Search results for: deep feed forward neural network
5667 Effect of Calving Season on the Economic and Production Efficiency of Dairy Production Breeds
Authors: Eman. K. Ramadan, Abdelgawad. S. El-Tahawy
Abstract:
The objective of this study was to evaluate the effects of calving season on the production and economic efficiency of dairy farms in Egypt. Our study was performed at dairy production farms in the Alexandria, Behera, and Kafr El-Sheikh provinces of Egypt from summer 2010 to winter 2013. The randomly selected dairy farms had herds consisting of Baladi, Holstein-Friesian, or cross-bred (Baladi × Holstein-Friesian) cows. The data were collected from production records and responses to a structured questionnaire. The average total return differed significantly (P < 0.05) between the different cattle breeds and calving seasons. The average total return was highest for the Holstein-Friesian cows that calved in the winter (29106.42 EGP/cow/year), and it was lowest for Baladi cows that calved in the summer (12489.79 EGP/cow/year). Differences in total returns between the cows that calved in the winter or summer or between the foreign and native breeds, as well as variations in calf prices, might have contributed to the differences in milk yield. The average net profit per cow differed significantly (P < 0.05) between the cattle breeds and calving seasons. The average net profit values for the Baladi cows that calved in the winter or summer were 2413 and 2994.96 EGP/cow/year, respectively, and those for the Holstein-Friesian cows were 10744.17 and 7860.56 EGP/cow/year, respectively, whereas those for the cross-bred cows were 10174.86 and 7571.33 EGP/cow/year, respectively. The variations in net profit might have resulted from variation in the availability or price of feed materials, milk prices, or sales volumes. Our results show that the breed and calving season of dairy cows significantly affected the economic efficiency of dairy farms in Egypt. The cows that calved in the winter produced more milk than those that calved in the summer, which may have been the result of seasonal influences, such as temperature, humidity, management practices, and the type of feed or green fodder available.Keywords: calving season, economic, production, efficiency, dairy
Procedia PDF Downloads 4295666 Long-Term Outcomes of Dysphagia in Children with Severe Cerebral Palsy Using Videofluoroscopic Evaluation
Authors: Eun Jae Ko, In Young Sung, Eui Soo Joeng
Abstract:
Oropharyngeal dysphagia is prevalent in children with cerebral palsy (CP). There are many studies concerning this problem, however, studies examining long term outcomes of dysphagia using videofluoroscopic study (VFSS) are very rare. The Aim of this study is to investigate long-term outcomes of dysphagia in children with severe CP using initial VFSS. It was a retrospective study and chart review was done from January 2000 to December 2013. Thirty one patients under 18 years who have been diagnosed as CP in outpatient clinic of Rehabilitation Medicine, and who did VFSS were included. Long-term outcomes such as feeding method, height percentile, weight percentile, and body mass index (BMI) were tracked up for at least 3 years by medical records. Significant differences between initial and follow-up datas were investigated. The patients consisted of 18 males and 13 females, and the mean age was 31.0±18.0 months old. 64.5% of patients were doing oral diet, and 25.8% of patients were doing non-oral diet. When comparing VFSS findings among oral feeding patients, oral and non-oral feeding patients, and non-oral feeding patients at initial period, dysphagia severity, supraglottic penetration, and subglottic aspiration showed significant differences. Most of the patients who could feed orally at initial period were found to have the same feeding method at follow-up. But among eight patients who required non-oral feeding initially, three patients became possible to feed orally, and one patient was doing oral and non-oral feeding method together at follow-up. Follow up feeding method showed correlation with dysphagia severity by initial VFSS. Weight percentile was decreased in patients with GMFCS level V at follow up, which may represent poor nutritional status due to severe dysphagia compared to other patients. Initial VFSS severity would play a significant role in making an assumption about future diet in children with severe CP. Patients with GMFCS level V seem to have serious dysphagia at follow up and have nutritional deficiency over time, therefore, more careful nutritional support is needed in children with severe CP are suggested.Keywords: cerebral palsy, child, dysphagia, videofluoroscopic study
Procedia PDF Downloads 2495665 Dynamic Route Optimization in Vehicle Adhoc Networks: A Heuristics Routing Protocol
Authors: Rafi Ullah, Shah Muhammad Emaduddin, Taha Jilani
Abstract:
Vehicle Adhoc Networks (VANET) belongs to a special class of Mobile Adhoc Network (MANET) with high mobility. Network is created by road side vehicles equipped with communication devices like GPS and Wifi etc. Since the environment is highly dynamic due to difference in speed and high mobility of vehicles and weak stability of the network connection, it is a challenging task to design an efficient routing protocol for such an unstable environment. Our proposed algorithm uses heuristic for the calculation of optimal path for routing the packet efficiently in collaboration with several other parameters like geographical location, speed, priority, the distance among the vehicles, communication range, and networks congestion. We have incorporated probabilistic, heuristic and machine learning based approach inconsistency with the relay function of the memory buffer to keep the packet moving towards the destination. These parameters when used in collaboration provide us a very strong and admissible heuristics. We have mathematically proved that the proposed technique is efficient for the routing of packets, especially in a medical emergency situation. These networks can be used for medical emergency, security, entertainment and routing purposes.Keywords: heuristics routing, intelligent routing, VANET, route optimization
Procedia PDF Downloads 1765664 Smart Grids Cyber Security Issues and Challenges
Authors: Imen Aouini, Lamia Ben Azzouz
Abstract:
The energy need is growing rapidly due to the population growth and the large new usage of power. Several works put considerable efforts to make the electricity grid more intelligent to reduce essentially energy consumption and provide efficiency and reliability of power systems. The Smart Grid is a complex architecture that covers critical devices and systems vulnerable to significant attacks. Hence, security is a crucial factor for the success and the wide deployment of Smart Grids. In this paper, we present security issues of the Smart Grid architecture and we highlight open issues that will make the Smart Grid security a challenging research area in the future.Keywords: smart grids, smart meters, home area network, neighbor area network
Procedia PDF Downloads 4245663 Social Entrepreneurship against Depopulation: Network Analysis within the Theoretical Framework of the Quadruple Helix
Authors: Esperanza Garcia-Uceda, Josefina L. Murillo-Luna, M. Pilar Latorre-Martinez, Marta Ferrer-Serrano
Abstract:
Social entrepreneurship represents an innovation of traditional business models. During the last decade, its important role in contributing to rural and regional development has been widely recognized, due to its capacity to combat the problem of depopulation through the creation of employment. However, the success of this type of innovative business initiatives depends to a large extent on the existence of an adequate ecosystem of support resources. Based on the theoretical framework of the quadruple helix (QH), which highlights the need for collaboration between different interest groups -university, industry, government and civil society- for the development of regional innovations, in this work the network analysis is applied to study the ecosystem of resources to support social entrepreneurship in the rural area of the province of Zaragoza (Spain). It is a quantitative analysis that can be used to measure the interactions between the different actors that make up the quadruple helix, as well as the networks created between the different institutions and support organizations, through the study of the complex networks they form. The results show the importance of the involvement of local governments and the university, as key elements in the development process, but also allow identifying other issues that are susceptible to improvement.Keywords: ecosystem of support resources, network analysis, quadruple helix, social entrepreneurship
Procedia PDF Downloads 2525662 A Topology-Based Dynamic Repair Strategy for Enhancing Urban Road Network Resilience under Flooding
Authors: Xuhui Lin, Qiuchen Lu, Yi An, Tao Yang
Abstract:
As global climate change intensifies, extreme weather events such as floods increasingly threaten urban infrastructure, making the vulnerability of urban road networks a pressing issue. Existing static repair strategies fail to adapt to the rapid changes in road network conditions during flood events, leading to inefficient resource allocation and suboptimal recovery. The main research gap lies in the lack of repair strategies that consider both the dynamic characteristics of networks and the progression of flood propagation. This paper proposes a topology-based dynamic repair strategy that adjusts repair priorities based on real-time changes in flood propagation and traffic demand. Specifically, a novel method is developed to assess and enhance the resilience of urban road networks during flood events. The method combines road network topological analysis, flood propagation modelling, and traffic flow simulation, introducing a local importance metric to dynamically evaluate the significance of road segments across different spatial and temporal scales. Using London's road network and rainfall data as a case study, the effectiveness of this dynamic strategy is compared to traditional and Transport for London (TFL) strategies. The most significant highlight of the research is that the dynamic strategy substantially reduced the number of stranded vehicles across different traffic demand periods, improving efficiency by up to 35.2%. The advantage of this method lies in its ability to adapt in real-time to changes in network conditions, enabling more precise resource allocation and more efficient repair processes. This dynamic strategy offers significant value to urban planners, traffic management departments, and emergency response teams, helping them better respond to extreme weather events like floods, enhance overall urban resilience, and reduce economic losses and social impacts.Keywords: Urban resilience, road networks, flood response, dynamic repair strategy, topological analysis
Procedia PDF Downloads 355661 The Impact of Garlic and Citrus Extracts on Energy Retention and Methane Production in Ruminants in vitro
Authors: Michael Graz, Natasha Hurril, Andrew Shearer
Abstract:
Research on feed supplementation with natural compounds is currently being intensively pursued with a view to improving energy utilisation in ruminants and mitigating the production of methane by these animals. Towards this end, a novel combination of extracts from garlic and bitter orange was therefore selected for trials on the basis of their previously published in vitro anti-methanogenic potential. Three separate in vitro experiments were conducted to determine energy utilisation and greenhouse gas production. These included use of rumen fluid from fistulated cows and sheep in batch culture, the Hohenheim gas test, and the Rusitec technique. Experimental and control arms were utilised, with 5g extracts per kilogram of total dietary dry matter (0.05g/kg active compounds) being used to supplement or not supplement the in vitro systems. Respiratory measurements were conducted on experimental day 1 for the batch culture and Hohenheim gas test and on day 14-21 for the Rusitec Technique (in a 21-day trial). Measurements included methane (CH4) production, total volatile fatty acid (VFA) concentration, molar proportions of acetate, propionate and butyrate and degradation of organic matter (Rusitec). CH4 production was reduced by 82% (±16%), 68% (±11%) and 37% (±4%) in the batch culture, Hohenheim gas test and Rusitec, respectively. Total VFA production was reduced by 13% (±2%) and 2% (±0.1%) in the batch culture and Hohenheim gas test whilst it was increased by 8% (±2%) in the Rusitec. Total VFA production was reduced in all tests between 2 and 10%, whilst acetate production was reduced between 10% and 29%. Propionate production which is an indicator of weight gain was increased in all cases between 16% and 30%. Butyrate production which is considered an indicator of potential milk yield was increased by between 6 and 11%. Degradation of organic matter in the Rusitec experiments was improved by 10% (±0.1%). In conclusion, the study demonstrated the potential of the combination of garlic and citrus extracts to improve digestion, enhance body energy retention and limit CH4 formation in relation to feed intake.Keywords: citrus, garlic, methane, ruminants
Procedia PDF Downloads 3305660 Evaluation of Molasses and Sucrose as Cabohydrate Sources for Biofloc System on Nile Tilapia (Oreochromis niloticus) Performances
Authors: A. M. Nour, M. A. Zaki, E. A. Omer, Nourhan Mohamed
Abstract:
Performances of mixed-sex Nile tilapia (Oreochromis niloticus) fingerlings (11.33 ± 1.78 g /fish) reared under biofloc system developed by molasses and sucrose as carbon sources in indoor fiberglass tanks were evaluated. Six indoor fiberglass tanks (1m 3 each filled with 1000 l of underground fresh water), each was stocked with 2kg fish were used for 14 weeks experimental period. Three experimental groups were designed (each group 2 tanks) as following: 1-control: 20% daily without biofloc, 2-zero water exchange rate with biofloc (molasses as C source) and 3-zero water exchange rate with biofloc (sucrose as C source). Fish in all aquariums were fed on floating feed pellets (30% crude protein, 3 mm in diameter) at a rate of 3% of the actual live fish body, 3 times daily and 6 days a week. Carbohydrate supplementations were applied daily to each tank two hrs, after feeding to maintain the carbon: nitrogen ratio (C: N) ratio 20:1. Fish were reared under continuous aeration by pumping air into the water in the tank bottom using two sandy diffusers and constant temperature between 27.0-28.0 ºC by using electrical heaters for 10 weeks. Criteria's for assessment of water quality parameters, biofloc production and fish growth performances were collected and evaluated. The results showed that total ammonia nitrogen in control group was higher than biofloc groups. The biofloc volumes were 19.13 mg/l and 13.96 mg/l for sucrose and molasses, respectively. Biofloc protein (%), ether extract (%) and gross energy (kcal/100g DM), they were higher in biofloc molasses group than biofloc sucrose group. Tilapia growth performances were significantly higher (P < 0.05) with molasses group than in sucrose and control groups, respectively. The highest feed and nutrient utilization values for protein efficiency ratio (PER), protein productive (PPV%) and energy utilization (EU, %) were higher in molasses group followed by sucrose group and control group respectively.Keywords: biofloc, Nile tilapia, cabohydrates, performances
Procedia PDF Downloads 1925659 Catalytic Hydrothermal Decarboxylation of Lipid from Activated Sludge for Renewable Diesel Production
Authors: Ifeanyichukwu Edeh, Tim Overton, Steve Bowra
Abstract:
Currently biodiesel is produced from plant oils or animal’s fats by a liquid-phase catalysed transesterification process at low temperature. Although biodiesel is renewable and to a large extent sustainable, inherent properties such as poor cold flow, low oxidation stability, low cetane value restrict application to blends with fossil fuels. An alternative to biodiesel is renewable diesel produced by catalytic hydrotreating of oils and fats and is considered a drop in fuel because its properties are similar to petroleum diesel. In addition to developing alternative productions routes there is continued interest in reducing the cost of the feed stock, waste cooking oils and fats are increasingly used as the feedstocks due to low cost. However, use of oils and fat are highly adulterated resulting in high free fatty acid content which turn impacts on the efficiency of FAME production. Therefore, in light of the need to develop, alternative lipid feed stocks and related efficient catalysis the present study investigates the potential of producing renewable diesel from the lipids-extracted from activated sludge, a waste water treatment by-product, through catalytic hydrothermal decarboxylation. The microbial lipids were first extracted from the activated sludge using the Folch et al method before hydrothermal decarboxylation reactions were carried out using palladium (Pd/C) and platinum (Pt/C) on activated carbon as the catalysts in a batch reactor. The impact of three temperatures 290, 300, 330 °C and residence time between 30 min and 4hrs was assessed. At the end of the reaction, the products were recovered using organic solvents and characterized using gas chromatography (GC). The principle products of the reaction were pentadecane and heptadecane. The highest yields of pentadecane and heptadecane from lipid-extract were 23.23% and 15.21%, respectively. These yields were obtained at 290 °C and residence time 1h using Pt/C. To the best of our knowledge, the current work is the first investigation on the hydrothermal decarboxylation of lipid-extract from activated sludge.Keywords: activated sludge, lipid, hydrothermal decarboxylation, renewable diesel
Procedia PDF Downloads 3195658 Common Orthodontic Indices and Classification in the United Kingdom
Authors: Ashwini Mohan, Haris Batley
Abstract:
An orthodontic index is used to rate or categorise an individual’s occlusion using a numeric or alphanumeric score. Indexing of malocclusions and their correction is important in epidemiology, diagnosis, communication between clinicians as well as their patients and assessing treatment outcomes. Many useful indices have been put forward, but to the author’s best knowledge, no one method to this day appears to be equally suitable for the use of epidemiologists, public health program planners and clinicians. This article describes the common clinical orthodontic indices and classifications used in United Kingdom.Keywords: classification, indices, orthodontics, validity
Procedia PDF Downloads 1515657 Horizontal-Vertical and Enhanced-Unicast Interconnect Testing Techniques for Network-on-Chip
Authors: Mahdiar Hosseinghadiry, Razali Ismail, F. Fotovati
Abstract:
One of the most important and challenging tasks in testing network-on-chip based system-on-chips (NoC based SoCs) is to verify the communication entity. It is important because of its usage for transferring both data packets and test patterns for intellectual properties (IPs) during normal and test mode. Hence, ensuring of NoC reliability is required for reliable IPs functionality and testing. On the other hand, it is challenging due to the required time to test it and the way of transferring test patterns from the tester to the NoC components. In this paper, two testing techniques for mesh-based NoC interconnections are proposed. The first one is based on one-by-one testing and the second one divides NoC interconnects into three parts, horizontal links of switches in even columns, horizontal links of switches in odd columns and all vertical. A design for testability (DFT) architecture is represented to send test patterns directly to each switch under test and also support the proposed testing techniques by providing a loopback path in each switch. The simulation results shows the second proposed testing mechanism outperforms in terms of test time because this method test all the interconnects in only three phases, independent to the number of existed interconnects in the network, while test time of other methods are highly dependent to the number of switches and interconnects in the NoC.Keywords: on chip, interconnection testing, horizontal-vertical testing, enhanced unicast
Procedia PDF Downloads 5535656 AI Predictive Modeling of Excited State Dynamics in OPV Materials
Authors: Pranav Gunhal., Krish Jhurani
Abstract:
This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling
Procedia PDF Downloads 1185655 General Time-Dependent Sequenced Route Queries in Road Networks
Authors: Mohammad Hossein Ahmadi, Vahid Haghighatdoost
Abstract:
Spatial databases have been an active area of research over years. In this paper, we study how to answer the General Time-Dependent Sequenced Route queries. Given the origin and destination of a user over a time-dependent road network graph, an ordered list of categories of interests and a departure time interval, our goal is to find the minimum travel time path along with the best departure time that minimizes the total travel time from the source location to the given destination passing through a sequence of points of interests belonging to each of the specified categories of interest. The challenge of this problem is the added complexity to the optimal sequenced route queries, where we assume that first the road network is time dependent, and secondly the user defines a departure time interval instead of one single departure time instance. For processing general time-dependent sequenced route queries, we propose two solutions as Discrete-Time and Continuous-Time Sequenced Route approaches, finding approximate and exact solutions, respectively. Our proposed approaches traverse the road network based on A*-search paradigm equipped with an efficient heuristic function, for shrinking the search space. Extensive experiments are conducted to verify the efficiency of our proposed approaches.Keywords: trip planning, time dependent, sequenced route query, road networks
Procedia PDF Downloads 3215654 Comparative Advantage of Mobile Agent Application in Procuring Software Products on the Internet
Authors: Michael K. Adu, Boniface K. Alese, Olumide S. Ogunnusi
Abstract:
This paper brings to fore the inherent advantages in application of mobile agents to procure software products rather than downloading software content on the Internet. It proposes a system whereby the products come on compact disk with mobile agent as deliverable. The client/user purchases a software product, but must connect to the remote server of the software developer before installation. The user provides an activation code that activates mobile agent which is part of the software product on compact disk. The validity of the activation code is checked on connection at the developer’s end to ascertain authenticity and prevent piracy. The system is implemented by downloading two different software products as compare with installing same products on compact disk with mobile agent’s application. Downloading software contents from developer’s database as in the traditional method requires a continuously open connection between the client and the developer’s end, a fixed network is not economically or technically feasible. Mobile agent after being dispatched into the network becomes independent of the creating process and can operate asynchronously and autonomously. It can reconnect later after completing its task and return for result delivery. Response Time and Network Load are very minimal with application of Mobile agent.Keywords: software products, software developer, internet, activation code, mobile agent
Procedia PDF Downloads 3115653 Performance of Rapid Impact Compaction as a Middle-Deep Ground Improvement Technique
Authors: Bashar Tarawneh, Yasser Hakam
Abstract:
Rapid Impact Compaction (RIC) is a modern dynamic compaction device mainly used to compact sandy soils, where silt and clay contents are low. The device uses the piling hammer technology to increase the bearing capacity of soils through controlled impacts. The RIC device uses "controlled impact compaction" of the ground using a 9-ton hammer dropped from the height between 0.3 m to 1.2 m onto a 1.5 m diameter steel patent foot. The delivered energy is about 26,487 to 105,948 Joules per drop. To evaluate the performance of this technique, three project sites in the United Arab Emirates were improved using RIC. In those sites, a loose to very loose fine to medium sand was encountered at a depth ranging from 1.0m to 4.0m below the ground level. To evaluate the performance of the RIC, Cone Penetration Tests (CPT) were carried out before and after improvement. Also, load tests were carried out post-RIC work to assess the settlements and bearing capacity. The soil was improved to a depth of about 5.0m below the ground level depending on the CPT friction ratio (the ratio between sleeve friction and tip resistance). CPT tip resistance was significantly increased post ground improvement work. Load tests showed enhancement in the soil bearing capacity and reduction in the potential settlements. This study demonstrates the successful application of the RIC for middle-deep improvement and compaction of the ground. Foundation design criteria were achieved in all site post-RIC work.Keywords: compaction, RIC, ground improvement, CPT
Procedia PDF Downloads 3655652 Conservation Challenges of Wetlands Biodiversity in Northeast Region of Bangladesh
Authors: Anisuzzaman Khan, A. J. K. Masud
Abstract:
Bangladesh is the largest delta in the world predominantly comprising large network of rives and wetlands. Wetlands in Bangladesh are represented by inland freshwater, estuarine brakishwater and tidal salt-water coastal wetlands. Bangladesh possesses enormous area of wetlands including rivers and streams, freshwater lakes and marshes, haors, baors, beels, water storage reservoirs, fish ponds, flooded cultivated fields and estuarine systems with extensive mangrove swamps. The past, present, and future of Bangladesh, and its people’s livelihoods are intimately connected to its relationship with water and wetlands. More than 90% of the country’s total area consists of alluvial plains, crisscrossed by a complex network of rivers and their tributaries. Floodplains, beels (low-lying depressions in the floodplain), haors (deep depression) and baors (oxbow lakes) represent the inland freshwater wetlands. Over a third of Bangladesh could be termed as wetlands, considering rivers, estuaries, mangroves, floodplains, beels, baors and haors. The country’s wetland ecosystems also offer critical habitats for globally significant biological diversity. Of these the deeply flooded basins of north-east Bangladesh, known as haors, are a habitat of wide range of wild flora and fauna unique to Bangladesh. The haor basin lies within the districts of Sylhet, Sunamgonj, Netrokona, Kishoregonj, Habigonj, Moulvibazar, and Brahmanbaria in the Northeast region of Bangladesh comprises the floodplains of the Meghna tributaries and is characterized by the presence of numerous large, deeply flooded depressions, known as haors. It covers about around 8,568 km2 area of Bangladesh. The topography of the region is steep at around foothills in the north and slopes becoming mild and milder gradually at downstream towards south. Haor is a great reservoir of aquatic biological resources and acts as the ecological safety net to the nature as well as to the dwellers of the haor. But in reality, these areas are considered as wastelands and to make these wastelands into a productive one, a one sided plan has been implementing since long. The programme is popularly known as Flood Control, Drainage and Irrigation (FCDI) which is mainly devoted to increase the monoculture rice production. However, haor ecosystem is a multiple-resource base which demands an integrated sustainable development approach. The ongoing management approach is biased to only rice production through FCDI. Thus this primitive mode of action is diminishing other resources having more economic potential ever thought.Keywords: freshwater wetlands, biological diversity, biological resources, conservation and sustainable development
Procedia PDF Downloads 3295651 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques
Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo
Abstract:
Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.Keywords: air pollution, air quality modelling, data mining, particulate matter
Procedia PDF Downloads 2585650 Concept of the Active Flipped Learning in Engineering Mechanics
Authors: Lin Li, Farshad Amini
Abstract:
The flipped classroom has been introduced to promote collaborative learning and higher-order learning objectives. In contrast to the traditional classroom, the flipped classroom has students watch prerecorded lecture videos before coming to class and then “class becomes the place to work through problems, advance concepts, and engage in collaborative learning”. In this paper, the active flipped learning combines flipped classroom with active learning that is to establish an active flipped learning (AFL) model, aiming to promote active learning, stress deep learning, encourage student engagement and highlight data-driven personalized learning. Because students have watched the lecture prior to class, contact hours can be devoted to problem-solving and gain a deeper understanding of the subject matter. The instructor is able to provide students with a wide range of learner-centered opportunities in class for greater mentoring and collaboration, increasing the possibility to engage students. Currently, little is known about the extent to which AFL improves engineering students’ performance. This paper presents the preliminary study on the core course of sophomore students in Engineering Mechanics. A series of survey and interviews have been conducted to compare students’ learning engagement, empowerment, self-efficacy, and satisfaction with the AFL. It was found that the AFL model taking advantage of advanced technology is a convenient and professional avenue for engineering students to strengthen their academic confidence and self-efficacy in the Engineering Mechanics by actively participating in learning and fostering their deep understanding of engineering statics and dynamicsKeywords: active learning, engineering mechanics, flipped classroom, performance
Procedia PDF Downloads 2935649 Sustainable Material Selection for Buildings: Analytic Network Process Method and Life Cycle Assessment Approach
Authors: Samira Mahmoudkelayeh, Katayoun Taghizade, Mitra Pourvaziri, Elnaz Asadian
Abstract:
Over the recent decades, depletion of resources and environmental concerns made researchers and practitioners present sustainable approaches. Since construction process consumes a great deal of both renewable and non-renewable resources, it is of great significance regarding environmental impacts. Choosing sustainable construction materials is a remarkable strategy presented in many researches and has a significant effect on building’s environmental footprint. This paper represents an assessment framework for selecting best sustainable materials for exterior enclosure in the city of Tehran based on sustainability principles (eco-friendly, cost effective and socio-cultural viable solutions). To perform a comprehensive analysis of environmental impacts, life cycle assessment, a cradle to grave approach is used. A questionnaire survey of construction experts has been conducted to determine the relative importance of criteria. Analytic Network Process (ANP) is applied as a multi-criteria decision-making method to choose sustainable material which consider interdependencies of criteria and sub-criteria. Finally, it prioritizes and aggregates relevant criteria into ultimate assessed score.Keywords: sustainable materials, building, analytic network process, life cycle assessment
Procedia PDF Downloads 2415648 Creating Knowledge Networks: Comparative Analysis of Reference Cases
Authors: Sylvia Villarreal, Edna Bravo
Abstract:
Knowledge management focuses on coordinating technologies, people, processes, and structures to generate a competitive advantage and considering that networks are perceived as mechanisms for knowledge creation and transfer, this research presents the stages and practices related to the creation of knowledge networks. The methodology started with a literature review adapted from the systematic literature review (SLR). The descriptive analysis includes variables such as approach (conceptual or practical), industry, knowledge management processes and mythologies (qualitative or quantitative), etc. The content analysis includes identification of reference cases. These cases were characterized based on variables as scope, creation goal, years, network approach, actors and creation methodology. It was possible to do a comparative analysis to determinate similarities and differences in these cases documented in knowledge network scientific literature. Consequently, it was shown that even the need and impact of knowledge networks in organizations, the initial guidelines for their creation are not documented, so there is not a guide of good practices and lessons learned. The reference cases are from industries as energy, education, creative, automotive and textile. Their common points are the human approach; it is oriented to interactions to facilitate the appropriation of knowledge, explicit and tacit. The stages of every case are analyzed to propose the main successful elements.Keywords: creation, knowledge management, network, stages
Procedia PDF Downloads 3025647 Postmodern Navy to Transnational Adaptive Navy: Positive Peace with Borderless Institutional Network
Authors: Serkan Tezgel
Abstract:
Effectively managing threats and power that transcend national boundaries requires a reformulation from the traditional post-modern navy to an adaptive and institutional transnational navy. By analyzing existing soft power concept, post-modern navy, and sea power, this study proposes the transnational navy, founded on the triangle of main attributes of transnational companies, 'Global Competitiveness, Local Responsiveness, Worldwide Learning and Innovation Sharing', a new model which will lead to a positive peace with an institutional network. This transnational model necessitates 'Transnational Navies' to help establish peace with collective and transnational understanding during a transition period 'Reactive Postmodern Navy' has been experiencing. In this regard, it is fairly claimed that a new paradigm shift will revolve around sea power to establish good order at sea with collective and collaborative initiatives and bound to breed new theories and ideas in the forthcoming years. However, there are obstacles to overcome. Postmodern navies, currently shaped by 'Collective Maritime Security' and 'Collective Defense' concepts, can not abandon reactive applications and acts. States deploying postmodern navies to realize their policies on international platforms and seapower structures shaped by the axis of countries’ absolute interests resulted in multipolar alliances and coalitions, but the establishment of the peace. These obstacles can be categorized into three tiers in establishing a unique transnational model navy: Strategic, Organizational and Management challenges. To overcome these obstacles and challenges, postmodern navies should transform into cooperative, collective and independent soft transnational navies with the transnational mentality, global commons, and institutional network. Such an adaptive institution can help the world navigate to a positive peace.Keywords: postmodern navy, transnational navy, transnational mentality, institutional network
Procedia PDF Downloads 5195646 Fuzzy Rules Based Improved BEENISH Protocol for Wireless Sensor Networks
Authors: Rishabh Sharma
Abstract:
The main design parameter of WSN (wireless sensor network) is the energy consumption. To compensate this parameter, hierarchical clustering is a technique that assists in extending duration of the networks life by efficiently consuming the energy. This paper focuses on dealing with the WSNs and the FIS (fuzzy interface system) which are deployed to enhance the BEENISH protocol. The node energy, mobility, pause time and density are considered for the selection of CH (cluster head). The simulation outcomes exhibited that the projected system outperforms the traditional system with regard to the energy utilization and number of packets transmitted to sink.Keywords: wireless sensor network, sink, sensor node, routing protocol, fuzzy rule, fuzzy inference system
Procedia PDF Downloads 1065645 Small Town Big Urban Issues the Case of Kiryat Ono, Israel
Authors: Ruth Shapira
Abstract:
Introduction: The rapid urbanization of the last century confronts planners, regulatory bodies, developers and most of all – the public with seemingly unsolved conflicts regarding values, capital, and wellbeing of the built and un-built urban space. This is reflected in the quality of the urban form and life which has known no significant progress in the last 2-3 decades despite the on-growing urban population. It is the objective of this paper to analyze some of these fundamental issues through the case study of a relatively small town in the center of Israel (Kiryat-Ono, 100,000 inhabitants), unfold the deep structure of qualities versus disruptors, present some cure that we have developed to bridge over and humbly suggest a practice that may be generic for similar cases. Basic Methodologies: The OBJECT, the town of Kiryat Ono, shall be experimented upon in a series of four action processes: De-composition, Re-composition, the Centering process and, finally, Controlled Structural Disintegration. Each stage will be based on facts, analysis of previous multidisciplinary interventions on various layers – and the inevitable reaction of the OBJECT, leading to the conclusion based on innovative theoretical and practical methods that we have developed and that we believe are proper for the open ended network, setting the rules for the contemporary urban society to cluster by. The Study: Kiryat Ono, was founded 70 years ago as an agricultural settlement and rapidly turned into an urban entity. In spite the massive intensification, the original DNA of the old small town was still deeply embedded, mostly in the quality of the public space and in the sense of clustered communities. In the past 20 years, the recent demand for housing has been addressed to on the national level with recent master plans and urban regeneration policies mostly encouraging individual economic initiatives. Unfortunately, due to the obsolete existing planning platform the present urban renewal is characterized by pressure of developers, a dramatic change in building scale and widespread disintegration of the existing urban and social tissue. Our office was commissioned to conceptualize two master plans for the two contradictory processes of Kiryat Ono’s future: intensification and conservation. Following a comprehensive investigation into the deep structures and qualities of the existing town, we developed a new vocabulary of conservation terms thus redefying the sense of PLACE. The main challenge was to create master plans that should offer a regulatory basis to the accelerated and sporadic development providing for the public good and preserving the characteristics of the PLACE consisting of a tool box of design guidelines that will have the ability to reorganize space along the time axis in a coherent way. In Conclusion: The system of rules that we have developed can generate endless possible patterns making sure that at each implementation fragment an event is created, and a better place is revealed. It takes time and perseverance but it seems to be the way to provide a healthy framework for the accelerated urbanization of our chaotic present.Keywords: housing, architecture, urban qualities, urban regeneration, conservation, intensification
Procedia PDF Downloads 3615644 The Effective Use of the Network in the Distributed Storage
Authors: Mamouni Mohammed Dhiya Eddine
Abstract:
This work aims at studying the exploitation of high-speed networks of clusters for distributed storage. Parallel applications running on clusters require both high-performance communications between nodes and efficient access to the storage system. Many studies on network technologies led to the design of dedicated architectures for clusters with very fast communications between computing nodes. Efficient distributed storage in clusters has been essentially developed by adding parallelization mechanisms so that the server(s) may sustain an increased workload. In this work, we propose to improve the performance of distributed storage systems in clusters by efficiently using the underlying high-performance network to access distant storage systems. The main question we are addressing is: do high-speed networks of clusters fit the requirements of a transparent, efficient and high-performance access to remote storage? We show that storage requirements are very different from those of parallel computation. High-speed networks of clusters were designed to optimize communications between different nodes of a parallel application. We study their utilization in a very different context, storage in clusters, where client-server models are generally used to access remote storage (for instance NFS, PVFS or LUSTRE). Our experimental study based on the usage of the GM programming interface of MYRINET high-speed networks for distributed storage raised several interesting problems. Firstly, the specific memory utilization in the storage access system layers does not easily fit the traditional memory model of high-speed networks. Secondly, client-server models that are used for distributed storage have specific requirements on message control and event processing, which are not handled by existing interfaces. We propose different solutions to solve communication control problems at the filesystem level. We show that a modification of the network programming interface is required. Data transfer issues need an adaptation of the operating system. We detail several propositions for network programming interfaces which make their utilization easier in the context of distributed storage. The integration of a flexible processing of data transfer in the new programming interface MYRINET/MX is finally presented. Performance evaluations show that its usage in the context of both storage and other types of applications is easy and efficient.Keywords: distributed storage, remote file access, cluster, high-speed network, MYRINET, zero-copy, memory registration, communication control, event notification, application programming interface
Procedia PDF Downloads 2195643 Self-Organizing Maps for Credit Card Fraud Detection
Authors: ChunYi Peng, Wei Hsuan CHeng, Shyh Kuang Ueng
Abstract:
This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies
Procedia PDF Downloads 575642 An Approach towards Smart Future: Ict Infrastructure Integrated into Urban Water Networks
Authors: Ahsan Ali, Mayank Ostwal, Nikhil Agarwal
Abstract:
Abstract—According to a World Bank report, millions of people across the globe still do not have access to improved water services. With uninterrupted growth of cities and urban inhabitants, there is a mounting need to safeguard the sustainable expansion of cities. Efficient functioning of the urban components and high living standards of the residents are needed to be ensured. The water and sanitation network of an urban development is one of its most essential parts of its critical infrastructure. The growth in urban population is leading towards increased water demand, and thus, the local water resources are severely strained. 'Smart water' is referred to water and waste water infrastructure that is able to manage the limited resources and the energy used to transport it. It enables the sustainable consumption of water resources through co-ordinate water management system, by integrating Information Communication Technology (ICT) solutions, intended at maximizing the socioeconomic benefits without compromising the environmental values. This paper presents a case study from a medium sized city in North-western Pakistan. Currently, water is getting contaminated due to the proximity between water and sewer pipelines in the study area, leading to public health issues. Due to unsafe grey water infiltration, the scarce ground water is also getting polluted. This research takes into account the design of smart urban water network by integrating ICT (Information and Communication Technology) with urban water network. The proximity between the existing water supply network and sewage network is analyzed and a design of new water supply system is proposed. Real time mapping of the existing urban utility networks will be projected with the help of GIS applications. The issue of grey water infiltration is addressed by providing sustainable solutions with the help of locally available materials, keeping in mind the economic condition of the area. To deal with the current growth of urban population, it is vital to develop new water resources. Hence, distinctive and cost effective procedures to harness rain water would be suggested as a part of the research study experiment.Keywords: GIS, smart water, sustainability, urban water management
Procedia PDF Downloads 2175641 Copper Price Prediction Model for Various Economic Situations
Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin
Abstract:
Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.Keywords: copper prices, prediction model, neural network, time series forecasting
Procedia PDF Downloads 1135640 Blockchain-Based Approach on Security Enhancement of Distributed System in Healthcare Sector
Authors: Loong Qing Zhe, Foo Jing Heng
Abstract:
A variety of data files are now available on the internet due to the advancement of technology across the globe today. As more and more data are being uploaded on the internet, people are becoming more concerned that their private data, particularly medical health records, are being compromised and sold to others for money. Hence, the accessibility and confidentiality of patients' medical records have to be protected through electronic means. Blockchain technology is introduced to offer patients security against adversaries or unauthorised parties. In the blockchain network, only authorised personnel or organisations that have been validated as nodes may share information and data. For any change within the network, including adding a new block or modifying existing information about the block, a majority of two-thirds of the vote is required to confirm its legitimacy. Additionally, a consortium permission blockchain will connect all the entities within the same community. Consequently, all medical data in the network can be safely shared with all authorised entities. Also, synchronization can be performed within the cloud since the data is real-time. This paper discusses an efficient method for storing and sharing electronic health records (EHRs). It also examines the framework of roles within the blockchain and proposes a new approach to maintain EHRs with keyword indexes to search for patients' medical records while ensuring data privacy.Keywords: healthcare sectors, distributed system, blockchain, electronic health records (EHR)
Procedia PDF Downloads 1915639 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series
Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold
Abstract:
To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network
Procedia PDF Downloads 1395638 An End-to-end Piping and Instrumentation Diagram Information Recognition System
Authors: Taekyong Lee, Joon-Young Kim, Jae-Min Cha
Abstract:
Piping and instrumentation diagram (P&ID) is an essential design drawing describing the interconnection of process equipment and the instrumentation installed to control the process. P&IDs are modified and managed throughout a whole life cycle of a process plant. For the ease of data transfer, P&IDs are generally handed over from a design company to an engineering company as portable document format (PDF) which is hard to be modified. Therefore, engineering companies have to deploy a great deal of time and human resources only for manually converting P&ID images into a computer aided design (CAD) file format. To reduce the inefficiency of the P&ID conversion, various symbols and texts in P&ID images should be automatically recognized. However, recognizing information in P&ID images is not an easy task. A P&ID image usually contains hundreds of symbol and text objects. Most objects are pretty small compared to the size of a whole image and are densely packed together. Traditional recognition methods based on geometrical features are not capable enough to recognize every elements of a P&ID image. To overcome these difficulties, state-of-the-art deep learning models, RetinaNet and connectionist text proposal network (CTPN) were used to build a system for recognizing symbols and texts in a P&ID image. Using the RetinaNet and the CTPN model carefully modified and tuned for P&ID image dataset, the developed system recognizes texts, equipment symbols, piping symbols and instrumentation symbols from an input P&ID image and save the recognition results as the pre-defined extensible markup language format. In the test using a commercial P&ID image, the P&ID information recognition system correctly recognized 97% of the symbols and 81.4% of the texts.Keywords: object recognition system, P&ID, symbol recognition, text recognition
Procedia PDF Downloads 153