Search results for: geospatial data
22268 An Evaluation of the Implementation of Training and Development in a South African Municipality
Authors: Granny K. Lobega, Ntsako Idrs Makamu
Abstract:
The envisaged paper was to evaluate the implementation of training and development in a South African Municipality. The paper adopted a qualitative research approach. Primary data were collected from 20 participants which were sampled from the municipality, and data were collected by using semi-structured interviews. The main objective of the study was to assess the reason for the implementation of training and development program by the municipality. The study revealed that workers are helped to focus, and priority is placed on empowering employees, productivity is increased and contributing to better team morale. The study recommended that the municipality must establish proper procedures to be followed when selecting qualifying employees to attend the training and further use the training audit to establish the necessary training to be offered to qualifying employees.Keywords: training, development, municipality, evaluation, human resource management
Procedia PDF Downloads 15022267 Gender Differences in Wrist Kinematics and the Impact of Club Choice on Collegiate Golfers
Authors: Ka Hin Kevin Lee, Jacob Lindh, Yue Qing LI
Abstract:
The biomechanics of golf swing performance are increasingly being investigated to better understand the relationship between gender and equipment choices. Gender-based variations in swing mechanics, particularly wrist kinematics, are thought to have a substantial influence on performance. While current studies show gender differences in wrist motions and the impact of club selection, there is little study on amateur collegiate golfers. This demography provides a unique perspective, spanning professional and leisure activity and providing significant biomechanical aspects. This study looks into gender differences in wrist kinematics during golf swings, specifically angular velocities (yaw, pitch, and roll) and the impact of club choice. Ten undergraduate golfers (five male and five female) took part in the study, each doing five swings with a 7-iron and a driver. Participants used their own clubs to guarantee familiarity and minimize variation. Xsens MTw Awinda wireless motion sensors were mounted on their forearms and wrists, gathering high-resolution motion data at 100 Hz. A thorough calibration procedure was used to synchronise sensor data with individual stances. The trial replicated real-world playing settings, with players told to take full-power swings. Data were processed and analysed in MATLAB, with angular velocity profiles extracted for each swing.Keywords: biomechanics, sports, performance, gender, wrist, kinematics
Procedia PDF Downloads 2122266 Problems of ICT Adoption in Nigerian Small and Medium Scale Enterprises
Authors: Ajayi Adeola
Abstract:
The study examined the sources of revenue in Osun State. It determined the impact of revenue consultants on the internally generated revenue of Osun State Government, all with a view to surveying the expenditure pattern of the state. In the course of carrying out the study, data were collected primarily through interview method. Four principal officers in the financial sector were interviewed. However, secondary sources of data were collected from Osun State of Nigeria audited reports and financial statements for the year ended 31st December, 1997 to 2006. The data generated were analyzed using percentages and pie-chart for illustrations. The findings of the study revealed that the sources of revenue for Osun State Government included internally generated revenue (IGR), statutory allocation, value added tax (VAT) and capital projects. It also discovered that Statutory Allocation was the dominant sources of government revenue during the period of study. It accounted for 63.69% while IGR was 19.7%, value added tax (VAT) 8.07% and capital Receipts 8.48%. The study also discovered that the recurrent expenditure overshot the capital expenditure during the period of study on ratio 7:3 respectively while the state recorded surplus budget in seven times and deficit budgets in 2003 and 2004. The study concluded that the Osun State government was over dependent on external sources to finance recurrent and capital expenditure during the period of study.Keywords: information communication technology, ICT adoption, ICT solution, small and medium scale enterprises
Procedia PDF Downloads 41222265 The Relationship between Spiritual Well-Being and the Quality of Life among Older Adults Who Live in Aged Institutions
Authors: Li-Fen Wu
Abstract:
Spiritual well-being is one aspect of quality of life that can significantly improve the quality of life of individuals. However, the reports of older adults’ spiritual well-being that live in aged institutions were few. This study aims to identify the relationship between spiritual well-being and quality of life among older adults residing in aged institutions in Taiwan. The correlative study design is used. Data collected by basic personal information, Spiritual Index of Well-being Scale and EuroQol-5D-3L. Case managers help participants complete the questionnaires. This study uses descriptive statistics and correlation test analysis data. The study finds the positive correlation between spiritual well-being and quality of life. According to the correlation between spiritual well-being and quality-of-life score, awareness of the importance of spiritual well-being in caring for these people is recommended.Keywords: older adult, spiritual well-being, quality of life, aged institution
Procedia PDF Downloads 26522264 The Regulation of Reputational Information in the Sharing Economy
Authors: Emre Bayamlıoğlu
Abstract:
This paper aims to provide an account of the legal and the regulative aspects of the algorithmic reputation systems with a special emphasis on the sharing economy (i.e., Uber, Airbnb, Lyft) business model. The first section starts with an analysis of the legal and commercial nature of the tripartite relationship among the parties, namely, the host platform, individual sharers/service providers and the consumers/users. The section further examines to what extent an algorithmic system of reputational information could serve as an alternative to legal regulation. Shortcomings are explained and analyzed with specific examples from Airbnb Platform which is a pioneering success in the sharing economy. The following section focuses on the issue of governance and control of the reputational information. The section first analyzes the legal consequences of algorithmic filtering systems to detect undesired comments and how a delicate balance could be struck between the competing interests such as freedom of speech, privacy and the integrity of the commercial reputation. The third section deals with the problem of manipulation by users. Indeed many sharing economy businesses employ certain techniques of data mining and natural language processing to verify consistency of the feedback. Software agents referred as "bots" are employed by the users to "produce" fake reputation values. Such automated techniques are deceptive with significant negative effects for undermining the trust upon which the reputational system is built. The third section is devoted to explore the concerns with regard to data mobility, data ownership, and the privacy. Reputational information provided by the consumers in the form of textual comment may be regarded as a writing which is eligible to copyright protection. Algorithmic reputational systems also contain personal data pertaining both the individual entrepreneurs and the consumers. The final section starts with an overview of the notion of reputation as a communitarian and collective form of referential trust and further provides an evaluation of the above legal arguments from the perspective of public interest in the integrity of reputational information. The paper concludes with certain guidelines and design principles for algorithmic reputation systems, to address the above raised legal implications.Keywords: sharing economy, design principles of algorithmic regulation, reputational systems, personal data protection, privacy
Procedia PDF Downloads 46922263 Algorithm and Software Based on Multilayer Perceptron Neural Networks for Estimating Channel Use in the Spectral Decision Stage in Cognitive Radio Networks
Authors: Danilo López, Johana Hernández, Edwin Rivas
Abstract:
The use of the Multilayer Perceptron Neural Networks (MLPNN) technique is presented to estimate the future state of use of a licensed channel by primary users (PUs); this will be useful at the spectral decision stage in cognitive radio networks (CRN) to determine approximately in which time instants of future may secondary users (SUs) opportunistically use the spectral bandwidth to send data through the primary wireless network. To validate the results, sequences of occupancy data of channel were generated by simulation. The results show that the prediction percentage is greater than 60% in some of the tests carried out.Keywords: cognitive radio, neural network, prediction, primary user
Procedia PDF Downloads 37522262 Review of Concepts and Tools Applied to Assess Risks Associated with Food Imports
Authors: A. Falenski, A. Kaesbohrer, M. Filter
Abstract:
Introduction: Risk assessments can be performed in various ways and in different degrees of complexity. In order to assess risks associated with imported foods additional information needs to be taken into account compared to a risk assessment on regional products. The present review is an overview on currently available best practise approaches and data sources used for food import risk assessments (IRAs). Methods: A literature review has been performed. PubMed was searched for articles about food IRAs published in the years 2004 to 2014 (English and German texts only, search string “(English [la] OR German [la]) (2004:2014 [dp]) import [ti] risk”). Titles and abstracts were screened for import risks in the context of IRAs. The finally selected publications were analysed according to a predefined questionnaire extracting the following information: risk assessment guidelines followed, modelling methods used, data and software applied, existence of an analysis of uncertainty and variability. IRAs cited in these publications were also included in the analysis. Results: The PubMed search resulted in 49 publications, 17 of which contained information about import risks and risk assessments. Within these 19 cross references were identified to be of interest for the present study. These included original articles, reviews and guidelines. At least one of the guidelines of the World Organisation for Animal Health (OIE) and the Codex Alimentarius Commission were referenced in any of the IRAs, either for import of animals or for imports concerning foods, respectively. Interestingly, also a combination of both was used to assess the risk associated with the import of live animals serving as the source of food. Methods ranged from full quantitative IRAs using probabilistic models and dose-response models to qualitative IRA in which decision trees or severity tables were set up using parameter estimations based on expert opinions. Calculations were done using @Risk, R or Excel. Most heterogeneous was the type of data used, ranging from general information on imported goods (food, live animals) to pathogen prevalence in the country of origin. These data were either publicly available in databases or lists (e.g., OIE WAHID and Handystatus II, FAOSTAT, Eurostat, TRACES), accessible on a national level (e.g., herd information) or only open to a small group of people (flight passenger import data at national airport customs office). In the IRAs, an uncertainty analysis has been mentioned in some cases, but calculations have been performed only in a few cases. Conclusion: The current state-of-the-art in the assessment of risks of imported foods is characterized by a great heterogeneity in relation to general methodology and data used. Often information is gathered on a case-by-case basis and reformatted by hand in order to perform the IRA. This analysis therefore illustrates the need for a flexible, modular framework supporting the connection of existing data sources with data analysis and modelling tools. Such an infrastructure could pave the way to IRA workflows applicable ad-hoc, e.g. in case of a crisis situation.Keywords: import risk assessment, review, tools, food import
Procedia PDF Downloads 30522261 Estimation and Comparison of Delay at Signalized Intersections Based on Existing Methods
Authors: Arpita Saha, Satish Chandra, Indrajit Ghosh
Abstract:
Delay implicates the time loss of a traveler while crossing an intersection. Efficiency of traffic operation at signalized intersections is assessed in terms of delay caused to an individual vehicle. Highway Capacity Manual (HCM) method and Webster’s method are the most widely used in India for delay estimation purpose. However, in India, traffic is highly heterogeneous in nature with extremely poor lane discipline. Therefore, to explore best delay estimation technique for Indian condition, a comparison was made. In this study, seven signalized intersections from three different cities where chosen. Data was collected for both during morning and evening peak hours. Only under saturated cycles were considered for this study. Delay was estimated based on the field data. With the help of Simpson’s 1/3 rd rule, delay of under saturated cycles was estimated by measuring the area under the curve of queue length and cycle time. Moreover, the field observed delay was compared with the delay estimated using HCM, Webster, Probabilistic, Taylor’s expansion and Regression methods. The drawbacks of the existing delay estimation methods to be use in Indian heterogeneous traffic conditions were figured out, and best method was proposed. It was observed that direct estimation of delay using field measured data is more accurate than existing conventional and modified methods.Keywords: delay estimation technique, field delay, heterogeneous traffic, signalised intersection
Procedia PDF Downloads 30622260 Influence of European Funds on the Sector of Bovine Milk and Meat in Romania in the Period 2007-2013
Authors: Andrei-Marius Sandu
Abstract:
This study aims to analyze the bovine meat and milk sector for the period 2007-2013. For the period analyzed, it is known that Romania has benefited from EU funding through the National Rural Development Programme 2007-2013. In this programme, there were measures that addressed exclusively the animal husbandry sector in Romania. This paper presents data on bovine production of meat, milk and livestock in Romania, but also data on the price and impact the European Funds implementation had on them.Keywords: European funds, measures, national rural development programme, price
Procedia PDF Downloads 42622259 Innovate, Educate, and Transform, Tailoring Sustainable Waste Handling Solutions for Nepal’s Small Populated Municipalities: Insights From Chandragiri Municipality
Authors: Anil Kumar Baral
Abstract:
The research introduces a ground-breaking approach to waste management, emphasizing innovation, education, and transformation. Using Chandragiri Municipality as a case study, the study advocates a shift from traditional to progressive waste management strategies, contributing an inventive waste framework, sustainability advocacy, and a transformative blueprint. The waste composition analysis highlights Chandragiri's representative profile, leading to a comprehensive plan addressing challenges and recommending a transition to a profitable waste treatment model, supported by relevant statistics. The data-driven approach incorporates the official data of waste Composition from Chandragiri Municipality as secondary data and incorporates the primary data from Chandragiri households, ensuring a nuanced perspective. Discussions on implementation, viability, and environmental preservation underscore the dual benefit of sustainability. The study includes a comparative analysis, monitoring, and evaluation framework, examining international relevance and collaboration, and conducting a social and environmental impact assessment. The results indicate the necessity for creative changes in Chandragiri's waste practices, recommending separate treatment centers in wards level rather than Municipal level, composting machines, and a centralized waste treatment plant. Educational reforms involve revising school curricula and awareness campaigns. The transformation's success hinges on reducing waste size, efficient treatment center operation, and ongoing public literacy. The conclusion summarizes key findings, envisioning a future with sustainable waste management practices deeply embedded in the community fabric.Keywords: innovate, educate, transform, municipality, method
Procedia PDF Downloads 4922258 Parent’s Perspective about the Impact of Digital Storytelling on a Child’s Moral Development in the Early Years
Authors: Hina Abdul Majeed
Abstract:
The story has a powerful impact on the human mind of all age groups. There are various ways to tell stories; one of the forms is digital storytelling. Digital storytelling is getting popular nowadays; it mainly catalyzes a child's holistic development in the early years. Thus, this study's primary purpose is to explore parents' perception of the impact of digital storytelling on developing children's moral values and the change that occurs in child's moral behavior and attitude using the digital storytelling tool. Literature was reviewed by exploring the recent studies on digital stories and their impact on child's development. This study was based on a mixed-method approach, considering qualitative and quantitative research designs. The population for this study included parents of early years children who resided in Karachi. However, parents of two to six years old children were targeted as samples by selecting using a purposive sample method. Thus, 100 parents were chosen for the quantitative survey, and five parents were interviewed to collect qualitative data. Questionnaires were developed for collecting data from parents through surveys and interviews. The SPSS was used to analyze the quantitative data, and the parents' responses collected during discussions were presented in narrative form. The findings show that the impact of digital storytelling, in most parents' opinion, is positive in inculcating moral values in their children. Moreover, parents also endorse the changes in child's behavior and attitude due to digital stories.Keywords: digital storytelling, moral development, early years, parents
Procedia PDF Downloads 8122257 Energy Efficient Clustering with Reliable and Load-Balanced Multipath Routing for Wireless Sensor Networks
Authors: Alamgir Naushad, Ghulam Abbas, Shehzad Ali Shah, Ziaul Haq Abbas
Abstract:
Unlike conventional networks, it is particularly challenging to manage resources efficiently in Wireless Sensor Networks (WSNs) due to their inherent characteristics, such as dynamic network topology and limited bandwidth and battery power. To ensure energy efficiency, this paper presents a routing protocol for WSNs, namely, Enhanced Hybrid Multipath Routing (EHMR), which employs hierarchical clustering and proposes a next hop selection mechanism between nodes according to a maximum residual energy metric together with a minimum hop count. Load-balancing of data traffic over multiple paths is achieved for a better packet delivery ratio and low latency rate. Reliability is ensured in terms of higher data rate and lower end-to-end delay. EHMR also enhances the fast-failure recovery mechanism to recover a failed path. Simulation results demonstrate that EHMR achieves a higher packet delivery ratio, reduced energy consumption per-packet delivery, lower end-to-end latency, and reduced effect of data rate on packet delivery ratio when compared with eminent WSN routing protocols.Keywords: energy efficiency, load-balancing, hierarchical clustering, multipath routing, wireless sensor networks
Procedia PDF Downloads 9222256 Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction
Authors: Yang Zhou, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao
Abstract:
Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods.Keywords: traffic prediction, spatial-temporal, recurrent neural network, dual data scheme
Procedia PDF Downloads 11922255 Practicing Inclusion for Hard of Hearing and Deaf Students in Regular Schools in Ethiopia
Authors: Mesfin Abebe Molla
Abstract:
This research aims to examine the practices of inclusion of the hard of hearing and deaf students in regular schools. It also focuses on exploring strategies for optimal benefits of students with Hard of Hearing and Deaf (HH-D) from inclusion. Concurrent mixed methods research design was used to collect quantitative and qualitative data. The instruments used to gather data for this study were questionnaire, semi- structured interview, and observations. A total of 102 HH-D students and 42 primary and High School teachers were selected using simple random sampling technique and used as participants to collect quantitative data. Non-probability sampling technique was also employed to select 14 participants (4-school principals, 6-teachers and 4-parents of HH-D students) and they were interviewed to collect qualitative data. Descriptive and inferential statistical techniques (independent sample t-test, one way ANOVA and Multiple regressions) were employed to analyze quantitative data. Qualitative data were also analyzed qualitatively by theme analysis. The findings reported that there were individual principals’, teachers’ and parents’ strong commitment and efforts for practicing inclusion of HH-D students effectively; however, most of the core values of inclusion were missing in both schools. Most of the teachers (78.6 %) and HH-D students (75.5%) had negative attitude and considerable reservations about the feasibility of inclusion of HH-D students in both schools. Furthermore, there was a statistically significant difference of attitude toward to inclusion between the two school’s teachers and the teachers’ who had taken and had not taken additional training on IE and sign language. The study also indicated that there was a statistically significant difference of attitude toward to inclusion between hard of hearing and deaf students. However, the overall contribution of the demographic variables of teachers and HH-D students on their attitude toward inclusion is not statistically significant. The finding also showed that HH-D students did not have access to modified curriculum which would maximize their abilities and help them to learn together with their hearing peers. In addition, there is no clear and adequate direction for the medium of instruction. Poor school organization and management, lack of commitment, financial resources, collaboration and teachers’ inadequate training on Inclusive Education (IE) and sign language, large class size, inappropriate assessment procedure, lack of trained deaf adult personnel who can serve as role model for HH-D students and lack of parents and community members’ involvement were some of the major factors that affect the practicing inclusion of students HH-D. Finally, recommendations are made to improve the practices of inclusion of HH-D students and to make inclusion of HH-D students an integrated part of Ethiopian education based on the findings of the study.Keywords: deaf, hard of hearing, inclusion, regular schools
Procedia PDF Downloads 34822254 Telemedicine App Powered by AI
Authors: Cotran Mabeya
Abstract:
This focuses on an artificially intelligent telemedicine application that aims to enrich the access to health care services, especially for those who live in remote and underserved areas. This app is highly packed with very advanced AI technologies—symptom checkers and virtual consultations—as well as health data integration for very efficient and user-friendly remote health support with main features: AI-based diagnostics, real-time health monitoring through wearables, and an intuitive interface. The Telemedicine Application tries too hard to address some of the healthcare problems, such as limited access in remote areas, high costs, lengthy wait times for certain services, as well as difficulty in getting second opinions. By making it friendlier for consultation remotely, the application removes geographic and financial barriers to accessing affordable and timely medical care. In addition, by having centralized patient records and communication between healthcare providers, it allows continuity of care by making it easier to transition to treatment. It has been confirmed that this multi-design approach incorporated both quantitative and qualitative designs to evaluate the socio-economic impacts of artificial intelligence and telemedicine on patients in Nairobi County. Adults made up the target population, while informers and respondents were categorized into patients, healthcare providers, and specialists in law, IT, and AI. Stratified and simple random sampling techniques were used to ensure diversely inclusive representation to enhance accuracy and triangulation in the data collected. Moreover, the study provides several recommendations, which include regular updating accuracy of AI symptom checkers, improving data security through encryption and multi-factor authentication, as well as real-time health data integration from bodily wearables for personal healthcareKeywords: artificial intelligence, virtual consultations, user-friendly, remote areas
Procedia PDF Downloads 1222253 Analysis and Identification of Different Factors Affecting Students’ Performance Using a Correlation-Based Network Approach
Authors: Jeff Chak-Fu Wong, Tony Chun Yin Yip
Abstract:
The transition from secondary school to university seems exciting for many first-year students but can be more challenging than expected. Enabling instructors to know students’ learning habits and styles enhances their understanding of the students’ learning backgrounds, allows teachers to provide better support for their students, and has therefore high potential to improve teaching quality and learning, especially in any mathematics-related courses. The aim of this research is to collect students’ data using online surveys, to analyze students’ factors using learning analytics and educational data mining and to discover the characteristics of the students at risk of falling behind in their studies based on students’ previous academic backgrounds and collected data. In this paper, we use correlation-based distance methods and mutual information for measuring student factor relationships. We then develop a factor network using the Minimum Spanning Tree method and consider further study for analyzing the topological properties of these networks using social network analysis tools. Under the framework of mutual information, two graph-based feature filtering methods, i.e., unsupervised and supervised infinite feature selection algorithms, are used to analyze the results for students’ data to rank and select the appropriate subsets of features and yield effective results in identifying the factors affecting students at risk of failing. This discovered knowledge may help students as well as instructors enhance educational quality by finding out possible under-performers at the beginning of the first semester and applying more special attention to them in order to help in their learning process and improve their learning outcomes.Keywords: students' academic performance, correlation-based distance method, social network analysis, feature selection, graph-based feature filtering method
Procedia PDF Downloads 13622252 Good Environmental Governance Realization among the Three King Mongkut's Institutes of Technology in Bangkok, Thailand
Authors: Pastraporn Thipayasothorn, Vipawan Tadapratheep, Jintana Nokyoo
Abstract:
A physical realization of good environmental governance about an environmental principle, educational psychology and architecture in the three King Mongkut's Institutes of Technology, is generated for researching physical environmental factors which related to the good environmental governance, communication between the good environmental governance and a physical environmental, and a physical environmental design policy. Moreover, we collected data by a survey, observation and questionnaire that participants are students of the three King Mongkut's Institutes of Technology, and analyzed a relationship between a building utilization and the good environmental governance awareness. We found that, from the data analysis, a balance and creativity participation which played as the project users and communities of the good governance environmental promotion in the institutes helps the good governance and environmental development in the future.Keywords: built environment, good governance, environmental governance, physical environmental
Procedia PDF Downloads 44222251 Using Computer Vision to Detect and Localize Fractures in Wrist X-ray Images
Authors: John Paul Q. Tomas, Mark Wilson L. de los Reyes, Kirsten Joyce P. Vasquez
Abstract:
The most frequent type of fracture is a wrist fracture, which often makes it difficult for medical professionals to find and locate. In this study, fractures in wrist x-ray pictures were located and identified using deep learning and computer vision. The researchers used image filtering, masking, morphological operations, and data augmentation for the image preprocessing and trained the RetinaNet and Faster R-CNN models with ResNet50 backbones and Adam optimizers separately for each image filtering technique and projection. The RetinaNet model with Anisotropic Diffusion Smoothing filter trained with 50 epochs has obtained the greatest accuracy of 99.14%, precision of 100%, sensitivity/recall of 98.41%, specificity of 100%, and an IoU score of 56.44% for the Posteroanterior projection utilizing augmented data. For the Lateral projection using augmented data, the RetinaNet model with an Anisotropic Diffusion filter trained with 50 epochs has produced the highest accuracy of 98.40%, precision of 98.36%, sensitivity/recall of 98.36%, specificity of 98.43%, and an IoU score of 58.69%. When comparing the test results of the different individual projections, models, and image filtering techniques, the Anisotropic Diffusion filter trained with 50 epochs has produced the best classification and regression scores for both projections.Keywords: Artificial Intelligence, Computer Vision, Wrist Fracture, Deep Learning
Procedia PDF Downloads 8222250 Information Communication Technologies and Renewable Technologies' Impact on Irish People's Lifestyle: A Constructivist Grounded Theory Study
Authors: Hamilton V. Niculescu
Abstract:
This paper discusses findings relating to people's engagement with mobile communication technologies and remote automated systems. This interdisciplinary study employs a constructivist grounded theory methodology, with qualitative data that was generated following in-depth semi-structured interviews with 18 people living in Ireland being corroborated with participants' observations and quantitative data. Additional data was collected following participants' remote interaction with six custom-built automated enclosures, located at six different sites around Dublin, Republic of Ireland. This paper argues that ownership and education play a vital role in people engaging with and adoption of new technologies. Analysis of participants' behavior and attitude towards Information Communication Technologies (ICT) suggests that innovations do not always improve peoples' social inclusion. Technological innovations are sometimes perceived as destroying communities and create a dysfunctional society. Moreover, the findings indicate that a lack of public information and support from Irish governmental institutions, as well as limited off-the-shelves availability, has led to low trust and adoption of renewable technologies. A limited variation in participants' behavior and interaction patterns with technologies was observed during the study. This suggests that people will eventually adopt new technologies according to their needs and experience, even though they initially rejected the idea of changing their lifestyle.Keywords: automation, communication, ICT, renewables
Procedia PDF Downloads 11822249 Use of Cloud Computing and Smart Devices in Healthcare
Authors: Nikunj Agarwal, M. P. Sebastian
Abstract:
Cloud computing can reduce the start-up expenses of implementing EHR (Electronic Health Records). However, many of the healthcare institutions are yet to implement cloud computing due to the associated privacy and security issues. In this paper, we analyze the challenges and opportunities of implementing cloud computing in healthcare. We also analyze data of over 5000 US hospitals that use Telemedicine applications. This analysis helps to understand the importance of smart phones over the desktop systems in different departments of the healthcare institutions. The wide usage of smartphones and cloud computing allows ubiquitous and affordable access to the health data by authorized persons, including patients and doctors. Cloud computing will prove to be beneficial to a majority of the departments in healthcare. Through this analysis, we attempt to understand the different healthcare departments that may benefit significantly from the implementation of cloud computing.Keywords: cloud computing, smart devices, healthcare, telemedicine
Procedia PDF Downloads 40122248 Evaluation of the Impact of Pavement Roughness on Vehicle Emissions by HDM-4
Authors: Muhammad Azhar, Arshad Hussain
Abstract:
Vehicular emissions have increased in recent years due to rapid growth in world traffic resulting in an increase in associated problems such as air pollution and climate change, therefore it’s necessary to control vehicle emissions. This study looks at the effect of road maintenance on vehicle emissions. The Highway Development and Management Tool (HDM-4) was used to find the effect of road maintenance on vehicle emissions. Key data collected were traffic volume and composition, vehicle characteristics, pavement characteristics and climate data of the study area. Two options were analysed using the HDM-4 software; the base case or do nothing while the second is overlay maintenance. The study also showed a strong correlation between average roughness and yearly emission levels in both the alternatives. Finally, the study showed that proper maintenance reduces the roughness and emissions.Keywords: vehicle emissions, road roughness, IRI, maintenance, HDM-4, CO2
Procedia PDF Downloads 26622247 Malaysian Students' Identity in Seminars by Observing, Interviewing and Conducting Focus Group Discussion
Authors: Zurina Khairuddin
Abstract:
The objective of this study is to explore the identities constructed and negotiated by Malaysian students in the UK and Malaysia when they interact in seminars. The study utilised classroom observation, interview and focus group discussion to collect the data. The participants of this study are the first year Malaysian students studying in the UK and Malaysia. The data collected was analysed utilising a combination of Conversation Analysis and framework. This study postulates that Malaysian students in the UK construct and negotiate flexible and different identities depending on the contexts they were in. It also shows that most Malaysian students in the UK and Malaysia are similar in the identities they construct and negotiate. This study suggests implications and recommendations for Malaysian students in the UK and Malaysia, and other stakeholders such as UK and Malaysian academic community.Keywords: conversation analysis, interaction patterns, Malaysian students, students' identity
Procedia PDF Downloads 18822246 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data
Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder
Abstract:
Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods
Procedia PDF Downloads 25422245 Data-Driven Monitoring and Control of Water Sanitation and Hygiene for Improved Maternal Health in Rural Communities
Authors: Paul Barasa Wanyama, Tom Wanyama
Abstract:
Governments and development partners in low-income countries often prioritize building Water Sanitation and Hygiene (WaSH) infrastructure of healthcare facilities to improve maternal healthcare outcomes. However, the operation, maintenance, and utilization of this infrastructure are almost never considered. Many healthcare facilities in these countries use untreated water that is not monitored for quality or quantity. Consequently, it is common to run out of water while a patient is on their way to or in the operating theater. Further, the handwashing stations in healthcare facilities regularly run out of water or soap for months, and the latrines are typically not clean, in part due to the lack of water. In this paper, we present a system that uses Internet of Things (IoT), big data, cloud computing, and AI to initiate WaSH security in healthcare facilities, with a specific focus on maternal health. We have implemented smart sensors and actuators to monitor and control WaSH systems from afar to ensure their objectives are achieved. We have also developed a cloud-based system to analyze WaSH data in real time and communicate relevant information back to the healthcare facilities and their stakeholders (e.g., medical personnel, NGOs, ministry of health officials, facilities managers, community leaders, pregnant women, and new mothers and their families) to avert or mitigate problems before they occur.Keywords: WaSH, internet of things, artificial intelligence, maternal health, rural communities, healthcare facilities
Procedia PDF Downloads 2922244 Uncloaking Priceless Pieces of Evidence: Psychotherapy with an Older New Zealand Man; Contributions to Understanding Hidden Historical Phenomena and the Trans-Generation Transmission of Silent and Un-Witnessed Trauma
Authors: Joanne M. Emmens
Abstract:
This paper makes use of the case notes of a single psychoanalytically informed psychotherapy of a now 72-year-old man over a four-year period to explore the potential of qualitative data to be incorporated into a research methodology that can contribute theory and knowledge to the wider professional community involved in mental health care. The clinical material arising out of any psychoanalysis provides a potentially rich source of clinical data that could contribute valuably to our historical understanding of both individual and societal traumata. As psychoanalysis is primarily an investigation, it is argued that clinical case material is a rich source of qualitative data which has relevance for sociological and historical understandings and that it can potentially aluminate important ‘gaps’ and collective blind spots that manifest unconsciously and are a contributing factor in the transmission of trauma, silently across generations. By attending to this case material the hope is to illustrate the value of using a psychoanalytic centred methodology. It is argued that the study of individual defences and the manner in which they come into consciousness, allows an insight into group defences and the unconscious forces that contribute to the silencing or un-noticing of important sources (or originators) of mental suffering.Keywords: dream furniture (Bion) and psychotic functioning, reverie, screen memories, selected fact
Procedia PDF Downloads 20322243 Exposure and Satisfaction toward Online News of Undergraduate Students in Thailand
Authors: Ekapon Thienthaworn
Abstract:
This research aims to study the exposure and satisfaction toward online news of undergraduate students in Bangkok, Thailand. This research is the survey research which 400 questionnaires are used to collect data with the accidental sampling technique and the data collected are analyzed with descriptive statistics. The result can be divided into 2 sections as follow: (1) Undergraduate students in Bangkok consume online news via most of the Smartphone. In most cases, they use average more than 2 hours per day. Most times to consume news are 22.01- 02.00 pm. Primary source is Facebook and the most interested news genre is entertainment news and headline of the day. (2) Undergraduate students in Bangkok have positive attitude in online news is a fastness and easy-to-access. Negative attitude is piracy. Finally, average satisfaction in consuming online news is in high levels.Keywords: exposure, satisfaction, online news, Bangkok
Procedia PDF Downloads 24922242 Using Real Truck Tours Feedback for Address Geocoding Correction
Authors: Dalicia Bouallouche, Jean-Baptiste Vioix, Stéphane Millot, Eric Busvelle
Abstract:
When researchers or logistics software developers deal with vehicle routing optimization, they mainly focus on minimizing the total travelled distance or the total time spent in the tours by the trucks, and maximizing the number of visited customers. They assume that the upstream real data given to carry the optimization of a transporter tours is free from errors, like customers’ real constraints, customers’ addresses and their GPS-coordinates. However, in real transporter situations, upstream data is often of bad quality because of address geocoding errors and the irrelevance of received addresses from the EDI (Electronic Data Interchange). In fact, geocoders are not exempt from errors and could give impertinent GPS-coordinates. Also, even with a good geocoding, an inaccurate address can lead to a bad geocoding. For instance, when the geocoder has trouble with geocoding an address, it returns those of the center of the city. As well, an obvious geocoding issue is that the mappings used by the geocoders are not regularly updated. Thus, new buildings could not exist on maps until the next update. Even so, trying to optimize tours with impertinent customers GPS-coordinates, which are the most important and basic input data to take into account for solving a vehicle routing problem, is not really useful and will lead to a bad and incoherent solution tours because the locations of the customers used for the optimization are very different from their real positions. Our work is supported by a logistics software editor Tedies and a transport company Upsilon. We work with Upsilon's truck routes data to carry our experiments. In fact, these trucks are equipped with TOMTOM GPSs that continuously save their tours data (positions, speeds, tachograph-information, etc.). We, then, retrieve these data to extract the real truck routes to work with. The aim of this work is to use the experience of the driver and the feedback of the real truck tours to validate GPS-coordinates of well geocoded addresses, and bring a correction to the badly geocoded addresses. Thereby, when a vehicle makes its tour, for each visited customer, the vehicle might have trouble with finding this customer’s address at most once. In other words, the vehicle would be wrong at most once for each customer’s address. Our method significantly improves the quality of the geocoding. Hence, we achieve to automatically correct an average of 70% of GPS-coordinates of a tour addresses. The rest of the GPS-coordinates are corrected in a manual way by giving the user indications to help him to correct them. This study shows the importance of taking into account the feedback of the trucks to gradually correct address geocoding errors. Indeed, the accuracy of customer’s address and its GPS-coordinates play a major role in tours optimization. Unfortunately, address writing errors are very frequent. This feedback is naturally and usually taken into account by transporters (by asking drivers, calling customers…), to learn about their tours and bring corrections to the upcoming tours. Hence, we develop a method to do a big part of that automatically.Keywords: driver experience feedback, geocoding correction, real truck tours
Procedia PDF Downloads 67722241 Filmic and Verbal Metafphors
Authors: Manana Rusieshvili, Rusudan Dolidze
Abstract:
This paper aims at 1) investigating the ways in which a traditional, monomodal written verbal metaphor can be transposed as a monomodal non-verbal (visual) or multimodal (aural and -visual) filmic metaphor ; 2) exploring similarities and differences in the process of encoding and decoding of monomodal and multimodal metaphors. The empiric data, on which the research is based, embrace three sources: the novel by Harry Gray ‘The Hoods’, the script of the film ‘Once Upon a Time in America’ (English version by David Mills) and the resultant film by Sergio Leone. In order to achieve the above mentioned goals, the research focuses on the following issues: 1) identification of verbal and non-verbal monomodal and multimodal metaphors in the above-mentioned sources and 2) investigation of the ways and modes the specific written monomodal metaphors appearing in the novel and the script are enacted in the film and become visual, aural or visual-aural filmic metaphors ; 3) study of the factors which play an important role in contributing to the encoding and decoding of the filmic metaphor. The collection and analysis of the data were carried out in two stages: firstly, the relevant data, i.e. the monomodal metaphors from the novel, the script and the film were identified and collected. In the second, final stage the metaphors taken from all of the three sources were analysed, compared and two types of phenomena were selected for discussion: (1) the monomodal written metaphors found in the novel and/or in the script which become monomodal visual/aural metaphors in the film; (2) the monomodal written metaphors found in the novel and/or in the script which become multimodal, filmic (visual-aural) metaphors in the film.Keywords: encoding, decoding, filmic metaphor, multimodality
Procedia PDF Downloads 53222240 Normalized P-Laplacian: From Stochastic Game to Image Processing
Authors: Abderrahim Elmoataz
Abstract:
More and more contemporary applications involve data in the form of functions defined on irregular and topologically complicated domains (images, meshs, points clouds, networks, etc). Such data are not organized as familiar digital signals and images sampled on regular lattices. However, they can be conveniently represented as graphs where each vertex represents measured data and each edge represents a relationship (connectivity or certain affinities or interaction) between two vertices. Processing and analyzing these types of data is a major challenge for both image and machine learning communities. Hence, it is very important to transfer to graphs and networks many of the mathematical tools which were initially developed on usual Euclidean spaces and proven to be efficient for many inverse problems and applications dealing with usual image and signal domains. Historically, the main tools for the study of graphs or networks come from combinatorial and graph theory. In recent years there has been an increasing interest in the investigation of one of the major mathematical tools for signal and image analysis, which are Partial Differential Equations (PDEs) variational methods on graphs. The normalized p-laplacian operator has been recently introduced to model a stochastic game called tug-of-war-game with noise. Part interest of this class of operators arises from the fact that it includes, as particular case, the infinity Laplacian, the mean curvature operator and the traditionnal Laplacian operators which was extensiveley used to models and to solve problems in image processing. The purpose of this paper is to introduce and to study a new class of normalized p-Laplacian on graphs. The introduction is based on the extension of p-harmonious function introduced in as discrete approximation for both infinity Laplacian and p-Laplacian equations. Finally, we propose to use these operators as a framework for solving many inverse problems in image processing.Keywords: normalized p-laplacian, image processing, stochastic game, inverse problems
Procedia PDF Downloads 51522239 A Demonstration of How to Employ and Interpret Binary IRT Models Using the New IRT Procedure in SAS 9.4
Authors: Ryan A. Black, Stacey A. McCaffrey
Abstract:
Over the past few decades, great strides have been made towards improving the science in the measurement of psychological constructs. Item Response Theory (IRT) has been the foundation upon which statistical models have been derived to increase both precision and accuracy in psychological measurement. These models are now being used widely to develop and refine tests intended to measure an individual's level of academic achievement, aptitude, and intelligence. Recently, the field of clinical psychology has adopted IRT models to measure psychopathological phenomena such as depression, anxiety, and addiction. Because advances in IRT measurement models are being made so rapidly across various fields, it has become quite challenging for psychologists and other behavioral scientists to keep abreast of the most recent developments, much less learn how to employ and decide which models are the most appropriate to use in their line of work. In the same vein, IRT measurement models vary greatly in complexity in several interrelated ways including but not limited to the number of item-specific parameters estimated in a given model, the function which links the expected response and the predictor, response option formats, as well as dimensionality. As a result, inferior methods (a.k.a. Classical Test Theory methods) continue to be employed in efforts to measure psychological constructs, despite evidence showing that IRT methods yield more precise and accurate measurement. To increase the use of IRT methods, this study endeavors to provide a comprehensive overview of binary IRT models; that is, measurement models employed on test data consisting of binary response options (e.g., correct/incorrect, true/false, agree/disagree). Specifically, this study will cover the most basic binary IRT model, known as the 1-parameter logistic (1-PL) model dating back to over 50 years ago, up until the most recent complex, 4-parameter logistic (4-PL) model. Binary IRT models will be defined mathematically and the interpretation of each parameter will be provided. Next, all four binary IRT models will be employed on two sets of data: 1. Simulated data of N=500,000 subjects who responded to four dichotomous items and 2. A pilot analysis of real-world data collected from a sample of approximately 770 subjects who responded to four self-report dichotomous items pertaining to emotional consequences to alcohol use. Real-world data were based on responses collected on items administered to subjects as part of a scale-development study (NIDA Grant No. R44 DA023322). IRT analyses conducted on both the simulated data and analyses of real-world pilot will provide a clear demonstration of how to construct, evaluate, and compare binary IRT measurement models. All analyses will be performed using the new IRT procedure in SAS 9.4. SAS code to generate simulated data and analyses will be available upon request to allow for replication of results.Keywords: instrument development, item response theory, latent trait theory, psychometrics
Procedia PDF Downloads 359