~0.70 in the first and latter cases, respectively. As far as we know, this is the first pioneering work in which a BCGZ catalyst and a real Pt-containing leachate solution were successfully employed for DRM reaction.

Keywords: dry reforming of methane, perovskite, PGM, recycled Pt, syngas

Procedia PDF Downloads 11
288 Agricultural Education and Research in India: Challenges and Way Forward

Authors: Kiran Kumar Gellaboina, Padmaja Kaja

Abstract:

Agricultural Education and Research in India needs a transformation to serve the needs of the farmers and that of the nation. The fact that Agriculture and allied activities act as main source of livelihood for more than 70% population of rural India reinforces its importance in administrative and policy arena. As per Census 2011 of India it provides employment to approximately 56.6 % of labour. India has achieved significant growth in agriculture, milk, fish, oilseeds and fruits and vegetables owing to green, white, blue and yellow revolutions which have brought prosperity to farmers. Many factors are responsible for these achievement viz conducive government policies, receptivity of the farmers and also establishment of higher agricultural education institutions. The new breed of skilled human resources were instrumental in generating new technologies, and in its assessment, refinement and finally its dissemination to the farming community through extension methods. In order to sustain, diversify and realize the potential of agriculture sectors, it is necessary to develop skilled human resources. Agricultural human resource development is a continuous process undertaken by agricultural universities. The Department of Agricultural Research and Education (DARE) coordinates and promotes agricultural research & education in India. In India, agricultural universities were established on ‘land grant’ pattern of USA which helped incorporation of a number of diverse subjects in the courses as also provision of hands-on practical exposure to the student. The State Agricultural Universities (SAUs) established through the legislative acts of the respective states and with major financial support from them leading to administrative and policy controls. It has been observed that pace and quality of technology generation and human resource development in many of the SAUs has gone down. The reason for this slackening are inadequate state funding, reduced faculty strength, inadequate faculty development programmes, lack of modern infrastructure for education and research etc. Establishment of new state agricultural universities and new faculties/colleges without providing necessary financial and faculty support has aggrieved the problem. The present work highlights some of the key issues affecting agricultural education and research in India and the impact it would have on farm productivity and sustainability. Secondary data pertaining to budgetary spend on agricultural education and research will be analyzed. This paper will study the trends in public spending on agricultural education and research and the per capita income of farmers in India. This paper tries to suggest that agricultural education and research has a key role in equipping the human resources for enhanced agricultural productivity and sustainable use of natural resources. Further, a total re-orientation of agricultural education with emphasis on other agricultural related social sciences is needed for effective agricultural policy research.

Keywords: agriculture, challenges, education, research

Procedia PDF Downloads 211
287 Accounting for Downtime Effects in Resilience-Based Highway Network Restoration Scheduling

Authors: Zhenyu Zhang, Hsi-Hsien Wei

Abstract:

Highway networks play a vital role in post-disaster recovery for disaster-damaged areas. Damaged bridges in such networks can disrupt the recovery activities by impeding the transportation of people, cargo, and reconstruction resources. Therefore, rapid restoration of damaged bridges is of paramount importance to long-term disaster recovery. In the post-disaster recovery phase, the key to restoration scheduling for a highway network is prioritization of bridge-repair tasks. Resilience is widely used as a measure of the ability to recover with which a network can return to its pre-disaster level of functionality. In practice, highways will be temporarily blocked during the downtime of bridge restoration, leading to the decrease of highway-network functionality. The failure to take downtime effects into account can lead to overestimation of network resilience. Additionally, post-disaster recovery of highway networks is generally divided into emergency bridge repair (EBR) in the response phase and long-term bridge repair (LBR) in the recovery phase, and both of EBR and LBR are different in terms of restoration objectives, restoration duration, budget, etc. Distinguish these two phases are important to precisely quantify highway network resilience and generate suitable restoration schedules for highway networks in the recovery phase. To address the above issues, this study proposes a novel resilience quantification method for the optimization of long-term bridge repair schedules (LBRS) taking into account the impact of EBR activities and restoration downtime on a highway network’s functionality. A time-dependent integer program with recursive functions is formulated for optimally scheduling LBR activities. Moreover, since uncertainty always exists in the LBRS problem, this paper extends the optimization model from the deterministic case to the stochastic case. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. The proposed methods are tested using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that, in this case, neglecting the bridge restoration downtime can lead to approximately 15% overestimation of highway network resilience. Moreover, accounting for the impact of EBR on network functionality can help to generate a more specific and reasonable LBRS. The theoretical and practical values are as follows. First, the proposed network recovery curve contributes to comprehensive quantification of highway network resilience by accounting for the impact of both restoration downtime and EBR activities on the recovery curves. Moreover, this study can improve the highway network resilience from the organizational dimension by providing bridge managers with optimal LBR strategies.

Keywords: disaster management, highway network, long-term bridge repair schedule, resilience, restoration downtime

Procedia PDF Downloads 131
286 Influence of Synergistic Modification with Tung Oil and Heat Treatment on Physicochemical Properties of Wood

Authors: Luxi He, Tianfang Zhang, Zhengbin He, Songlin Yi

Abstract:

Heat treatment has been widely recognized for its effectiveness in enhancing the physicochemical properties of wood, including hygroscopicity and dimensional stability. Nonetheless, the non-negligible volumetric shrinkage and loss of mechanical strength resulting from heat treatment may diminish the wood recovery and its product value. In this study, tung oil was used to alleviate heat-induced shrinkage and reduction in mechanical properties of wood during heat treatment. Tung oil was chosen as a modifier because it is a traditional Chinese plant oil that has been widely used for over a thousand years to protect wooden furniture and buildings due to its biodegradable and non-toxic properties. The effects of different heating media (air, tung oil) and their effective treatment parameters (temperature, duration) on the changes in the physical properties (morphological characteristics, pore structures, micromechanical properties), and chemical properties (chemical structures, chemical composition) of wood were investigated by using scanning electron microscopy, confocal laser scanning microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and dynamic vapor sorption. Meanwhile, the correlation between the mass changes and the color change, volumetric shrinkage, and hygroscopicity was also investigated. The results showed that the thermal degradation of wood cell wall components was the most important factor contributing to the changes in heat-induced shrinkage, color, and moisture adsorption of wood. In air-heat-treated wood samples, there was a significant correlation between mass change and heat-induced shrinkage, brightness, and moisture adsorption. However, the presence of impregnated tung oil in oil-heat-treated wood appears to disrupt these correlations among physical properties. The results of micromechanical properties demonstrated a significant decrease in elastic modulus following high-temperature heat treatment, which was mitigated by tung oil treatment. Chemical structure and compositional analyses indicated that the changes in chemical structure primarily stem from the degradation of hemicellulose and cellulose, and the presence of tung oil created an oxygen-insulating environment that slowed down this degradation process. Morphological observation results showed that tung oil permeated the wood structure and penetrated the cell walls through transportation channels, altering the micro-morphology of the cell wall surface, obstructing primary water passages (e.g., vessels and pits), and impeding the release of volatile degradation products as well as the infiltration and diffusion of water. In summary, tung oil treatment represents an environmentally friendly and efficient method for maximizing wood recovery and increasing product value. This approach holds significant potential for industrial applications in wood heat treatment.

Keywords: tung oil, heat treatment, physicochemical properties, wood cell walls

Procedia PDF Downloads 55
285 Enhanced Anti-Inflammatory and Antioxidant Activities of Perna canaliculus Oil Extract and Low Molecular Weight Fucoidan from Undaria pinnatifida

Authors: Belgheis Ebrahimi, Jun Lu

Abstract:

In recent years, there has been a growing recognition of the potential of marine-based functional foods and combination therapies in promoting a healthy lifestyle and exploring their effectiveness in preventing or treating diseases. The combination of marine bioactive compounds or extracts offers synergistic or enhancement effects through various mechanisms, including multi-target actions, improved bioavailability, enhanced bioactivity, and mitigation of potential adverse effects. Both the green-lipped mussel (GLM) and fucoidan derived from brown seaweed are rich in bioactivities. These two, mussel and fucoidan, have not been previously formulated together. This study aims to combine GLM oil from Perna canaliculus with low molecular weight fucoidan (LMWF) extracted from Undaria pinnatifida to investigate the unique mixture’s anti-inflammatory and antioxidant properties. The cytotoxicity of individual compounds and combinations was assessed using the MTT assay in (THP-1 and RAW264.7) cell lines. The anti-inflammatory activity of mussel-fucoidan was evaluated by treating LPS-stimulated human monocyte and macrophage (THP1-1) cells. Subsequently, the inflammatory cytokines released into the supernatant of these cell lines were quantified via ELISA. Antioxidant activity was determined by using the free radical scavenging assay (DPPH). DPPH assay demonstrated that the radical scavenging activity of the combinations, particularly at concentrations exceeding 1 mg/ml, showed a significantly higher percentage of inhibition when compared to the individual component. This suggests an enhancement effect when the two compounds are combined, leading to increased antioxidant activity. In terms of immunomodulatory activity, the individual compounds exhibited distinct behaviors. GLM oil displayed a higher ability to suppress the cytokine TNF- compared to LMWF. Interestingly, the LMWF fraction, when used individually, did not demonstrate TNF- suppression. However, when combined with GLM, the TNF- suppression (anti-inflammatory) activity of the combination was better than GLM or LWMF alone. This observation underscores the potential for enhancement interactions between the two components in terms of anti-inflammatory properties. This study revealed that each individual compound, LMWF, and GLM, possesses unique and notable bioactivity. The combination of these two individual compounds results in an enhancement effect, where the bioactivity of each is enhanced, creating a superior combination. This suggests that the combination of LMWF and GLM has the potential to offer a more potent and multifaceted therapeutic effect, particularly in the context of antioxidant and anti-inflammatory activities. These findings hold promise for the development of novel therapeutic interventions or supplements that harness the enhancement effects.

Keywords: combination, enhancement effect, perna canaliculus, undaria pinnatifida

Procedia PDF Downloads 63
284 Analysis Rescuers' Viewpoint about Victims Tracking in Earthquake by Using Radio Frequency Identification (RFID)

Authors: Sima Ajami, Batool Akbari

Abstract:

Background: Radio frequency identification (RFID) system has been successfully applied to the areas of manufacturing, supply chain, agriculture, transportation, healthcare, and services. The RFID is already used to track and trace the victims in a disaster situation. Data can be collected in real time and be immediately available to emergency personnel and saves time by the RFID. Objectives: The aim of this study was, first, to identify stakeholders and customers for rescuing earthquake victims, second, to list key internal and external factors to use RFID to track earthquake victims, finally, to assess SWOT for rescuers' viewpoint. Materials and Methods: This study was an applied and analytical study. The study population included scholars, experts, planners, policy makers and rescuers in the "red crescent society of Isfahan province", "disaster management Isfahan province", "maintenance and operation department of Isfahan", "fire and safety services organization of Isfahan municipality", and "medical emergencies and disaster management center of Isfahan". After that, researchers held a workshop to teach participants about RFID and its usages in tracking earthquake victims. In the meanwhile of the workshop, participants identified, listed, and weighed key internal factors (strengths and weaknesses; SW) and external factors (opportunities and threats; OT) to use RFID in tracking earthquake victims. Therefore, participants put weigh strengths, weaknesses, opportunities, and threats (SWOT) and their weighted scales were calculated. Then, participants' opinions about this issue were assessed. Finally, according to the SWOT matrix, strategies to solve the weaknesses, problems, challenges, and threats through opportunities and strengths were proposed by participants. Results: The SWOT analysis showed that the total weighted score for internal and external factors were 3.91 (Internal Factor Evaluation) and 3.31 (External Factor Evaluation) respectively. Therefore, it was in a quadrant SO strategies cell in the SWOT analysis matrix and aggressive strategies were resulted. Organizations, scholars, experts, planners, policy makers and rescue workers should plan to use RFID technology in order to save more victims and manage their life. Conclusions: Researchers suppose to apply SO strategies and use a firm’s internal strength to take advantage of external opportunities. It is suggested, policy maker should plan to use the most developed technologies to save earthquake victims and deliver the easiest service to them. To do this, education, informing, and encouraging rescuers to use these technologies is essential. Originality/ Value: This study was a research paper that showed how RFID can be useful to track victims in earthquake.

Keywords: frequency identification system, strength, weakness, earthquake, victim

Procedia PDF Downloads 309
283 The Use of Geographic Information System Technologies for Geotechnical Monitoring of Pipeline Systems

Authors: A. G. Akhundov

Abstract:

Issues of obtaining unbiased data on the status of pipeline systems of oil- and oil product transportation become especially important when laying and operating pipelines under severe nature and climatic conditions. The essential attention is paid here to researching exogenous processes and their impact on linear facilities of the pipeline system. Reliable operation of pipelines under severe nature and climatic conditions, timely planning and implementation of compensating measures are only possible if operation conditions of pipeline systems are regularly monitored, and changes of permafrost soil and hydrological operation conditions are accounted for. One of the main reasons for emergency situations to appear is the geodynamic factor. Emergency situations are proved by the experience to occur within areas characterized by certain conditions of the environment and to develop according to similar scenarios depending on active processes. The analysis of natural and technical systems of main pipelines at different stages of monitoring gives a possibility of making a forecast of the change dynamics. The integration of GIS technologies, traditional means of geotechnical monitoring (in-line inspection, geodetic methods, field observations), and remote methods (aero-visual inspection, aero photo shooting, air and ground laser scanning) provides the most efficient solution of the problem. The united environment of geo information system (GIS) is a comfortable way to implement the monitoring system on the main pipelines since it provides means to describe a complex natural and technical system and every element thereof with any set of parameters. Such GIS enables a comfortable simulation of main pipelines (both in 2D and 3D), the analysis of situations and selection of recommendations to prevent negative natural or man-made processes and to mitigate their consequences. The specifics of such systems include: a multi-dimensions simulation of facilities in the pipeline system, math modelling of the processes to be observed, and the use of efficient numeric algorithms and software packets for forecasting and analyzing. We see one of the most interesting possibilities of using the monitoring results as generating of up-to-date 3D models of a facility and the surrounding area on the basis of aero laser scanning, data of aerophotoshooting, and data of in-line inspection and instrument measurements. The resulting 3D model shall be the basis of the information system providing means to store and process data of geotechnical observations with references to the facilities of the main pipeline; to plan compensating measures, and to control their implementation. The use of GISs for geotechnical monitoring of pipeline systems is aimed at improving the reliability of their operation, reducing the probability of negative events (accidents and disasters), and at mitigation of consequences thereof if they still are to occur.

Keywords: databases, 3D GIS, geotechnical monitoring, pipelines, laser scaning

Procedia PDF Downloads 176
282 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach

Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal

Abstract:

Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.

Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol

Procedia PDF Downloads 93
281 Analysis of Resistance and Virulence Genes of Gram-Positive Bacteria Detected in Calf Colostrums

Authors: C. Miranda, S. Cunha, R. Soares, M. Maia, G. Igrejas, F. Silva, P. Poeta

Abstract:

The worldwide inappropriate use of antibiotics has increased the emergence of antimicrobial-resistant microorganisms isolated from animals, humans, food, and the environment. To combat this complex and multifaceted problem is essential to know the prevalence in livestock animals and possible ways of transmission among animals and between these and humans. Enterococci species, in particular E. faecalis and E. faecium, are the most common nosocomial bacteria, causing infections in animals and humans. Thus, the aim of this study was to characterize resistance and virulence factors genes among two enterococci species isolated from calf colostrums in Portuguese dairy farms. The 55 enterococci isolates (44 E. faecalis and 11 E. faecium) were tested for the presence of the resistance genes for the following antibiotics: erythromicyn (ermA, ermB, and ermC), tetracycline (tetL, tetM, tetK, and tetO), quinupristin/dalfopristin (vatD and vatE) and vancomycin (vanB). Of which, 25 isolates (15 E. faecalis and 10 E. faecium) were tested until now for 8 virulence factors genes (esp, ace, gelE, agg, cpd, cylA, cylB, and cylLL). The resistance and virulence genes were performed by PCR, using specific primers and conditions. Negative and positive controls were used in all PCR assays. All enterococci isolates showed resistance to erythromicyn and tetracycline through the presence of the genes: ermB (n=29, 53%), ermC (n=10, 18%), tetL (n=49, 89%), tetM (n=39, 71%) and tetK (n=33, 60%). Only two (4%) E. faecalis isolates showed the presence of tetO gene. No resistance genes for vancomycin were found. The virulence genes detected in both species were cpd (n=17, 68%), agg (n=16, 64%), ace (n=15, 60%), esp (n=13, 52%), gelE (n=13, 52%) and cylLL (n=8, 32%). In general, each isolate showed at least three virulence genes. In three E. faecalis isolates was not found virulence genes and only E. faecalis isolates showed virulence genes for cylA (n=4, 16%) and cylB (n=6, 24%). In conclusion, these colostrum samples that were consumed by calves demonstrated the presence of antibiotic-resistant enterococci harbored virulence genes. This genotypic characterization is crucial to control the antibiotic-resistant bacteria through the implementation of restricts measures safeguarding public health. Acknowledgements: This work was funded by the R&D Project CAREBIO2 (Comparative assessment of antimicrobial resistance in environmental biofilms through proteomics - towards innovative theragnostic biomarkers), with reference NORTE-01-0145-FEDER-030101 and PTDC/SAU-INF/30101/2017, financed by the European Regional Development Fund (ERDF) through the Northern Regional Operational Program (NORTE 2020) and the Foundation for Science and Technology (FCT). This work was supported by the Associate Laboratory for Green Chemistry - LAQV which is financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020).

Keywords: antimicrobial resistance, calf, colostrums, enterococci

Procedia PDF Downloads 179
280 Stochastic Nuisance Flood Risk for Coastal Areas

Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong

Abstract:

The U.S. Federal Emergency Management Agency (FEMA) developed flood maps based on experts’ experience and estimates of the probability of flooding. Current flood-risk models evaluate flood risk with regional and subjective measures without impact from torrential rain and nuisance flooding at the neighborhood level. Nuisance flooding occurs in small areas in the community, where a few streets or blocks are routinely impacted. This type of flooding event occurs when torrential rainstorm combined with high tide and sea level rise temporarily exceeds a given threshold. In South Florida, this threshold is 1.7 ft above Mean Higher High Water (MHHW). The National Weather Service defines torrential rain as rain deposition at a rate greater than 0.3-inches per hour or three inches in a single day. Data from the Florida Climate Center, 1970 to 2020, shows 371 events with more than 3-inches of rain in a day in 612 months. The purpose of this research is to develop a data-driven method to determine comprehensive analytical damage-avoidance criteria that account for nuisance flood events at the single-family home level. The method developed uses the Failure Mode and Effect Analysis (FMEA) method from the American Society of Quality (ASQ) to estimate the Damage Avoidance (DA) preparation for a 1-day 100-year storm. The Consequence of Nuisance Flooding (CoNF) is estimated from community mitigation efforts to prevent nuisance flooding damage. The Probability of Nuisance Flooding (PoNF) is derived from the frequency and duration of torrential rainfall causing delays and community disruptions to daily transportation, human illnesses, and property damage. Urbanization and population changes are related to the U.S. Census Bureau's annual population estimates. Data collected by the United States Department of Agriculture (USDA) Natural Resources Conservation Service’s National Resources Inventory (NRI) and locally by the South Florida Water Management District (SFWMD) track the development and land use/land cover changes with time. The intent is to include temporal trends in population density growth and the impact on land development. Results from this investigation provide the risk of nuisance flooding as a function of CoNF and PoNF for coastal areas of South Florida. The data-based criterion provides awareness to local municipalities on their flood-risk assessment and gives insight into flood management actions and watershed development.

Keywords: flood risk, nuisance flooding, urban flooding, FMEA

Procedia PDF Downloads 77
279 Investigation of Xanthomonas euvesicatoria on Seed Germination and Seed to Seedling Transmission in Tomato

Authors: H. Mayton, X. Yan, A. G. Taylor

Abstract:

Infested tomato seeds were used to investigate the influence of Xanthomonas euvesicatoria on germination and seed to seedling transmission in a controlled environment and greenhouse assays in an effort to develop effective seed treatments and characterize seed borne transmission of bacterial leaf spot of tomato. Bacterial leaf spot of tomato, caused by four distinct Xanthomonas species, X. euvesicatoria, X. gardneri, X. perforans, and X. vesicatoria, is a serious disease worldwide. In the United States, disease prevention is expensive for commercial growers in warm, humid regions of the country, and crop losses can be devastating. In this study, four different infested tomato seed lots were extracted from tomato fruits infected with bacterial leaf spot from a field in New York State in 2017 that had been inoculated with X. euvesicatoria. In addition, vacuum infiltration at 61 kilopascals for 1, 5, 10, and 15 minutes and seed soaking for 5, 10, 15, and 30 minutes with different bacterial concentrations were used to artificially infest seed in the laboratory. For controlled environment assays, infested tomato seeds from the field and laboratory were placed othe n moistened blue blotter in square plastic boxes (10 cm x 10 cm) and incubated at 20/30 ˚C with an 8/16 hour light cycle, respectively. Infested tomato seeds from the field and laboratory were also planted in small plastic trays in soil (peat-lite medium) and placed in the greenhouse with 24/18 ˚C day and night temperatures, respectively, with a 14-hour photoperiod. Seed germination was assessed after eight days in the laboratory and 14 days in the greenhouse. Polymerase chain reaction (PCR) using the hrpB7 primers (RST65 [5’- GTCGTCGTTACGGCAAGGTGGTG-3’] and RST69 [5’-TCGCCCAGCGTCATCAGGCCATC-3’]) was performed to confirm presence or absence of the bacterial pathogen in seed lots collected from the field and in germinating seedlings in all experiments. For infested seed lots from the field, germination was lowest (84%) in the seed lot with the highest level of bacterial infestation (55%) and ranged from 84-98%. No adverse effect on germination was observed from artificially infested seeds for any bacterial concentration and method of infiltration when compared to a non-infested control. Germination in laboratory assays for artificially infested seeds ranged from 82-100%. In controlled environment assays, 2.5 % were PCR positive for the pathogen, and in the greenhouse assays, no infected seedlings were detected. From these experiments, X. euvesicatoria does not appear to adversely influence germination. The lowest rate of germination from field collected seed may be due to contamination with multiple pathogens and saprophytic organisms as no effect of artificial bacterial seed infestation in the laboratory on germination was observed. No evidence of systemic movement from seed to seedling was observed in the greenhouse assays; however, in the controlled environment assays, some seedlings were PCR positive. Additional experiments are underway with green fluorescent protein-expressing isolates to further characterize seed to seedling transmission of the bacterial leaf spot pathogen in tomato.

Keywords: bacterial leaf spot, seed germination, tomato, Xanthomonas euvesicatoria

Procedia PDF Downloads 119
278 Sequential Pulsed Electric Field and Ultrasound Assisted Extraction of Bioactive Enriched Fractions from Button Mushroom Stalks

Authors: Bibha Kumari, Nigel P. Brunton, Dilip K. Rai, Brijesh K. Tiwari

Abstract:

Edible mushrooms possess numerous functional components like homo- and hetero- β-glucans [β(1→3), β(1→4) and β(1→6) glucosidic linkages], chitins, ergosterols, bioactive polysaccharides and peptides imparting health beneficial properties to mushrooms. Some of the proven biological activities of mushroom extracts are antioxidant, antimicrobial, immunomodulatory, cholesterol lowering activity by inhibiting a key cholesterol metabolism enzyme i.e. 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGCR), angiotensin I-converting enzyme (ACE) inhibition. Application of novel extraction technologies like pulsed electric field (PEF) and high power ultrasound offers clean, green, faster and efficient extraction alternatives with enhanced and good quality extracts. Sequential PEF followed by ultrasound assisted extraction (UAE) were applied to recover bioactive enriched fractions from industrial white button mushroom (Agaricus bisporus) stalk waste using environmentally friendly and GRAS solvents i.e. water and water/ethanol combinations. The PEF treatment was carried out at 60% output voltage, 2 Hz frequency for 500 pulses of 20 microseconds pulse width, using KCl salt solution of 0.6 mS/cm conductivity by the placing 35g of chopped fresh mushroom stalks and 25g of salt solution in the 4x4x4cm3 treatment chamber. Sequential UAE was carried out on the PEF pre-treated samples using ultrasonic-water-bath (USB) of three frequencies (25 KHz, 35 KHz and 45 KHz) for various treatment times (15-120 min) at 80°C. Individual treatment using either PEF or UAE were also investigation to compare the effect of each treatment along with the combined effect on the recovery and bioactivity of the crude extracts. The freeze dried mushroom stalk powder was characterised for proximate compositional parameters (dry weight basis) showing 64.11% total carbohydrate, 19.12% total protein, 7.21% total fat, 31.2% total dietary fiber, 7.9% chitin (as glucosamine equivalent) and 1.02% β-glucan content. The total phenolic contents (TPC) were determined by the Folin-Ciocalteu procedure and expressed as gallic-acid-equivalents (GAE). The antioxidant properties were ascertained using DPPH and FRAP assays and expressed as trolox-equivalents (TE). HMGCR activity and molecular mass of β-glucans will be measured using the commercial HMG-CoA Reductase Assay kit (Sigma-Aldrich) and size exclusion chromatography (HPLC-SEC), respectively. Effects of PEF, UAE and their combination on the antioxidant capacity, HMGCR inhibition and β-glucans content will be presented.

Keywords: β-glucan, mushroom stalks, pulsed electric field (PEF), ultrasound assisted extraction (UAE)

Procedia PDF Downloads 274
277 Freshwater Pinch Analysis for Optimal Design of the Photovoltaic Powered-Pumping System

Authors: Iman Janghorban Esfahani

Abstract:

Due to the increased use of irrigation in agriculture, the importance and need for highly reliable water pumping systems have significantly increased. The pumping of the groundwater is essential to provide water for both drip and furrow irrigation to increase the agricultural yield, especially in arid regions that suffer from scarcities of surface water. The most common irrigation pumping systems (IPS) consume conventional energies through the use of electric motors and generators or connecting to the electricity grid. Due to the shortage and transportation difficulties of fossil fuels, and unreliable access to the electricity grid, especially in the rural areas, and the adverse environmental impacts of fossil fuel usage, such as greenhouse gas (GHG) emissions, the need for renewable energy sources such as photovoltaic systems (PVS) as an alternative way of powering irrigation pumping systems is urgent. Integration of the photovoltaic systems with irrigation pumping systems as the Photovoltaic Powered-Irrigation Pumping System (PVP-IPS) can avoid fossil fuel dependency and the subsequent greenhouse gas emissions, as well as ultimately lower energy costs and improve efficiency, which made PVP-IPS systems as an environmentally and economically efficient solution for agriculture irrigation in every region. The greatest problem faced by integration of PVP with IPS systems is matching the intermittence of the energy supply with the dynamic water demand. The best solution to overcome the intermittence is to incorporate a storage system into the PVP-IPS to provide water-on-demand as a highly reliable stand-alone irrigation pumping system. The water storage tank (WST) is the most common storage device for PVP-IPS systems. In the integrated PVP-IPS with a water storage tank (PVP-IPS-WST), a water storage tank stores the water pumped by the IPS in excess of the water demand and then delivers it when demands are high. The Freshwater pinch analysis (FWaPA) as an alternative to mathematical modeling was used by other researchers for retrofitting the off-grid battery less photovoltaic-powered reverse osmosis system. However, the Freshwater pinch analysis has not been used to integrate the photovoltaic systems with irrigation pumping system with water storage tanks. In this study, FWaPA graphical and numerical tools were used for retrofitting an existing PVP-IPS system located in Salahadin, Republic of Iraq. The plant includes a 5 kW submersible water pump and 7.5 kW solar PV system. The Freshwater Composite Curve as the graphical tool and Freashwater Storage Cascade Table as the numerical tool were constructed to determine the minimum required outsourced water during operation, optimal amount of delivered electricity to the water pump, and optimal size of the water storage tank for one-year operation data. The results of implementing the FWaPA on the case study show that the PVP-IPS system with a WST as the reliable system can reduce outsourced water by 95.41% compare to the PVP-IPS system without storage tank.

Keywords: irrigation, photovoltaic, pinch analysis, pumping, solar energy

Procedia PDF Downloads 125