Search results for: multi sliding friction device
3736 Use and Relationship of Shell Nouns as Cohesive Devices in the Quality of Second Language Writing
Authors: Kristine D. de Leon, Junifer A. Abatayo, Jose Cristina M. Pariña
Abstract:
The current study is a comparative analysis of the use of shell nouns as a cohesive device (CD) in an English for Second Language (ESL) setting in order to identify their use and relationship in the quality of second language (L2) writing. As these nouns were established to anticipate the meaning within, across or outside the text, their use has fascinated writing researchers. The corpus of the study included published articles from reputable journals and graduate students’ papers in order to analyze the frequency of shell nouns using “highly prevalent” nouns in the academic community, to identify the different lexicogrammatical patterns where these nouns occur and to the functions connected with these patterns. The result of the study implies that published authors used more shell nouns in their paper than graduate students. However, the functions of the different lexicogrammatical patterns for the frequently occurring shell nouns are somewhat similar. These results could help students in enhancing the cohesion of their text and in comprehending it.Keywords: anaphoric, cataphoric, lexico-grammatical, shell nouns
Procedia PDF Downloads 1853735 Development of a Three-Dimensional-Flywheel Robotic System
Authors: Chung-Chun Hsiao, Yu-Kai, Ting, Kai-Yuan Liu, Pang-Wei Yen, Jia-Ying Tu
Abstract:
In this paper, a new design of spherical robotic system based on the concepts of gimbal structure and gyro dynamics is presented. Robots equipped with multiple wheels and complex steering mechanics may increase the weight and degrade the energy transmission efficiency. In addition, the wheeled and legged robots are relatively vulnerable to lateral impact and lack of lateral mobility. Therefore, the proposed robotic design uses a spherical shell as the main body for ground locomotion, instead of using wheel devices. Three spherical shells are structured in a similar way to a gimbal device and rotate like a gyro system. The design and mechanism of the proposed robotic system is introduced. In addition, preliminary results of the dynamic model based on the principles of planar rigid body kinematics and Lagrangian equation are included. Simulation results and rig construction are presented to verify the concepts.Keywords: gyro, gimbal, lagrange equation, spherical robots
Procedia PDF Downloads 3163734 Corrosion Behavior of Steels in Molten Salt Reactors
Authors: Jana Rejková, Marie Kudrnová
Abstract:
This paper deals with the research of materials for one of the types of reactors IV. generation - reactor with molten salts. One of the advantages of molten salts applied as a coolant in reactors is the ability to operate at relatively low pressures, as opposed to cooling with water or gases. Compared to liquid metal cooling, which also allows lower operating pressures, salt melts are less prone to chemical reactions. The service life of the construction materials used is limited by the operating temperatures of the reactor and the content of impurities in the salts. For the research of corrosion resistance, an experimental device was designed and assembled, enabling exposure at high temperatures without access to oxygen in a flowing atmosphere of inert gas. Nickel alloys Inconel 601, 617, and 625 were tested in a mixture of chloride salts LiCl – KCl (58,2 - 41,8 wt. %). The experiment showed high resistance of the materials used and based on the results and XPS analysis, other construction materials were proposed for the experiments.Keywords: molten salt, corrosion, nuclear reactor, nickel alloy
Procedia PDF Downloads 1653733 Pressure-Detecting Method for Estimating Levitation Gap Height of Swirl Gripper
Authors: Kaige Shi, Chao Jiang, Xin Li
Abstract:
The swirl gripper is an electrically activated noncontact handling device that uses swirling airflow to generate a lifting force. This force can be used to pick up a workpiece placed underneath the swirl gripper without any contact. It is applicable, for example, in the semiconductor wafer production line, where contact must be avoided during the handling and moving of a workpiece to minimize damage. When a workpiece levitates underneath a swirl gripper, the gap height between them is crucial for safe handling. Therefore, in this paper, we propose a method to estimate the levitation gap height by detecting pressure at two points. The method is based on theoretical model of the swirl gripper, and has been experimentally verified. Furthermore, the force between the gripper and the workpiece can also be estimated using the detected pressure. As a result, the nonlinear relationship between the force and gap height can be linearized by adjusting the rotating speed of the fan in the swirl gripper according to the estimated force and gap height. The linearized relationship is expected to enhance handling stability of the workpiece.Keywords: swirl gripper, noncontact handling, levitation, gap height estimation
Procedia PDF Downloads 1333732 Measurement of IMRT Dose Distribution in Rando Head and Neck Phantom using EBT3 Film
Authors: Pegah Safavi, Mehdi Zehtabian, Mohammad Amin Mosleh-Shirazi
Abstract:
Cancer is one of the leading causes of death in the world. Radiation therapy is one of the main choices for cancer treatment. Intensity-modulated radiation therapy is a new type of radiation therapy technique available for vital structures such as the parathyroid glands. It is very important to check the accuracy of the delivered IMRT treatment because any mistake may lead to more complications for the patient. This paper describes an experiment to determine the accuracy of a dose measured by EBT3 film. To test this method, the EBT3 film on the head and neck of the Rando phantom was irradiated by an IMRT device and the irradiation was repeated twice. Finally, the dose designed by the irradiation system was compared with the dose measured by the EBT3 film. Using this criterion, the accuracy of the EBT3 film was evaluated. When using this criterion, a 95% agreement was reached between the planned treatment and the measured values.Keywords: EBT3, phantom, accuracy, cancer, IMRT
Procedia PDF Downloads 1503731 Carbonaceous Monolithic Multi-Channel Denuders as a Gas-Particle Partitioning Tool for the Occupational Sampling of Aerosols from Semi-Volatile Organic Compounds
Authors: Vesta Kohlmeier, George C. Dragan, Juergen Orasche, Juergen Schnelle-Kreis, Dietmar Breuer, Ralf Zimmermann
Abstract:
Aerosols from hazardous semi-volatile organic compounds (SVOC) may occur in workplace air and can simultaneously be found as particle and gas phase. For health risk assessment, it is necessary to collect particles and gases separately. This can be achieved by using a denuder for the gas phase collection, combined with a filter and an adsorber for particle collection. The study focused on the suitability of carbonaceous monolithic multi-channel denuders, so-called Novacarb™-Denuders (MastCarbon International Ltd., Guilford, UK), to achieve gas-particle separation. Particle transmission efficiency experiments were performed with polystyrene latex (PSL) particles (size range 0.51-3 µm), while the time dependent gas phase collection efficiency was analysed for polar and nonpolar SVOC (mass concentrations 7-10 mg/m3) over 2 h at 5 or 10 l/min. The experimental gas phase collection efficiency was also compared with theoretical predictions. For n-hexadecane (C16), the gas phase collection efficiency was max. 91 % for one denuder and max. 98 % for two denuders, while for diethylene glycol (DEG), a maximal gas phase collection efficiency of 93 % for one denuder and 97 % for two denuders was observed. At 5 l/min higher gas phase collection efficiencies were achieved than at 10 l/min. The deviations between the theoretical and experimental gas phase collection efficiencies were up to 5 % for C16 and 23 % for DEG. Since the theoretical efficiency depends on the geometric shape and length of the denuder, flow rate and diffusion coefficients of the tested substances, the obtained values define an upper limit which could be reached. Regarding the particle transmission through the denuders, the use of one denuder showed transmission efficiencies around 98 % for 1-3 µm particle diameters. The use of three denuders resulted in transmission efficiencies from 93-97 % for the same particle sizes. In summary, NovaCarb™-Denuders are well applicable for sampling aerosols of polar/nonpolar substances with particle diameters ≤3 µm and flow rates of 5 l/min or lower. These properties and their compact size make them suitable for use in personal aerosol samplers. This work is supported by the German Social Accident Insurance (DGUV), research contract FP371.Keywords: gas phase collection efficiency, particle transmission, personal aerosol sampler, SVOC
Procedia PDF Downloads 1763730 Experimental Characterization of the AA7075 Aluminum Alloy Using Hot Shear Tensile Test
Authors: Trunal Bhujangrao, Catherine Froustey, Fernando Veiga, Philippe Darnis, Franck Girot Mata
Abstract:
The understanding of the material behavior under shear loading has great importance for a researcher in manufacturing processes like cutting, machining, milling, turning, friction stir welding, etc. where the material experiences large deformation at high temperature. For such material behavior analysis, hot shear tests provide a useful means to investigate the evolution of the microstructure at a wide range of temperature and to improve the material behavior model. Shear tests can be performed by direct shear loading (e.g. torsion of thin-walled tubular samples), or appropriate specimen design to convert a tensile or compressive load into shear (e.g. simple shear tests). The simple shear tests are straightforward and designed to obtained very large deformation. However, many of these shear tests are concerned only with the elastic response of the material. It is becoming increasingly important to capture a plastic response of the material. Plastic deformation is significantly more complex and is known to depend more heavily on the strain rate, temperature, deformation, etc. Besides, there is not enough work is done on high-temperature shear loading, because of geometrical instability occurred during the plastic deformation. The aim of this study is to design a new shear tensile specimen geometry to convert the tensile load into dominant shear loading under plastic deformation. Design of the specimen geometry is based on FEM. The material used in this paper is AA7075 alloy, tested quasi statically under elevated temperature. Finally, the microstructural changes taking place duringKeywords: AA7075 alloy, dynamic recrystallization, edge effect, large strain, shear tensile test
Procedia PDF Downloads 1473729 Modeling the Three - Echelon Repairable Parts Inventory System under (S-1, S) Policy
Authors: Rohit Kapoor
Abstract:
In this paper, an attempt is made to formulate 3-echelon repairable parts inventory system under (S-1, S) policy. This analytical model is the extension of an exact formulation of two - echelon repairable parts inventory system, already reported in the established literature. In the present paper, we try to formulate the total cost expression consisting of two components, viz., system investment cost and expected backorder cost.Keywords: (S-1, S) inventory policy, multi-echelon inventory system, repairable parts
Procedia PDF Downloads 5393728 Development of a New Piezoelectrically Actuated Micropump for Liquid and Gas
Authors: Chiang-Ho Cheng, An-Shik Yang, Chih-Jer Lin, Chun-Ying Lee
Abstract:
This paper aims to present the design, fabrication and test of a novel piezoelectric actuated, check-valves embedded micropump having the advantages of miniature size, light weight and low power consumption. This device is designed to pump gases and liquids with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micropump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micropump, the displacement of the piezoelectric actuator and the deformation of the check valve, simultaneously. The micropump with check valve 0.4 mm in thickness obtained higher output performance under the sinusoidal waveform of 120 Vpp. The micropump achieved the maximum pumping rates of 42.2 ml/min and back pressure of 14.0 kPa at the corresponding frequency of 28 and 20 Hz. The presented micropump is able to pump gases with a pumping rate of 196 ml/min at operating frequencies of 280 Hz under the sinusoidal waveform of 120 Vpp.Keywords: actuator, check-valve, micropump, piezoelectric
Procedia PDF Downloads 4323727 Effects of the Visual and Auditory Stimuli with Emotional Content on Eyewitness Testimony
Authors: İrem Bulut, Mustafa Z. Söyük, Ertuğrul Yalçın, Simge Şişman-Bal
Abstract:
Eyewitness testimony is one of the most frequently used methods in criminal cases for the determination of crime and perpetrator. In the literature, the number of studies about the reliability of eyewitness testimony is increasing. The study aims to reveal the factors that affect the short-term and long-term visual memory performance of the participants in the event of an accident. In this context, the effect of the emotional content of the accident and the sounds during the accident on visual memory performance was investigated with eye-tracking. According to the results, the presence of visual and auditory stimuli with emotional content during the accident decreases the participants' both short-term and long-term recall performance. Moreover, the data obtained from the eye monitoring device showed that the participants had difficulty in answering even the questions they focused on at the time of the accident.Keywords: eye tracking, eyewitness testimony, long-term recall, short-term recall, visual memory
Procedia PDF Downloads 1623726 Building Envelope Engineering and Typologies for Complex Architectures: Composition and Functional Methodologies
Authors: Massimiliano Nastri
Abstract:
The study examines the façade systems according to the constitutive and typological characters, as well as the functional and applicative requirements such as the expressive, constructive, and interactive criteria towards the environmental, perceptive, and energy conditions. The envelope systems are understood as instruments of mediation, interchange, and dynamic interaction between environmental conditions. The façades are observed for the sustainable concept of eco-efficient envelopes, selective and multi-purpose filters, adaptable and adjustable according to the environmental performance.Keywords: typologies of façades, environmental and energy sustainability, interaction and perceptive mediation, technical skins
Procedia PDF Downloads 1523725 An Electrochemical Enzymatic Biosensor Based on Multi-Walled Carbon Nanotubes and Poly (3,4 Ethylenedioxythiophene) Nanocomposites for Organophosphate Detection
Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar
Abstract:
The most controversial issue in crop production is the use of Organophosphate insecticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. OPs detection is of crucial importance for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). Substrate kinetics has been performed and studied for the determination of Michaelis Menten constant. The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared biosensor is observed to be 30 days and seven times, respectively. The application of the developed biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed biosensor made them reliable, sensitive and a low cost process.Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, biosensor, oxime (2-PAM)
Procedia PDF Downloads 4453724 An Intelligent Cloud Radio Access Network (RAN) Architecture for Future 5G Heterogeneous Wireless Network
Authors: Jin Xu
Abstract:
5G network developers need to satisfy the necessary requirements of additional capacity from massive users and spectrally efficient wireless technologies. Therefore, the significant amount of underutilized spectrum in network is motivating operators to combine long-term evolution (LTE) with intelligent spectrum management technology. This new LTE intelligent spectrum management in unlicensed band (LTE-U) has the physical layer topology to access spectrum, specifically the 5-GHz band. We proposed a new intelligent cloud RAN for 5G.Keywords: cloud radio access network, wireless network, cloud computing, multi-agent
Procedia PDF Downloads 4243723 Barrier Lowering in Contacts between Graphene and Semiconductor Materials
Authors: Zhipeng Dong, Jing Guo
Abstract:
Graphene-semiconductor contacts have been extensively studied recently, both as a stand-alone diode device for potential applications in photodetectors and solar cells, and as a building block to vertical transistors. Graphene is a two-dimensional nanomaterial with vanishing density-of-states at the Dirac point, which differs from conventional metal. In this work, image-charge-induced barrier lowering (BL) in graphene-semiconductor contacts is studied and compared to that in metal Schottky contacts. The results show that despite of being a semimetal with vanishing density-of-states at the Dirac point, the image-charge-induced BL is significant. The BL value can be over 50% of that of metal contacts even in an intrinsic graphene contacted to an organic semiconductor, and it increases as the graphene doping increases. The dependences of the BL on the electric field and semiconductor dielectric constant are examined, and an empirical expression for estimating the image-charge-induced BL in graphene-semiconductor contacts is provided.Keywords: graphene, semiconductor materials, schottky barrier, image charge, contacts
Procedia PDF Downloads 3033722 3D Simulation for Design and Predicting Performance of a Thermal Heat Storage Facility using Sand
Authors: Nadjiba Mahfoudi, Abdelhafid Moummi , Mohammed El Ganaoui
Abstract:
Thermal applications are drawing increasing attention in the solar energy research field, due to their high performance in energy storage density and energy conversion efficiency. In these applications, solar collectors and thermal energy storage systems are the two core components. This paper presents a thermal analysis of the transient behavior and storage capability of a sensible heat storage device in which sand is used as a storage media. The TES unit with embedded charging tubes is connected to a solar air collector. To investigate it storage characteristics a 3D-model using no linear coupled partial differential equations for both temperature of storage medium and heat transfer fluid (HTF), has been developed. Performances of thermal storage bed of capacity of 17 MJ (including bed temperature, charging time, energy storage rate, charging energy efficiency) have been evaluated. The effect of the number of charging tubes (3 configurations) is presented.Keywords: design, thermal modeling, heat transfer enhancement, sand, sensible heat storage
Procedia PDF Downloads 5623721 Experimental Study on Shaft Grouting Bearing Capacity of Small Diameter Bored Piles
Authors: Trung Le Thanh
Abstract:
Bored piles are always the optimal solution for high-rise building foundations. They have many advantages, such as large diameter, large pile length and construction in all different geological conditions. However, due to construction characteristics, the load-bearing capacity of bored piles is not optimal because wall friction is reduced due to poor contact between the pile and the surrounding soil. Therefore, grouting technology along the pile body helps improve the load-bearing capacity of bored piles significantly through increasing the skin resistance of the pile and surrounding soil. The improvement of pile skin resistance depends on the parameters of grouting technology, especially grouting volume, mortar viscosity, mortar strength,... and different geological conditions. Studies show that the technology of grouting piles on sandy soil is more effective than on clay. This article presents an experimental model to determine the load-bearing capacity of bored piles with a diameter of 400 mm and a length of 3 m on sand with different slurry volume in Tan Uyen city, Binh Duong province. On that basis, analyze the correlation between the increase in load-bearing capacity of bored piles without and with shaft grouting pile. Research results show that the wall resistance of shaft grouted piles increases 2-3 times compared to piles without grouting, and the pile's load-bearing capacity increases significantly. The article's research provides scientific value for consulting work on the design of bored piles when grouted along the pile body.Keywords: bored pile, shaft grouting, bearing capacity, pile shaft resistance
Procedia PDF Downloads 653720 Effect of Accelerated Ions Interacted with Al Targets Using Plasma Focus Device
Authors: Morteza Habibi, Reza Amrollahi
Abstract:
The Aluminum made targets were placed at the central part of a Fillipov type (90KJ) plasma focus cathode. These targets were exposed to perpendicular dense plasma stream incidence. Melt layer erosion by melt motion, surface smoothing, and bubble formation were some of different effects caused by diverse working conditions. Micro hardness of surface layer tends to decrease particularly in the central region of the sample where destruction is more intense. The most pronouced melt motion is registered in the region of the maximum gradient of pressure and the etching of aluminium surface is noticeable in the central part of target. The crater with a maximum depth of 200µm, and the diameter of about 8.5mm is observed close to the mountains. Adding Krypton admixture to the Deuterium gas lead to collapsing bubbles and greater surface damage.Keywords: fillipov type plasma focus, al target interaction, bubbling effect, melt layer motion, surface smoothing
Procedia PDF Downloads 5353719 An Analytical Formulation of Pure Shear Boundary Condition for Assessing the Response of Some Typical Sites in Mumbai
Authors: Raj Banerjee, Aniruddha Sengupta
Abstract:
An earthquake event, associated with a typical fault rupture, initiates at the source, propagates through a rock or soil medium and finally daylights at a surface which might be a populous city. The detrimental effects of an earthquake are often quantified in terms of the responses of superstructures resting on the soil. Hence, there is a need for the estimation of amplification of the bedrock motions due to the influence of local site conditions. In the present study, field borehole log data of Mangalwadi and Walkeswar sites in Mumbai city are considered. The data consists of variation of SPT N-value with the depth of soil. A correlation between shear wave velocity (Vₛ) and SPT N value for various soil profiles of Mumbai city has been developed using various existing correlations which is used further for site response analysis. MATLAB program is developed for studying the ground response analysis by performing two dimensional linear and equivalent linear analysis for some of the typical Mumbai soil sites using pure shear (Multi Point Constraint) boundary condition. The model is validated in linear elastic and equivalent linear domain using the popular commercial program, DEEPSOIL. Three actual earthquake motions are selected based on their frequency contents and durations and scaled to a PGA of 0.16g for the present ground response analyses. The results are presented in terms of peak acceleration time history with depth, peak shear strain time history with depth, Fourier amplitude versus frequency, response spectrum at the surface etc. The peak ground acceleration amplification factors are found to be about 2.374, 3.239 and 2.4245 for Mangalwadi site and 3.42, 3.39, 3.83 for Walkeswar site using 1979 Imperial Valley Earthquake, 1989 Loma Gilroy Earthquake and 1987 Whitter Narrows Earthquake, respectively. In the absence of any site-specific response spectrum for the chosen sites in Mumbai, the generated spectrum at the surface may be utilized for the design of any superstructure at these locations.Keywords: deepsoil, ground response analysis, multi point constraint, response spectrum
Procedia PDF Downloads 1803718 Development of Superhydrophobic Cotton Fabrics and Their Functional Properties
Authors: Muhammad Zaman Khan, Vijay Baheti, Jiri Militky
Abstract:
The present study is focused on the development of multifunctional cotton fabric while having good physiological comfort properties. The functional properties developed include superhydrophobicity (Lotus effect) and UV protection. For this, TiO₂ nanoparticles along with fluorocarbon and organic-inorganic binder have been used to optimize the multifunctional properties. Deposition of TiO₂ nanoparticles with water repellent finish on cotton fabric has been carried out using the pad dry cure method at fix parameters. The morphology and elemental composition of as-deposited particles have been studied by using SEM and EDS. The chemical composition of nanoparticles was determined using energy dispersive spectroscopy. The treated samples exhibited excellent water repellency and UV protection factor. The study of the comfort properties of fabric showed that it had excellent physiological comfort properties. Optimized concentration of water repellent chemical (50g/l) was used in formulations with TiO₂ nanoparticles and organic-inorganic binder. Four formulations were prepared according to the design of the experiment. The formulations were applied to the cotton fabric by roller padding at room temperature (15–20°C). Surface morphology was investigated via SEM images. EDS analysis was also carried out to analyze the composition and atomic percentage of elements. The water contact angle (WCA) of cotton fabric increases with increase in TiO₂ nanoparticles concentration and reaches its maximum value (157°) when the concentration of TiO₂ is 20g/l. The water sliding angle (WSA) decreases and gains minimum value at the same concentration of TiO₂ at which WCA is highest. It was seen samples treated with formulations of TiO₂ nanoparticles exhibits excellent UPF, UV-A and UV-B blocking. However, there was no significant deterioration of air permeability. The water vapor permeability was also slightly decreased (4%) but is acceptable. It can be concluded that there is no significant change in both air and water vapor permeability after nanoparticles coating on the surface of the cotton fabric. The coated cotton fabric has little effect on the stiffness. The stiffness of coated samples was not increased significantly; thus comfort of cotton fabric is not decreased. This functionalized cotton fabric also exhibits good physiological comfort properties. ''The authors are also thankful to student grant competition 21312 provided at Technical University of Liberec''.Keywords: comfort, functional, nanoparticles, UV protective
Procedia PDF Downloads 1453717 Dynamic Communications Mapping in NoC-Based Heterogeneous MPSoCs
Authors: M. K. Benhaoua, A. K. Singh, A. E. H. Benyamina
Abstract:
In this paper, we propose heuristic for dynamic communications mapping that considers the placement of communications in order to optimize the overall performance. The mapping technique uses a newly proposed Algorithm to place communications between the tasks. The placement we propose of the communications leads to a better optimization of several performance metrics (time and energy consumption). Experimental results show that the proposed mapping approach provides significant performance improvements when compared to those using static routing.Keywords: Multi-Processor Systems-on-Chip (MPSoCs), Network-on-Chip (NoC), heterogeneous architectures, dynamic mapping heuristics
Procedia PDF Downloads 5333716 Design and Manufacture of a Hybrid Gearbox Reducer System
Authors: Ahmed Mozamel, Kemal Yildizli
Abstract:
Due to mechanical energy losses and a competitive of minimizing these losses and increases the machine efficiency, the need for contactless gearing system has raised. In this work, one stage of mechanical planetary gear transmission system integrated with one stage of magnetic planetary gear system is designed as a two-stage hybrid gearbox system. The permanent magnets internal energy in the form of the magnetic field is used to create meshing between contactless magnetic rotors in order to provide self-system protection against overloading and decrease the mechanical loss of the transmission system by eliminating the friction losses. Classical methods, such as analytical, tabular method and the theory of elasticity are used to calculate the planetary gear design parameters. The finite element method (ANSYS Maxwell) is used to predict the behaviors of a magnetic gearing system. The concentric magnetic gearing system has been modeled and analyzed by using 2D finite element method (ANSYS Maxwell). In addition to that, design and manufacturing processes of prototype components (a planetary gear, concentric magnetic gear, shafts and the bearings selection) of a gearbox system are investigated. The output force, the output moment, the output power and efficiency of the hybrid gearbox system are experimentally evaluated. The viability of applying a magnetic force to transmit mechanical power through a non-contact gearing system is presented. The experimental test results show that the system is capable to operate continuously within the range of speed from 400 rpm to 3000 rpm with the reduction ratio of 2:1 and maximum efficiency of 91%.Keywords: hybrid gearbox, mechanical gearboxes, magnetic gears, magnetic torque
Procedia PDF Downloads 1523715 Smart Meters and In-Home Displays to Encourage Water Conservation through Behavioural Change
Authors: Julia Terlet, Thomas H. Beach, Yacine Rezgui
Abstract:
Urbanization, population growth, climate change and the current increase in water demand have made the adoption of innovative demand management strategies crucial to the water industry. Water conservation in urban areas has to be improved by encouraging consumers to adopt more sustainable habits and behaviours. This includes informing and educating them about their households’ water consumption and advising them about ways to achieve significant savings on a daily basis. This paper presents a study conducted in the context of the European FP7 WISDOM Project. By integrating innovative Information and Communication Technologies (ICT) frameworks, this project aims at achieving a change in water savings. More specifically, behavioural change will be attempted by implementing smart meters and in-home displays in a trial group of selected households within Cardiff (UK). Using this device, consumers will be able to receive feedback and information about their consumption but will also have the opportunity to compare their consumption to the consumption of other consumers and similar households. Following an initial survey, it appeared necessary to implement these in-home displays in a way that matches consumer's motivations to save water. The results demonstrated the importance of various factors influencing people’s daily water consumption. Both the relevant literature on the subject and the results of our survey therefore led us to include within the in-home device a variety of elements. It first appeared crucial to make consumers aware of the economic aspect of water conservation and especially of the significant financial savings that can be achieved by reducing their household’s water consumption on the long term. Likewise, reminding participants of the impact of their consumption on the environment by making them more aware of water scarcity issues around the world will help increasing their motivation to save water. Additionally, peer pressure and social comparisons with neighbours and other consumers, accentuated by the use of online social networks such as Facebook or Twitter, will likely encourage consumers to reduce their consumption. Participants will also be able to compare their current consumption to their past consumption and to observe the consequences of their efforts to save water through diverse graphs and charts. Finally, including a virtual water game within the display will help the whole household, children and adults, to achieve significant reductions by providing them with simple tips and advice to save water on a daily basis. Moreover, by setting daily and weekly goals for them to reach, the game will expectantly generate cooperation between family members. Members of each household will indeed be encouraged to work together to reduce their water consumption within different rooms of the house, such as the bathroom, the kitchen, or the toilets. Overall, this study will allow us to understand the elements that attract consumers the most and the features that are most commonly used by the participants. In this way, we intend to determine the main factors influencing water consumption in order to identify the measures that will most encourage water conservation in both the long and short term.Keywords: behavioural change, ICT technologies, water consumption, water conservation
Procedia PDF Downloads 3353714 Solar Panel Design Aspects and Challenges for a Lunar Mission
Authors: Mannika Garg, N. Srinivas Murthy, Sunish Nair
Abstract:
TeamIndus is only Indian team participated in the Google Lunar X Prize (GLXP). GLXP is an incentive prize space competition which is organized by the XPrize Foundation and sponsored by Google. The main objective of the mission is to soft land a rover on the moon surface, travel minimum displacement of 500 meters and transmit HD and NRT videos and images to the Earth. Team Indus is designing a Lunar Lander which carries Rover with it and deliver onto the surface of the moon with a soft landing. For lander to survive throughout the mission, energy is required to operate all attitude control sensors, actuators, heaters and other necessary components. Photovoltaic solar array systems are the most common and primary source of power generation for any spacecraft. The scope of this paper is to provide a system-level approach for designing the solar array systems of the lander to generate required power to accomplish the mission. For this mission, the direction of design effort is to higher efficiency, high reliability and high specific power. Towards this approach, highly efficient multi-junction cells have been considered. The design is influenced by other constraints also like; mission profile, chosen spacecraft attitude, overall lander configuration, cost effectiveness and sizing requirements. This paper also addresses the various solar array design challenges such as operating temperature, shadowing, radiation environment and mission life and strategy of supporting required power levels (peak and average). The challenge to generate sufficient power at the time of surface touchdown, due to low sun elevation (El) and azimuth (Az) angle which depends on Lunar landing site, has also been showcased in this paper. To achieve this goal, energy balance analysis has been carried out to study the impact of the above-mentioned factors and to meet the requirements and has been discussed in this paper.Keywords: energy balance analysis, multi junction solar cells, photovoltaic, reliability, spacecraft attitude
Procedia PDF Downloads 2303713 Mathematical Modelling and Parametric Study of Water Based Loop Heat Pipe for Ground Application
Authors: Shail N. Shah, K. K. Baraya, A. Madhusudan Achari
Abstract:
Loop Heat Pipe is a passive two-phase heat transfer device which can be used without any external power source to transfer heat from source to sink. The main aim of this paper is to have modelling of water-based LHP at varying heat loads. Through figures, how the fluid flow occurs within the loop has been explained. Energy Balance has been done in each section. IC (Iterative Convergence) scheme to find out the SSOT (Steady State Operating Temperature) has been developed. It is developed using Dev C++. To best of the author’s knowledge, hardly any detail is available in the open literature about how temperature distribution along the loop is to be evaluated. Results for water-based loop heat pipe is obtained and compared with open literature and error is found within 4%. Parametric study has been done to see the effect of different parameters on pressure drop and SSOT at varying heat loads.Keywords: loop heat pipe, modelling of loop heat pipe, parametric study of loop heat pipe, functioning of loop heat pipe
Procedia PDF Downloads 4113712 A Study of Gender Differences in Expressing Pain
Authors: A. Estaji
Abstract:
The first part of the present paper studies the role of language in expressing pain. Pain is usually described as a personal and mental experience, so language has an important role in describing, expressing and measuring pain and sometimes it is believed that language is the only device for accessing this personal experience. The second part of this paper studies gender differences in expressing pain. Considering the biological, psychological and social differences between men and women, we raise this question whether men and women express their pain in the same way or differently. To answer this question, we asked 44 Farsi speaking participants to write about the most painful experience they had in the past. Qualitative analysis of the data shows that women, have expressed their pain more severely, have expressed their feelings about pain instead of describing the pain itself, have made their pain more personal and have given more details about the circumstances in which they experienced pain, while men have given a more neutral description of their pain and have given a description of their pain by distancing themselves from the painful event. Knowing these gender differences in expressing pain can help medical practitioners in assessing the pain level.Keywords: discourse analysis, expressing pain, measuring pain, gender
Procedia PDF Downloads 3963711 Strong Down-Conversion Emission of Sm3+ Doped Borotellurite Glass under the 480nm Excitation Wavelength
Authors: M. R. S. Nasuha, K. Azman, H. Azhan, S. A. Senawi, A. Mardhiah
Abstract:
Studies on Samarium doped glasses possess lot of interest due to their potential applications for high-density optical memory, optical communication device, the design of laser and color display etc. Sm3+ doped borotellurite glasses of the system (70-x) TeO2-20B2O3-10ZnO-xSm2O3 (where x = 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5 mol%) have been prepared using melt-quenching method. Their physical properties such as density, molar volume and oxygen packing density as well as the optical measurements by mean of their absorption and emission characteristic have been carried out at room temperature using UV/VIS and photoluminescence spectrophotometer. The results of physical properties are found to vary with respect to Sm3+ ions content. Meanwhile, three strong absorption peaks are observed and are well resolved in the ultra violet and visible regions due to transitions between the ground state and various excited state of Sm3+ ions. Thus, the photoluminescence spectra exhibit four emission bands from the initial state, which correspond to the 4G5/2 → 6H5/2, 4G5/2 → 6H7/2, 4G5/2 → 6H9/2 and 4G5/2 → 6H11/2 fluorescence transitions at 562 nm, 599 nm, 645 nm and 706 nm respectively.Keywords: absorption, borotellurite, down-conversion, emission
Procedia PDF Downloads 6843710 Research of Acoustic Propagation within Marine Riser in Deepwater Drilling
Authors: Xiaohui Wang, Zhichuan Guan, Roman Shor, Chuanbin Xu
Abstract:
Early monitoring and real-time quantitative description of gas intrusion under the premise of ensuring the integrity of the drilling fluid circulation system will greatly improve the accuracy and effectiveness of deepwater gas-kick monitoring. Therefore, in order to study the propagation characteristics of ultrasonic waves in the gas-liquid two-phase flow within the marine riser, in this paper, a numerical simulation method of ultrasonic propagation in the annulus of the riser was established, and the credibility of the numerical analysis was verified by the experimental results of the established gas intrusion monitoring simulation experimental device. The numerical simulation can solve the sound field in the gas-liquid two-phase flow according to different physical models, and it is easier to realize the single factor control. The influence of each parameter on the received signal can be quantitatively investigated, and the law with practical guiding significance can be obtained.Keywords: gas-kick detection, ultrasonic, void fraction, coda wave velocity
Procedia PDF Downloads 1573709 Vibration Control of Two Adjacent Structures Using a Non-Linear Damping System
Authors: Soltani Amir, Wang Xuan
Abstract:
The advantage of using non-linear passive damping system in vibration control of two adjacent structures is investigated under their base excitation. The base excitation is El Centro earthquake record acceleration. The damping system is considered as an optimum and effective non-linear viscous damper that is connected between two adjacent structures. A Matlab program is developed to produce the stiffness and damping matrices and to determine a time history analysis of the dynamic motion of the system. One structure is assumed to be flexible while the other has a rule as laterally supporting structure with rigid frames. The response of the structure has been calculated and the non-linear damping coefficient is determined using optimum LQR algorithm in an optimum vibration control system. The non-linear parameter of damping system is estimated and it has shown a significant advantage of application of this system device for vibration control of two adjacent tall building.Keywords: active control, passive control, viscous dampers, structural control, vibration control, tall building
Procedia PDF Downloads 5143708 Development of a Low-Cost Smart Insole for Gait Analysis
Authors: S. M. Khairul Halim, Mojtaba Ghodsi, Morteza Mohammadzaheri
Abstract:
Gait analysis is essential for diagnosing musculoskeletal and neurological conditions. However, current methods are often complex and expensive. This paper introduces a methodology for analysing gait parameters using a smart insole with a built-in accelerometer. The system measures stance time, swing time, step count, and cadence and wirelessly transmits data to a user-friendly IoT dashboard for centralized processing. This setup enables remote monitoring and advanced data analytics, making it a versatile tool for medical diagnostics and everyday usage. Integration with IoT enhances the portability and connectivity of the device, allowing for secure, encrypted data access over the Internet. This feature supports telemedicine and enables personalized treatment plans tailored to individual needs. Overall, the approach provides a cost-effective (almost 25 GBP), accurate, and user-friendly solution for gait analysis, facilitating remote tracking and customized therapy.Keywords: gait analysis, IoT, smart insole, accelerometer sensor
Procedia PDF Downloads 173707 Speed-Up Data Transmission by Using Bluetooth Module on Gas Sensor Node of Arduino Board
Authors: Hiesik Kim, YongBeum Kim
Abstract:
Internet of Things (IoT) applications are widely serviced and spread worldwide. Local wireless data transmission technique must be developed to speed up with some technique. Bluetooth wireless data communication is wireless technique is technique made by Special Inter Group(SIG) using the frequency range 2.4 GHz, and it is exploiting Frequency Hopping to avoid collision with different device. To implement experiment, equipment for experiment transmitting measured data is made by using Arduino as Open source hardware, Gas sensor, and Bluetooth Module and algorithm controlling transmission speed is demonstrated. Experiment controlling transmission speed also is progressed by developing Android Application receiving measured data, and controlling this speed is available at the experiment result. it is important that in the future, improvement for communication algorithm be needed because few error occurs when data is transferred or received.Keywords: Arduino, Bluetooth, gas sensor, internet of things, transmission Speed
Procedia PDF Downloads 483