Search results for: tree detection
1234 The Extent of Virgin Olive-Oil Prices' Distribution Revealing the Behavior of Market Speculators
Authors: Fathi Abid, Bilel Kaffel
Abstract:
The olive tree, the olive harvest during winter season and the production of olive oil better known by professionals under the name of the crushing operation have interested institutional traders such as olive-oil offices and private companies such as food industry refining and extracting pomace olive oil as well as export-import public and private companies specializing in olive oil. The major problem facing producers of olive oil each winter campaign, contrary to what is expected, it is not whether the harvest will be good or not but whether the sale price will allow them to cover production costs and achieve a reasonable margin of profit or not. These questions are entirely legitimate if we judge by the importance of the issue and the heavy complexity of the uncertainty and competition made tougher by a high level of indebtedness and the experience and expertise of speculators and producers whose objectives are sometimes conflicting. The aim of this paper is to study the formation mechanism of olive oil prices in order to learn about speculators’ behavior and expectations in the market, how they contribute by their industry knowledge and their financial alliances and the size the financial challenge that may be involved for them to build private information hoses globally to take advantage. The methodology used in this paper is based on two stages, in the first stage we study econometrically the formation mechanisms of olive oil price in order to understand the market participant behavior by implementing ARMA, SARMA, GARCH and stochastic diffusion processes models, the second stage is devoted to prediction purposes, we use a combined wavelet- ANN approach. Our main findings indicate that olive oil market participants interact with each other in a way that they promote stylized facts formation. The unstable participant’s behaviors create the volatility clustering, non-linearity dependent and cyclicity phenomena. By imitating each other in some periods of the campaign, different participants contribute to the fat tails observed in the olive oil price distribution. The best prediction model for the olive oil price is based on a back propagation artificial neural network approach with input information based on wavelet decomposition and recent past history.Keywords: olive oil price, stylized facts, ARMA model, SARMA model, GARCH model, combined wavelet-artificial neural network, continuous-time stochastic volatility mode
Procedia PDF Downloads 3401233 Assessment of Designed Outdoor Playspaces as Learning Environments and Its Impact on Child’s Wellbeing: A Case of Bhopal, India
Authors: Richa Raje, Anumol Antony
Abstract:
Playing is the foremost stepping stone for childhood development. Play is an essential aspect of a child’s development and learning because it creates meaningful enduring environmental connections and increases children’s performance. The children’s proficiencies are ever varying in their course of growth. There is innovation in the activities, as it kindles the senses, surges the love for exploration, overcomes linguistic barriers and physiological development, which in turn allows them to find their own caliber, spontaneity, curiosity, cognitive skills, and creativity while learning during play. This paper aims to comprehend the learning in play which is the most essential underpinning aspect of the outdoor play area. It also assesses the trend of playgrounds design that is merely hammered with equipment's. It attempts to derive a relation between the natural environment and children’s activities and the emotions/senses that can be evoked in the process. One of the major concerns with our outdoor play is that it is limited to an area with a similar kind of equipment, thus making the play highly regimented and monotonous. This problem is often lead by the strict timetables of our education system that hardly accommodates play. Due to these reasons, the play areas remain neglected both in terms of design that allows learning and wellbeing. Poorly designed spaces fail to inspire the physical, emotional, social and psychological development of the young ones. Currently, the play space has been condensed to an enclosed playground, driveway or backyard which confines the children’s capability to leap the boundaries set for him. The paper emphasizes on study related to kids ranging from 5 to 11 years where the behaviors during their interactions in a playground are mapped and analyzed. The theory of affordance is applied to various outdoor play areas, in order to study and understand the children’s environment and how variedly they perceive and use them. A higher degree of affordance shall form the basis for designing the activities suitable in play spaces. It was observed during their play that, they choose certain spaces of interest majority being natural over other artificial equipment. The activities like rolling on the ground, jumping from a height, molding earth, hiding behind tree, etc. suggest that despite equipment they have an affinity towards nature. Therefore, we as designers need to take a cue from their behavior and practices to be able to design meaningful spaces for them, so the child gets the freedom to test their precincts.Keywords: children, landscape design, learning environment, nature and play, outdoor play
Procedia PDF Downloads 1261232 Comparing the Detection of Autism Spectrum Disorder within Males and Females Using Machine Learning Techniques
Authors: Joseph Wolff, Jeffrey Eilbott
Abstract:
Autism Spectrum Disorders (ASD) are a spectrum of social disorders characterized by deficits in social communication, verbal ability, and interaction that can vary in severity. In recent years, researchers have used magnetic resonance imaging (MRI) to help detect how neural patterns in individuals with ASD differ from those of neurotypical (NT) controls for classification purposes. This study analyzed the classification of ASD within males and females using functional MRI data. Functional connectivity (FC) correlations among brain regions were used as feature inputs for machine learning algorithms. Analysis was performed on 558 cases from the Autism Brain Imaging Data Exchange (ABIDE) I dataset. When trained specifically on females, the algorithm underperformed in classifying the ASD subset of our testing population. Although the subject size was relatively smaller in the female group, the manual matching of both male and female training groups helps explain the algorithm’s bias, indicating the altered sex abnormalities in functional brain networks compared to typically developing peers. These results highlight the importance of taking sex into account when considering how generalizations of findings on males with ASD apply to females.Keywords: autism spectrum disorder, machine learning, neuroimaging, sex differences
Procedia PDF Downloads 2111231 Effect of Term of Preparation on Performance of Cool Chamber Stored White Poplar Hardwood Cuttings in Nursery
Authors: Branislav Kovačević, Andrej Pilipović, Zoran Novčić, Marina Milović, Lazar Kesić, Milan Drekić, Saša Pekeč, Leopold Poljaković Pajnik, Saša Orlović
Abstract:
Poplars present one of the most important tree species used for phytoremediation in the northern hemisphere. They can be used either as direct “cleaners” of the contaminated soils or as buffer zones preventing the contaminant plume to the surrounding environment. In order to produce appropriate planting material for this purpose, there is a long process of the breeding of the most favorable candidates. Although the development of the poplar propagation technology has been evolving for decades, white poplar nursery production, as well as the establishment of short-rotation coppice plantations, still considerably depends on the success of hardwood cuttings’ survival. This is why easy rooting is among the most desirable properties in white poplar breeding. On the other hand, there are many opportunities for the optimization of the technological procedures in order to meet the demands of particular genotype (clonal technology). In this study the effect of the term of hardwood cuttings’ preparation of four white poplar clones on their survival and further growth of rooted cuttings in nursery conditions were tested. There were three terms of cuttings’ preparation: the beginning of February (2nd Feb 2023), the beginning of March (3rd Mar 2023) and the end of March (21nd Mar 2023), which is regarded as the standard term. The cuttings were stored in cool chamber at 2±2°C. All cuttings were planted on the same date (11th Apr 2023), in soil prepared with rotary tillage, and then cultivated by usual nursey procedures. According to the results obtained after the bud set (29th Sept 2023) there were significant differences in the survival and growth of rooted cuttings between examined terms of cutting preparation. Also, there were significant differences in the reaction of examined clones on terms of cutting preparation. In total, the best results provided cuttings prepared at the first term (2nd Feb 2023) (survival rate of 39.4%), while performance after two later preparation terms was significantly poorer (20.5% after second and 16.5% after third term). These results stress the significance of dormancy preservation in cuttings of examined white poplar clones for their survival, which could be especially important in context of climate change. Differences in clones’ reaction to term of cutting preparation suggest necessity of adjustment of the technology to the needs of particular clone i.e. design of clone specific technology.Keywords: rooting, Populus alba, nursery, clonal technology
Procedia PDF Downloads 661230 Nafion Multiwalled Carbon Nano Tubes Composite Film Modified Glassy Carbon Sensor for the Voltammetric Estimation of Dianabol Steroid in Pharmaceuticals and Biological Fluids
Authors: Nouf M. Al-Ourfi, A. S. Bashammakh, M. S. El-Shahawi
Abstract:
The redox behavior of dianabol steroid (DS) on Nafion Multiwalled Carbon nano -tubes (MWCNT) composite film modified glassy carbon electrode (GCE) in various buffer solutions was studied using cyclic voltammetry (CV) and differential pulse- adsorptive cathodic stripping voltammetry (DP-CSV) and successfully compared with the results at non modified bare GCE. The Nafion-MWCNT composite film modified GCE exhibited the best electrochemical response among the two electrodes for the electro reduction of DS that was inferred from the EIS, CV and DP-CSV. The modified sensor showed a sensitive, stable and linear response in the concentration range of 5 – 100 nM with a detection limit of 0.08 nM. The selectivity of the proposed sensor was assessed in the presence of high concentration of major interfering species. The analytical application of the sensor for the quantification of DS in pharmaceutical formulations and biological fluids (urine) was determined and the results demonstrated acceptable recovery and RSD of 5%. Statistical treatment of the results of the proposed method revealed no significant differences in the accuracy and precision. The relative standard deviations for five measurements of 50 and 300 ng mL−1 of DS were 3.9 % and 1.0 %, respectively.Keywords: dianabol steroid, determination, modified GCE, urine
Procedia PDF Downloads 2841229 Evaluating Portfolio Performance by Highlighting Network Property and the Sharpe Ratio in the Stock Market
Authors: Zahra Hatami, Hesham Ali, David Volkman
Abstract:
Selecting a portfolio for investing is a crucial decision for individuals and legal entities. In the last two decades, with economic globalization, a stream of financial innovations has rushed to the aid of financial institutions. The importance of selecting stocks for the portfolio is always a challenging task for investors. This study aims to create a financial network to identify optimal portfolios using network centralities metrics. This research presents a community detection technique of superior stocks that can be described as an optimal stock portfolio to be used by investors. By using the advantages of a network and its property in extracted communities, a group of stocks was selected for each of the various time periods. The performance of the optimal portfolios compared to the famous index. Their Sharpe ratio was calculated in a timely manner to evaluate their profit for making decisions. The analysis shows that the selected potential portfolio from stocks with low centrality measurement can outperform the market; however, they have a lower Sharpe ratio than stocks with high centrality scores. In other words, stocks with low centralities could outperform the S&P500 yet have a lower Sharpe ratio than high central stocks.Keywords: portfolio management performance, network analysis, centrality measurements, Sharpe ratio
Procedia PDF Downloads 1561228 A Study on the False Alarm Rates of MEWMA and MCUSUM Control Charts When the Parameters Are Estimated
Authors: Umar Farouk Abbas, Danjuma Mustapha, Hamisu Idi
Abstract:
It is now a known fact that quality is an important issue in manufacturing industries. A control chart is an integrated and powerful tool in statistical process control (SPC). The mean µ and standard deviation σ parameters are estimated. In general, the multivariate exponentially weighted moving average (MEWMA) and multivariate cumulative sum (MCUSUM) are used in the detection of small shifts in joint monitoring of several correlated variables; the charts used information from past data which makes them sensitive to small shifts. The aim of the paper is to compare the performance of Shewhart xbar, MEWMA, and MCUSUM control charts in terms of their false rates when parameters are estimated with autocorrelation. A simulation was conducted in R software to generate the average run length (ARL) values of each of the charts. After the analysis, the results show that a comparison of the false alarm rates of the charts shows that MEWMA chart has lower false alarm rates than the MCUSUM chart at various levels of parameter estimated to the number of ARL0 (in control) values. Also noticed was that the sample size has an advert effect on the false alarm of the control charts.Keywords: average run length, MCUSUM chart, MEWMA chart, false alarm rate, parameter estimation, simulation
Procedia PDF Downloads 2231227 Tuberculosis in Patients with HIV-Infection in Russia: Cohort Study over the Period of 2015-2016 Years
Authors: Marina Nosik, Irina Rymanova, Konstantin Ryzhov, Joan Yarovaya, Alexander Sobkin
Abstract:
Tuberculosis (TB) associated with HIV is one of the top causes of death worldwide. However, early detection and treatment of TB in HIV-infected individuals significantly reduces the risk of developing severe forms of TB and mortality. The goal of the study was to analyze the peculiarities of TB associated with HIV infection. Over the period of 2015-2016 a retrospective cohort study was conducted among 377 patients with TB/HIV co-infection who attended the Moscow Tuberculosis Clinic. The majority of the patients was male (64,5%). The median age was: men 37,9 (24÷62) and women 35,4 (22÷72) years. The most prevalent age group was 30-39 years both for men and women (73,3% and 54,7%, respectively). The ratio of patients in age group 50-59 and senior was 3,9%. Socioeconomic status of patients was rather low: only 2.3% of patients had a university degree; 76,1% was unemployed (of whom 21,7% were disabled). Most patients had disseminated pulmonary tuberculosis in the phase of infiltration/ decay (41,5%). The infiltrative TB was detected in 18,9% of patients; 20,1% patients had tuberculosis of intrathoracic lymph nodes. The occurrence of MDR-TB was 16,8% and XDR-TB – 17,9%. The number of HIV-positive patients with newly diagnosed TB was n=261(69,2%). The active TB-form (MbT+) among new TB/HIV cases was 44,7 %. The severe clinical forms of TB and a high TB incidence rate among HIV-infected individuals alongside with a large number of cases of newly diagnosed tuberculosis, indicate the need for more intense interaction with TB services for timely diagnosis of TB which will optimize treatment outcomes.Keywords: HIV, tuberculosis (TB), TB associated with HIV, multidrug-resistant TB (MDR-TB)
Procedia PDF Downloads 2431226 Clustering of Association Rules of ISIS & Al-Qaeda Based on Similarity Measures
Authors: Tamanna Goyal, Divya Bansal, Sanjeev Sofat
Abstract:
In world-threatening terrorist attacks, where early detection, distinction, and prediction are effective diagnosis techniques and for functionally accurate and precise analysis of terrorism data, there are so many data mining & statistical approaches to assure accuracy. The computational extraction of derived patterns is a non-trivial task which comprises specific domain discovery by means of sophisticated algorithm design and analysis. This paper proposes an approach for similarity extraction by obtaining the useful attributes from the available datasets of terrorist attacks and then applying feature selection technique based on the statistical impurity measures followed by clustering techniques on the basis of similarity measures. On the basis of degree of participation of attributes in the rules, the associative dependencies between the attacks are analyzed. Consequently, to compute the similarity among the discovered rules, we applied a weighted similarity measure. Finally, the rules are grouped by applying using hierarchical clustering. We have applied it to an open source dataset to determine the usability and efficiency of our technique, and a literature search is also accomplished to support the efficiency and accuracy of our results.Keywords: association rules, clustering, similarity measure, statistical approaches
Procedia PDF Downloads 3221225 Neurostatistics of Cognitive Functions
Authors: Ajay Panchal
Abstract:
This research introduces the Law of Activity Dominancy (LAD), a foundational theory in neuroscience postulating that simultaneous brain-regulated activities cannot share identical brain wave frequencies. The study explores the LAD through comprehensive observational and statistical analyses, illustrating its applicability across all cognitive functions. Utilizing brain wave frequency data across diverse scenarios, the research derives probabilistic models to predict the likelihood of concurrent cognitive activities. The LAD theory's predictive power extends to all neurological conditions, offering insights into Alzheimer's disease, major depressive disorder, epilepsy, schizophrenia, anxiety disorders, OCD, ASD, ADHD etc... By analyzing EEG patterns, the research demonstrates how overlapping brain wave frequencies disrupt specific cognitive and motor functions, aligning with clinical observations. This study also outlines the statistical properties of the LAD, presenting equations to calculate activity probabilities and emphasizing its utility in personalizing cognitive assessments, early disease detection, tailored therapies, optimizing cognitive performance etc... By bridging theoretical neuroscience with practical applications, the research establishes the LAD as a pivotal framework for understanding and enhancing human cognitive functions.Keywords: Ajay Panchal, cognitive neuroscience, computational neuroscience, theoretical neuroscience
Procedia PDF Downloads 41224 Applying the Quad Model to Estimate the Implicit Self-Esteem of Patients with Depressive Disorders: Comparing the Psychometric Properties with the Implicit Association Test Effect
Authors: Yi-Tung Lin
Abstract:
Researchers commonly assess implicit self-esteem with the Implicit Association Test (IAT). The IAT’s measure, often referred to as the IAT effect, indicates the strengths of automatic preferences for the self relative to others, which is often considered an index of implicit self-esteem. However, based on the Dual-process theory, the IAT does not rely entirely on the automatic process; it is also influenced by a controlled process. The present study, therefore, analyzed the IAT data with the Quad model, separating four processes on the IAT performance: the likelihood that automatic association is activated by the stimulus in the trial (AC); that a correct response is discriminated in the trial (D); that the automatic bias is overcome in favor of a deliberate response (OB); and that when the association is not activated, and the individual fails to discriminate a correct answer, there is a guessing or response bias drives the response (G). The AC and G processes are automatic, while the D and OB processes are controlled. The AC parameter is considered as the strength of the association activated by the stimulus, which reflects what implicit measures of social cognition aim to assess. The stronger the automatic association between self and positive valence, the more likely it will be activated by a relevant stimulus. Therefore, the AC parameter was used as the index of implicit self-esteem in the present study. Meanwhile, the relationship between implicit self-esteem and depression is not fully investigated. In the cognitive theory of depression, it is assumed that the negative self-schema is crucial in depression. Based on this point of view, implicit self-esteem would be negatively associated with depression. However, the results among empirical studies are inconsistent. The aims of the present study were to examine the psychometric properties of the AC (i.e., test-retest reliability and its correlations with explicit self-esteem and depression) and compare it with that of the IAT effect. The present study had 105 patients with depressive disorders completing the Rosenberg Self-Esteem Scale, Beck Depression Inventory-II and the IAT on the pretest. After at least 3 weeks, the participants completed the second IAT. The data were analyzed by the latent-trait multinomial processing tree model (latent-trait MPT) with the TreeBUGS package in R. The result showed that the latent-trait MPT had a satisfactory model fit. The effect size of test-retest reliability of the AC and the IAT effect were medium (r = .43, p < .0001) and small (r = .29, p < .01) respectively. Only the AC showed a significant correlation with explicit self-esteem (r = .19, p < .05). Neither of the two indexes was correlated with depression. Collectively, the AC parameter was a satisfactory index of implicit self-esteem compared with the IAT effect. Also, the present study supported the results that implicit self-esteem was not correlated with depression.Keywords: cognitive modeling, implicit association test, implicit self-esteem, quad model
Procedia PDF Downloads 1281223 Analysis and Modeling of Vibratory Signals Based on LMD for Rolling Bearing Fault Diagnosis
Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine
Abstract:
The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally non-stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. the results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.Keywords: fault diagnosis, local mean decomposition, rolling element bearing, vibration analysis
Procedia PDF Downloads 4081222 Effect of Composition Fuel on Safety of Combustion Process
Authors: Lourdes I. Meriño, Viatcheslav Kafarov, Maria Gómez
Abstract:
Fuel gas used in the burner receives as contributors other gases from different processes and this result in variability in the composition, which may cause an incomplete combustion. The burners are designed to operate in a certain curve, the calorific power dependent on the pressure and gas burners. When deviation of propane and C5+ is huge, there is a large release of energy, which causes it to work out the curves of the burners, because less pressure is required to force curve into operation. That increases the risk of explosion in an oven, besides of a higher environmental impact. There should be flame detection systems, and instrumentation equipment, such as local pressure gauges located at the entrance of the gas burners, to permit verification by the operator. Additionally, distributed control systems must be configured with different combustion instruments associated with respective alarms, as well as its operational windows, and windows control guidelines of integrity, leaving the design information of this equipment. Therefore, it is desirable to analyze when a plant is taken out of service and make good operational analysis to determine the impact of changes in fuel gas streams contributors, by varying the calorific power. Hence, poor combustion is one of the cause instability in the flame of the burner and having a great impact on process safety, the integrity of individuals and teams and environment.Keywords: combustion process, fuel composition, safety, fuel gas
Procedia PDF Downloads 4901221 Stability Indicating Method Development and Validation for Estimation of Antiasthmatic Drug in Combined Dosages Formed by RP-HPLC
Authors: Laxman H. Surwase, Lalit V. Sonawane, Bhagwat N. Poul
Abstract:
A simple stability indicating high performance liquid chromatographic method has been developed for the simultaneous determination of Levosalbutamol Sulphate and Ipratropium Bromide in bulk and pharmaceutical dosage form using reverse phase Zorbax Eclipse Plus C8 column (250mm×4.6mm), with mobile phase phosphate buffer (0.05M KH2PO4): acetonitrile (55:45v/v) pH 3.5 adjusted with ortho-phosphoric acid, the flow rate was 1.0 mL/min and the detection was carried at 212 nm. The retention times of Levosalbutamol Sulphate and Ipratropium Bromide were 2.2007 and 2.6611 min respectively. The correlation coefficient of Levosalbutamol Sulphate and Ipratropium Bromide was found to be 0.997 and 0.998.Calibration plots were linear over the concentration ranges 10-100µg/mL for both Levosalbutamol Sulphate and Ipratropium Bromide. The LOD and LOQ of Levosalbutamol Sulphate were 2.520µg/mL and 7.638µg/mL while for Ipratropium Bromide was 1.201µg/mL and 3.640 µg/mL. The accuracy of the proposed method was determined by recovery studies and found to be 100.15% for Levosalbutamol Sulphate and 100.19% for Ipratropium Bromide respectively. The method was validated for accuracy, linearity, sensitivity, precision, robustness, system suitability. The proposed method could be utilized for routine analysis of Levosalbutamol Sulphate and Ipratropium Bromide in bulk and pharmaceutical capsule dosage form.Keywords: levosalbutamol sulphate, ipratropium bromide, RP-HPLC, phosphate buffer, acetonitrile
Procedia PDF Downloads 3511220 Profiling Risky Code Using Machine Learning
Authors: Zunaira Zaman, David Bohannon
Abstract:
This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties
Procedia PDF Downloads 1091219 Electronic Nose for Monitoring Fungal Deterioration of Stored Rapeseed
Authors: Robert Rusinek, Marek Gancarz, Jolanta Wawrzyniak, Marzena Gawrysiak-Witulska, Dariusz Wiącek, Agnieszka Nawrocka
Abstract:
Investigations were performed to examine the possibility of using an electronic nose to monitor the development of fungal microflora during the first eighteen days of rapeseed storage. The Cyranose 320 device with polymer-composite sensors was used. Each sample of infected material was divided into three parts, and the degree of spoilage was measured in three ways: analysis of colony forming units (CFU), determination of ergosterol content (ERG), and measurement with the eNose. Principal component analysis (PCA) was performed on the generated patterns of signals, and six groups of different spoilage levels were isolated. The electronic nose with polymer-composite sensors under laboratory conditions distinguished between species of spoiled and unspoiled seeds with 100% accuracy. Despite some minor differences in the CFU and ergosterol content, the electronic nose provided responses correctly corresponding to the level of spoilage with 85% accuracy. Therefore, the main conclusion from the study is that the electronic nose is a promising tool for quick and non-destructive detection of the level of oil seed spoilage. The research was supported by the National Centre for Research and Development (NCBR), Grant No. PBS2/A8/22/2013.Keywords: colony forming units, electronic nose, ergosterol, rapeseed
Procedia PDF Downloads 3231218 Internal DC Short-Circuit Fault Analysis and Protection for VSI of Wind Power Generation Systems
Authors: Mehdi Radmehr, Amir Hamed Mashhadzadeh, Mehdi Jafari
Abstract:
Traditional HVDC systems are tough to DC short circuits as they are current regulated with a large reactance connected in series with cables. Multi-terminal DC wind farm topologies are attracting increasing research attempt. With AC/DC converters on the generator side, this topology can be developed into a multi-terminal DC network for wind power collection, which is especially suitable for large-scale offshore wind farms. For wind farms, the topology uses high-voltage direct-current transmission based on voltage-source converters (VSC-HVDC). Therefore, they do not suffer from over currents due to DC cable faults and there is no over current to react to. In this study, the multi-terminal DC wind farm topology is introduced. Then, possible internal DC faults are analyzed according to type and characteristic. Fault over current expressions are given in detail. Under this characteristic analysis, fault detection and detailed protection methods are proposed. Theoretical analysis and PSCAD/EMTDC simulations are provided.Keywords: DC short circuits, multi-terminal DC wind farm topologies, HVDC transmission based on VSC, fault analysis
Procedia PDF Downloads 4221217 Lab-on-Chip Multiplexed qPCR Analysis Utilizing Melting Curve Analysis Detects Up to 144 Alleles with Sub-hour Turn-around Time
Authors: Jeremy Woods, Fanqing Chen
Abstract:
Rapid genome testing can provide results in at best hours to days, though there are certain clinical decisions that could be guided by genetic test results that need results in hours to minutes. As such, methods of genetic Point of Care Testing (POCT) are required if genetic data is to guide management in illnesses in a wide variety of critical and emergent medical situations such as neonatal sepsis, chemotherapy administration in endometrial cancer, and glucose-6-phosphate dehydrogenase deficiency (G6PD)-associated neonatal hyperbilirubinemia. As such, we developed a POCT “lab-on-chip” technology capable of identifying up to 144 alleles in under an hour. This test required no specialized training to utilize and is suitable to deployment in clinics and hospitals for use by non-laboratory personnel such as nurses. We developed a multiplexed qPCR-based sample-to-answer system with melting curve analysis capable of detecting up to 144 alleles utilizing the Kelliop RapidSeq126 PCR platform combined with a single-use microfluidic cartridge. The RapidSeq126 is the size of a standard desktop printer and the microfluidic cartridges are smaller than a deck of playing cards. Thus the system was deployable in the outpatient setting for clinical trials of MT-RNR1 genotyping. The sample (buccal swab from volunteers or plasmids in media) used for DNA extraction was placed in the cartridge sample inlet prior to inserting the cartridge into the RapidSeq126. The microfluidic cartridge was composed of heat resistant polymer with a sample inlet, 100um conduits, liquid and solid reagents, valves, extraction chamber, lyophilization chamber, 12 PCR reaction chambers, and a waste chamber. No human effort was required for processing the sample and performing the assay other than placing the sample in the cartridge and placing the cartridge in the RapidSeq126. The RapidSeq126 has demonstrated ex vivo detection in plasmids and in vivo detection from human volunteer samples of up to 144 alleles per microfluidic cartridge used and did not require specialized laboratory training to operate. Efficacy was proven for several applications, such as multiple microsatellite instability (MSI) sites (SULF/RYR3/MRE11/ACVR2A/DIDO1/SEC31A/BTBD7), endometrial cancer POLE exonuclease domain (EMD) mutation status, and G6PD variants such as those commonly associated with hemolysis (c.202G>A, c.376A>G, c.680G>A>T, c.968T>C, 404A>C, c.871G>A). The RapidSeq126 system was also able to identify the three MT-RNR1 variants associated with aminoglycoside-induced sensorineural hearing loss (m.1555A>G, m.1095T>C, m.1494C>T). Results were provided in under an hour in a sample-to-answer fashion requiring no processing other than inserting the cartridge with the sample into the RapidSeq126. Results were provided in a digital, HL7-compliant format suitable for interfacing with Electronic Healthcare Record (EHR). The RapidSeq126 system provides a solution for emergency and critical medical situations requiring results in a matter of minutes to hours. The HL7-compliant data format of results enables the RapidSeq126 to interface directly with EHRs to generate best practice advisories and further reduce errors and time to diagnosis by providing digital results.Keywords: genetic testing, pharmacogenomics, point of care testing, rapid genetic testing
Procedia PDF Downloads 91216 The Analysis of One Million Reddit Confessions Corpus: The Use of Emotive Verbs and First Person Singular Pronoun as Linguistic Psychotherapy Features
Authors: Natalia Wojarnik
Abstract:
The paper aims to present the analysis of a Reddit confessions corpus. The interpretation focuses on the use of emotional language, in particular emotive verbs, in the context of personal pronouns. The analysis of the linguistic properties answers the question of what the Reddit users confess about and who is the subject of confessions. The study reveals that the specific language patterns used in Reddit confessions reflect the language of depression and the language used by patients during different stages of their psychotherapy sessions. The paper concludes that Reddit users are more willing to confess about their own experiences, not rarely very private and intimate, extensively using the first person singular pronoun I. It indicates that the Reddit users use the language of depression and the language used by psychotherapy patients. The language they use is very emotionally impacted and includes many emotive verbs such as want, feel, need, hate, love. This finding in Reddit confessions correlates with the extensive use of stative affective verbs in the first stages of the psychotherapy sessions. Lastly, the paper refers to the positive and negative lexicon and helps determine how online posts can serve as a depression detector and “talking cure” for the users.Keywords: confessions, emotional language, emotive verbs, pronouns, first person pronoun, language of depression, depression detection, psychotherapy language
Procedia PDF Downloads 1201215 Determination of Aflatoxins in Edible-Medicinal Plant Samples by HPLC with Fluorescence Detector and KOBRA-Cell
Authors: Isil Gazioglu, Abdulselam Ertas
Abstract:
Aflatoxins (AFs) are secondary toxic metabolites of Aspergillus flavus and A. parasiticus. AFs can be absorbed through the skin. Potent carcinogens like AFs should be completely absent from cosmetics, this can be achieved by careful quality control of the raw plant materials. Regulatory limits for aflatoxins have been established in many countries, and reliable testing methodology is needed to implement and enforce the regulatory limits. In this study, ten medicinal plant samples (Bundelia tournefortti, Capsella bursa-pastoris, Carduus tenuiflorus, Cardaria draba, Malva neglecta, Malvella sharardiana, Melissa officinalis, Sideritis libanotica, Stakys thirkei, Thymus nummularius) were investigated for aflatoxin (AF) contaminations by employing an HPLC assay for the determination of AFB1, B2, G1 and G2. The samples were extracted with 70% (v/v) methanol in water before further cleaned up with an immunoaffinity column and followed by the detection of AFs by using an electrochemically post-column derivatization with Kobra-Cell and fluorescence detector. The extraction procedure was optimized in order to obtain the best recovery. The method was successfully carried out with all medicinal plant samples. The results revealed that five (50%) of samples were contaminated with AFs. The association between particular samples and the AF contaminated could not be determined due to the low frequency of positive samples.Keywords: aflatoxin B1, HPLC-FLD, KOBRA-Cell, mycotoxin
Procedia PDF Downloads 6061214 Molecular Characterization of White Spot Syndrome Virus in Some Cultured Penaeid Shrimps of Coastal Regions in Bangladesh
Authors: Md. Baki Billah, Suraiya Parveen, Shuvra Kanti Dey
Abstract:
Bangladesh is earning a lot of foreign currency by exporting shrimp, but this industry is facing a tremendous problem due to the infection of white spot syndrome virus (WSSV). This study was undermined to develop rapid detection method of WSSV. A total of shrimp samples 240 collected from the 12 shrimp farms of different coastal regions (Satkhira, Khulna, and Bagerhat) were analyzed by conventional PCR using VP28 and VP664 gene-specific primers. In satkhira, Bagerhat and Khulna 39, 41 and 29 samples were found WSSV positive respectively. Real-time PCR using 71-bp amplicon for VP664 gene correlated well with conventional PCR data. The prevalence rates of WSSV among the collected 240 samples were Satkhira 38%, Khulna 47% and Bagerhat 50%. Molecular analysis of the VP28 gene sequences of WSSV revealed that Bangladeshi strains phylogenetically affiliated to the strains belong to India. This work concluded that WSSV infections are widely distributed in the coastal regions cultured shrimp in Bangladesh. Physico-chemical parameters were within the range of fish culture.Keywords: coastal regions of Bangladesh, PCR, shrimp, white spot syndrome virus
Procedia PDF Downloads 1291213 Analysis and Detection of Facial Expressions in Autism Spectrum Disorder People Using Machine Learning
Authors: Muhammad Maisam Abbas, Salman Tariq, Usama Riaz, Muhammad Tanveer, Humaira Abdul Ghafoor
Abstract:
Autism Spectrum Disorder (ASD) refers to a developmental disorder that impairs an individual's communication and interaction ability. Individuals feel difficult to read facial expressions while communicating or interacting. Facial Expression Recognition (FER) is a unique method of classifying basic human expressions, i.e., happiness, fear, surprise, sadness, disgust, neutral, and anger through static and dynamic sources. This paper conducts a comprehensive comparison and proposed optimal method for a continued research project—a system that can assist people who have Autism Spectrum Disorder (ASD) in recognizing facial expressions. Comparison has been conducted on three supervised learning algorithms EigenFace, FisherFace, and LBPH. The JAFFE, CK+, and TFEID (I&II) datasets have been used to train and test the algorithms. The results were then evaluated based on variance, standard deviation, and accuracy. The experiments showed that FisherFace has the highest accuracy for all datasets and is considered the best algorithm to be implemented in our system.Keywords: autism spectrum disorder, ASD, EigenFace, facial expression recognition, FisherFace, local binary pattern histogram, LBPH
Procedia PDF Downloads 1761212 Sarcasm Recognition System Using Hybrid Tone-Word Spotting Audio Mining Technique
Authors: Sandhya Baskaran, Hari Kumar Nagabushanam
Abstract:
Sarcasm sentiment recognition is an area of natural language processing that is being probed into in the recent times. Even with the advancements in NLP, typical translations of words, sentences in its context fail to provide the exact information on a sentiment or emotion of a user. For example, if something bad happens, the statement ‘That's just what I need, great! Terrific!’ is expressed in a sarcastic tone which could be misread as a positive sign by any text-based analyzer. In this paper, we are presenting a unique real time ‘word with its tone’ spotting technique which would provide the sentiment analysis for a tone or pitch of a voice in combination with the words being expressed. This hybrid approach increases the probability for identification of special sentiment like sarcasm much closer to the real world than by mining text or speech individually. The system uses a tone analyzer such as YIN-FFT which extracts pitch segment-wise that would be used in parallel with a speech recognition system. The clustered data is classified for sentiments and sarcasm score for each of it determined. Our Simulations demonstrates the improvement in f-measure of around 12% compared to existing detection techniques with increased precision and recall.Keywords: sarcasm recognition, tone-word spotting, natural language processing, pitch analyzer
Procedia PDF Downloads 2931211 An Approach for Estimation in Hierarchical Clustered Data Applicable to Rare Diseases
Authors: Daniel C. Bonzo
Abstract:
Practical considerations lead to the use of unit of analysis within subjects, e.g., bleeding episodes or treatment-related adverse events, in rare disease settings. This is coupled with data augmentation techniques such as extrapolation to enlarge the subject base. In general, one can think about extrapolation of data as extending information and conclusions from one estimand to another estimand. This approach induces hierarchichal clustered data with varying cluster sizes. Extrapolation of clinical trial data is being accepted increasingly by regulatory agencies as a means of generating data in diverse situations during drug development process. Under certain circumstances, data can be extrapolated to a different population, a different but related indication, and different but similar product. We consider here the problem of estimation (point and interval) using a mixed-models approach under an extrapolation. It is proposed that estimators (point and interval) be constructed using weighting schemes for the clusters, e.g., equally weighted and with weights proportional to cluster size. Simulated data generated under varying scenarios are then used to evaluate the performance of this approach. In conclusion, the evaluation result showed that the approach is a useful means for improving statistical inference in rare disease settings and thus aids not only signal detection but risk-benefit evaluation as well.Keywords: clustered data, estimand, extrapolation, mixed model
Procedia PDF Downloads 1371210 One-Shot Text Classification with Multilingual-BERT
Authors: Hsin-Yang Wang, K. M. A. Salam, Ying-Jia Lin, Daniel Tan, Tzu-Hsuan Chou, Hung-Yu Kao
Abstract:
Detecting user intent from natural language expression has a wide variety of use cases in different natural language processing applications. Recently few-shot training has a spike of usage on commercial domains. Due to the lack of significant sample features, the downstream task performance has been limited or leads to an unstable result across different domains. As a state-of-the-art method, the pre-trained BERT model gathering the sentence-level information from a large text corpus shows improvement on several NLP benchmarks. In this research, we are proposing a method to change multi-class classification tasks into binary classification tasks, then use the confidence score to rank the results. As a language model, BERT performs well on sequence data. In our experiment, we change the objective from predicting labels into finding the relations between words in sequence data. Our proposed method achieved 71.0% accuracy in the internal intent detection dataset and 63.9% accuracy in the HuffPost dataset. Acknowledgment: This work was supported by NCKU-B109-K003, which is the collaboration between National Cheng Kung University, Taiwan, and SoftBank Corp., Tokyo.Keywords: OSML, BERT, text classification, one shot
Procedia PDF Downloads 1011209 Optimization of Thermopile Sensor Performance of Polycrystalline Silicon Film
Authors: Li Long, Thomas Ortlepp
Abstract:
A theoretical model for the optimization of thermopile sensor performance is developed for thermoelectric-based infrared radiation detection. It is shown that the performance of polycrystalline silicon film thermopile sensor can be optimized according to the thermoelectric quality factor, sensor layer structure factor, and sensor layout geometrical form factor. Based on the properties of electrons, phonons, grain boundaries, and their interactions, the thermoelectric quality factor of polycrystalline silicon is analyzed with the relaxation time approximation of the Boltzmann transport equation. The model includes the effect of grain structure, grain boundary trap properties, and doping concentration. The layer structure factor is analyzed with respect to the infrared absorption coefficient. The optimization of layout design is characterized by the form factor, which is calculated for different sensor designs. A double-layer polycrystalline silicon thermopile infrared sensor on a suspended membrane has been designed and fabricated with a CMOS-compatible process. The theoretical approach is confirmed by measurement results.Keywords: polycrystalline silicon, relaxation time approximation, specific detectivity, thermal conductivity, thermopile infrared sensor
Procedia PDF Downloads 1451208 Human Coronary Sinus Venous System as a Target for Clinical Procedures
Authors: Wiesława Klimek-Piotrowska, Mateusz K. Hołda, Mateusz Koziej, Katarzyna Piątek, Jakub Hołda
Abstract:
Introduction: The coronary sinus venous system (CSVS), which has always been overshadowed by the coronary arterial tree, has recently begun to attract more attention. Since it is a target for clinicians the knowledge of its anatomy is essential. Cardiac resynchronization therapy, catheter ablation of cardiac arrhythmias, defibrillation, perfusion therapy, mitral valve annuloplasty, targeted drug delivery, and retrograde cardioplegia administration are commonly used therapeutic methods involving the CSVS. The great variability in the course of coronary veins and tributaries makes the diagnostic and therapeutic processes difficult. Our aim was to investigate detailed anatomy of most common clinically used CSVS`s structures: the coronary sinus with its ostium, great cardiac vein, posterior vein of the left ventricle, middle cardiac vein and oblique vein of the left atrium. Methodology: This is a prospective study of 70 randomly selected autopsied hearts dissected from adult humans (Caucasian) aged 50.1±17.6 years old (24.3% females) with BMI=27.6±6.7 kg/m2. The morphology of the CSVS was assessed as well as its precise measurements were performed. Results: The coronary sinus (CS) with its ostium was present in all hearts. The mean CS ostium diameter was 9.9±2.5mm. Considered ostium was covered by its valve in 87.1% with mean valve height amounted 5.1±3.1mm. The mean percentage coverage of the CS ostium by the valve was 56%. The Vieussens valve was present in 71.4% and was unicuspid in 70%, bicuspid in 26% and tricuspid in 4% of hearts. The great cardiac vein was present in all cases. The oblique vein of the left atrium was observed in 84.3% of hearts with mean length amounted 20.2±9.3mm and mean ostium diameter 1.4±0.9mm. The average length of the CS (from the CS ostium to the Vieussens valve) was 31.1±9.5mm or (from the CS ostium to the ostium of the oblique vein of the left atrium) 28.9±10.1mm and both were correlated with the heart weight (r=0.47; p=0.00 and r=0.38; p=0.006 respectively). In 90.5% the ostium of the oblique vein of the left atrium was located proximally to the Vieussens valve, in remaining cases was distally. The middle cardiac vein was present in all hearts and its valve was noticed in more than half of all the cases (52.9%). The posterior vein of the left ventricle was observed in 91.4% of cases. Conclusions: The CSVS is vastly variable and none of basic hearts parameters is a good predictor of its morphology. The Vieussens valve could be a significant obstacle during CS cannulation. Caution should be exercised in this area to avoid coronary sinus perforation. Because of the higher incidence of the presence of the oblique vein of the left atrium than the Vieussens valve, the vein orifice is more useful in determining the CS length.Keywords: cardiac resynchronization therapy, coronary sinus, Thebesian valve, Vieussens valve
Procedia PDF Downloads 3021207 Contact Address Levels and Human Health Risk of Metals In Milk and Milk Products Bought from Abeokuta, Southwestern Nigeria
Authors: Olukayode Bamgbose, Feyisola Agboola, Adewale M. Taiwo, Olanrewaju Olujimi Oluwole Terebo, Azeez Soyingbe, Akeem Bamgbade
Abstract:
The present study evaluated the contents and health risk assessment of metals determined in milk and milk product samples collected from the Abeokuta market. Forty-five milk and milk product (yoghurt) samples were digested and analysed for selected metals using Atomic Absorption Spectrophotometric method. Health risk assessment was evaluated for hazard quotient (HQ), hazard index (HI), and cancer risk (CR). Data were subjected to descriptive and inferential statistics. The concentrations of Zn, which ranged from 3.24±0.59 to 4.35±0.59 mg/kg, were the highest in the samples. Cr and Cd were measured below the detection limit of the analytical instrument, while the Pb level was higher than the Codex Alimentarius Commission value of 0.02 mg/kg, indicating unsafe for consumption. However, the HQ of Pb and other metals in milk and milk product samples was less than 1.0, thereby establishing no adverse health effects for Pb and other metals. The distribution pattern of metals in milk and milk product samples followed the decreasing order of Zn > Fe > Ni > Co > Cu > Mn > Pb > Cd/Cr. The CR levels of meals were also less than the permissible limit of 1.0 x 10-4, establishing no possible development of cancer. Keywords: adverse effects, cancer, metals, milk, milk product, the permissible limit.Keywords: adverse effects, cancer, metals, milk, milk product, permissible limit
Procedia PDF Downloads 801206 Electro-Thermal Imaging of Breast Phantom: An Experimental Study
Authors: H. Feza Carlak, N. G. Gencer
Abstract:
To increase the temperature contrast in thermal images, the characteristics of the electrical conductivity and thermal imaging modalities can be combined. In this experimental study, it is objected to observe whether the temperature contrast created by the tumor tissue can be improved just due to the current application within medical safety limits. Various thermal breast phantoms are developed to simulate the female breast tissue. In vitro experiments are implemented using a thermal infrared camera in a controlled manner. Since experiments are implemented in vitro, there is no metabolic heat generation and blood perfusion. Only the effects and results of the electrical stimulation are investigated. Experimental study is implemented with two-dimensional models. Temperature contrasts due to the tumor tissues are obtained. Cancerous tissue is determined using the difference and ratio of healthy and tumor images. 1 cm diameter single tumor tissue causes almost 40 °mC temperature contrast on the thermal-breast phantom. Electrode artifacts are reduced by taking the difference and ratio of background (healthy) and tumor images. Ratio of healthy and tumor images show that temperature contrast is increased by the current application.Keywords: medical diagnostic imaging, breast phantom, active thermography, breast cancer detection
Procedia PDF Downloads 4281205 Thermographic Tests of Curved GFRP Structures with Delaminations: Numerical Modelling vs. Experimental Validation
Authors: P. D. Pastuszak
Abstract:
The present work is devoted to thermographic studies of curved composite panels (unidirectional GFRP) with subsurface defects. Various artificial defects, created by inserting PTFE stripe between individual layers of a laminate during manufacturing stage are studied. The analysis is conducted both with the use finite element method and experiments. To simulate transient heat transfer in 3D model with embedded various defect sizes, the ANSYS package is used. Pulsed Thermography combined with optical excitation source provides good results for flat surfaces. Composite structures are mostly used in complex components, e.g., pipes, corners and stiffeners. Local decrease of mechanical properties in these regions can have significant influence on strength decrease of the entire structure. Application of active procedures of thermography to defect detection and evaluation in this type of elements seems to be more appropriate that other NDT techniques. Nevertheless, there are various uncertainties connected with correct interpretation of acquired data. In this paper, important factors concerning Infrared Thermography measurements of curved surfaces in the form of cylindrical panels are considered. In addition, temperature effects on the surface resulting from complex geometry and embedded and real defect are also presented.Keywords: active thermography, composite, curved structures, defects
Procedia PDF Downloads 319