Search results for: measurement accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6128

Search results for: measurement accuracy

3068 Object Tracking in Motion Blurred Images with Adaptive Mean Shift and Wavelet Feature

Authors: Iman Iraei, Mina Sharifi

Abstract:

A method for object tracking in motion blurred images is proposed in this article. This paper shows that object tracking could be improved with this approach. We use mean shift algorithm to track different objects as a main tracker. But, the problem is that mean shift could not track the selected object accurately in blurred scenes. So, for better tracking result, and increasing the accuracy of tracking, wavelet transform is used. We use a feature named as blur extent, which could help us to get better results in tracking. For calculating of this feature, we should use Harr wavelet. We can look at this matter from two different angles which lead to determine whether an image is blurred or not and to what extent an image is blur. In fact, this feature left an impact on the covariance matrix of mean shift algorithm and cause to better performance of tracking. This method has been concentrated mostly on motion blur parameter. transform. The results reveal the ability of our method in order to reach more accurately tracking.

Keywords: mean shift, object tracking, blur extent, wavelet transform, motion blur

Procedia PDF Downloads 212
3067 Distribution Urban Public Spaces Among Riyadh Residential Neighborhoods

Authors: Abdulwahab Alalyani, Mahbub Rashid

Abstract:

Urban Open Space (UOS) a central role to promotes community health, including daily activities, but these resources may not available, accessible enough, and or equitably be distributed. This paper measures and compares spatial equity of the availability and accessibility UOS among low, middle, and high-income neighborhoods in Riyadh city. The measurement mothdulgy for the UOSavailability was by calculating the total of UOS with respect to the population total (m2/inhabitant) and the accessibility indicted by using walking distance of a 0.25 mi (0.4 km) buffering streets network.All UOS were mapped and measured using geographical information systems. To evaluate the significant differences in UOS availability and accessibility across low, medium, and high-income Riyadh neighborhoods, we used a One-way ANOVA analysis of covariance to test the differences.The findings are as follows; finding, UOSavailability was lower than global standers. Riyadh has only 1.13 m2 per capita of UOS, and the coverage accessible area by walking distance to UOS was lower than 50%. The final finding, spatial equity of the availability and accessibility, were significantly different among Riyadh neighborhoods based on socioeconomic status. The future development of UOS should be focused on increasing Urban park availability and should be given priority to those low-income and unhealthy communities.

Keywords: distribution urban open space, urban open space accessibility, spatial equity, riyadh city

Procedia PDF Downloads 105
3066 Long Short-Time Memory Neural Networks for Human Driving Behavior Modelling

Authors: Lu Zhao, Nadir Farhi, Yeltsin Valero, Zoi Christoforou, Nadia Haddadou

Abstract:

In this paper, a long short-term memory (LSTM) neural network model is proposed to replicate simultaneously car-following and lane-changing behaviors in road networks. By combining two kinds of LSTM layers and three input designs of the neural network, six variants of the LSTM model have been created. These models were trained and tested on the NGSIM 101 dataset, and the results were evaluated in terms of longitudinal speed and lateral position, respectively. Then, we compared the LSTM model with a classical car-following model (the intelligent driving model (IDM)) in the part of speed decision. In addition, the LSTM model is compared with a model using classical neural networks. After the comparison, the LSTM model demonstrates higher accuracy than the physical model IDM in terms of car-following behavior and displays better performance with regard to both car-following and lane-changing behavior compared to the classical neural network model.

Keywords: traffic modeling, neural networks, LSTM, car-following, lane-change

Procedia PDF Downloads 263
3065 Solubility Measurements in the Context of Nanoregulation

Authors: Ratna Tantra

Abstract:

From a risk assessment point of view, solubility is a property that has been identified as being important. If nanomaterial is completely soluble, then its disposal can be treated much in the same way as ‘ordinary’ chemicals, which subsequently will simplify testing and characterization regimes. The measurement of solubility has been highlighted as important in a pan-European project, Framework Programme (FP) 7 NANoREG. Some of the project outputs surrounding this topic will be presented here, in which there are two parts. First, a review on existing methods capable of measuring nanomaterial solubility will be discussed. Second, a case study will be presented based on using colorimetry methods to quantify dissolve zinc from ZnO nanomaterial upon exposure to digestive juices. The main findings are as follows: a) there is no universal method for nanomaterial solubility testing. The method chosen will be dependent on sample type and nano-specific application/scenario. b) The colorimetry results show a positive correlation between particle concentration and amount of [Zn2+] released; this was expected c) results indicate complete dissolution of the ZnO nanomaterial, as a result of the digestion protocol but only a fraction existing as free ions. Finally, what differentiates the F7 NANoREG project over other projects is the need for participating research laboratories to follow a set of defined protocols, necessary to establish quality control and assurance. The methods and results associated with mandatory testing that carried out by all partners in NANoREG will be discussed.

Keywords: nanomaterials, nanotoxicology, solubility, zinc oxide

Procedia PDF Downloads 336
3064 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study

Authors: Salima Smiti, Ines Gasmi, Makram Soui

Abstract:

Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.

Keywords: credit risk assessment, classification algorithms, data mining, rule extraction

Procedia PDF Downloads 183
3063 TRACE/FRAPTRAN Analysis of Kuosheng Nuclear Power Plant Dry-Storage System

Authors: J. R. Wang, Y. Chiang, W. Y. Li, H. T. Lin, H. C. Chen, C. Shih, S. W. Chen

Abstract:

The dry-storage systems of nuclear power plants (NPPs) in Taiwan have become one of the major safety concerns. There are two steps considered in this study. The first step is the verification of the TRACE by using VSC-17 experimental data. The results of TRACE were similar to the VSC-17 data. It indicates that TRACE has the respectable accuracy in the simulation and analysis of the dry-storage systems. The next step is the application of TRACE in the dry-storage system of Kuosheng NPP (BWR/6). Kuosheng NPP is the second BWR NPP of Taiwan Power Company. In order to solve the storage of the spent fuels, Taiwan Power Company developed the new dry-storage system for Kuosheng NPP. In this step, the dry-storage system model of Kuosheng NPP was established by TRACE. Then, the steady state simulation of this model was performed and the results of TRACE were compared with the Kuosheng NPP data. Finally, this model was used to perform the safety analysis of Kuosheng NPP dry-storage system. Besides, FRAPTRAN was used tocalculate the transient performance of fuel rods.

Keywords: BWR, TRACE, FRAPTRAN, dry-storage

Procedia PDF Downloads 520
3062 On the Application and Comparison of Two Geostatistics Methods in the Parameterisation Step to Calibrate Groundwater Model: Grid-Based Pilot Point and Head-Zonation Based Pilot Point Methods

Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas

Abstract:

Properly selecting the most suitable and effective geostatistics method in the parameterization step of groundwater modeling is critical to attain a satisfactory model. In this paper, two geostatistics methods, i.e., Grid-Based Pilot Point (GB-PP) and Head-Zonation Based Pilot Point (HZB-PP) methods, were applied in an eogenetic karst catchment and compared using as model performances and computation time the criteria. Overall, the results show that appropriate selection of method is substantial in the parameterization of physically-based groundwater models, as it influences both the accuracy and simulation times. It was found that GB-PP method performed comparably superior to HZB-PP method. However, reflecting its model performances, HZB-PP method is promising for further application in groundwater modeling.

Keywords: groundwater model, geostatistics, pilot point, parameterization step

Procedia PDF Downloads 168
3061 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance

Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.

Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning

Procedia PDF Downloads 37
3060 The Role of Metaheuristic Approaches in Engineering Problems

Authors: Ferzat Anka

Abstract:

Many types of problems can be solved using traditional analytical methods. However, these methods take a long time and cause inefficient use of resources. In particular, different approaches may be required in solving complex and global engineering problems that we frequently encounter in real life. The bigger and more complex a problem, the harder it is to solve. Such problems are called Nondeterministic Polynomial time (NP-hard) in the literature. The main reasons for recommending different metaheuristic algorithms for various problems are the use of simple concepts, the use of simple mathematical equations and structures, the use of non-derivative mechanisms, the avoidance of local optima, and their fast convergence. They are also flexible, as they can be applied to different problems without very specific modifications. Thanks to these features, it can be easily embedded even in many hardware devices. Accordingly, this approach can also be used in trend application areas such as IoT, big data, and parallel structures. Indeed, the metaheuristic approaches are algorithms that return near-optimal results for solving large-scale optimization problems. This study is focused on the new metaheuristic method that has been merged with the chaotic approach. It is based on the chaos theorem and helps relevant algorithms to improve the diversity of the population and fast convergence. This approach is based on Chimp Optimization Algorithm (ChOA), that is a recently introduced metaheuristic algorithm inspired by nature. This algorithm identified four types of chimpanzee groups: attacker, barrier, chaser, and driver, and proposed a suitable mathematical model for them based on the various intelligence and sexual motivations of chimpanzees. However, this algorithm is not more successful in the convergence rate and escaping of the local optimum trap in solving high-dimensional problems. Although it and some of its variants use some strategies to overcome these problems, it is observed that it is not sufficient. Therefore, in this study, a newly expanded variant is described. In the algorithm called Ex-ChOA, hybrid models are proposed for position updates of search agents, and a dynamic switching mechanism is provided for transition phases. This flexible structure solves the slow convergence problem of ChOA and improves its accuracy in multidimensional problems. Therefore, it tries to achieve success in solving global, complex, and constrained problems. The main contribution of this study is 1) It improves the accuracy and solves the slow convergence problem of the ChOA. 2) It proposes new hybrid movement strategy models for position updates of search agents. 3) It provides success in solving global, complex, and constrained problems. 4) It provides a dynamic switching mechanism between phases. The performance of the Ex-ChOA algorithm is analyzed on a total of 8 benchmark functions, as well as a total of 2 classical and constrained engineering problems. The proposed algorithm is compared with the ChoA, and several well-known variants (Weighted-ChoA, Enhanced-ChoA) are used. In addition, an Improved algorithm from the Grey Wolf Optimizer (I-GWO) method is chosen for comparison since the working model is similar. The obtained results depict that the proposed algorithm performs better or equivalently to the compared algorithms.

Keywords: optimization, metaheuristic, chimp optimization algorithm, engineering constrained problems

Procedia PDF Downloads 78
3059 Heart Ailment Prediction Using Machine Learning Methods

Authors: Abhigyan Hedau, Priya Shelke, Riddhi Mirajkar, Shreyash Chaple, Mrunali Gadekar, Himanshu Akula

Abstract:

The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy.

Keywords: logistic regression, support vector classifier, k-nearest neighbour, decision tree, random forest and gradient boosting

Procedia PDF Downloads 53
3058 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency

Authors: Fanqiang Kong, Chending Bian

Abstract:

In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.

Keywords: hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation

Procedia PDF Downloads 264
3057 A Hybrid System for Boreholes Soil Sample

Authors: Ali Ulvi Uzer

Abstract:

Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.

Keywords: feature selection, sequential forward selection, support vector machines, soil sample

Procedia PDF Downloads 457
3056 Evaluation of Minimization of Moment Ratio Method by Physical Modeling

Authors: Amin Eslami, Jafar Bolouri Bazaz

Abstract:

Under active stress conditions, a rigid cantilever retaining wall tends to rotate about a pivot point located within the embedded depth of the wall. For purely granular and cohesive soils, a methodology was previously reported called minimization of moment ratio to determine the location of the pivot point of rotation. The usage of this new methodology is to estimate the rotational stability safety factor. Moreover, the degree of improvement required in a backfill to get a desired safety factor can be estimated by the concept of the shear strength demand. In this article, the accuracy of this method for another type of cantilever walls called Contiguous Bored Pile (CBP) retaining wall is evaluated by using physical modeling technique. Based on observations, the results of moment ratio minimization method are in good agreement with the results of the carried out physical modeling.

Keywords: cantilever retaining wall, physical modeling, minimization of moment ratio method, pivot point

Procedia PDF Downloads 333
3055 Impact of Ship Traffic to PM 2.5 and Particle Number Concentrations in Three Port-Cities of the Adriatic/Ionian Area

Authors: Daniele Contini, Antonio Donateo, Andrea Gambaro, Athanasios Argiriou, Dimitrios Melas, Daniela Cesari, Anastasia Poupkou, Athanasios Karagiannidis, Apostolos Tsakis, Eva Merico, Rita Cesari, Adelaide Dinoi

Abstract:

Emissions of atmospheric pollutants from ships and harbour activities are a growing concern at International level given their potential impacts on air quality and climate. These close-to-land emissions have potential impact on local communities in terms of air quality and health. Recent studies show that the impact of maritime traffic to atmospheric particulate matter concentrations in several coastal urban areas is comparable with the impact of road traffic of a medium size town. However, several different approaches have been used for these estimates making difficult a direct comparison of results. In this work an integrated approach based on emission inventories and dedicated measurement campaigns has been applied to give a comparable estimate of the impact of maritime traffic to PM2.5 and particle number concentrations in three major harbours of the Adriatic/Ionian Seas. The influences of local meteorology and of the logistic layout of the harbours are discussed.

Keywords: ship emissions, PM2.5, particle number concentrations, impact of shipping to atmospheric aerosol

Procedia PDF Downloads 754
3054 A Review of Lortie’s Schoolteacher

Authors: Tsai-Hsiu Lin

Abstract:

Dan C. Lortie’s Schoolteacher: A sociological study is one of the best works on the sociology of teaching since W. Waller’s classic study. It is a book worthy of review. Following the tradition of symbolic interactionists, Lortie demonstrated the qualities who studied the occupation of teaching. Using several methods to gather effective data, Lortie has portrayed the ethos of the teaching profession. Therefore, the work is an important book on the teaching profession and teacher culture. Though outstanding, Lortie’s work is also flawed in that his perspectives and methodology were adopted largely from symbolic interactionism. First, Lortie in his work analyzed many points regarding teacher culture; for example, he was interested in exploring “sentiment,” “cathexis,” and “ethos.” Thus, he was more a psychologist than a sociologist. Second, symbolic interactionism led him to discern the teacher culture from a micro view, thereby missing the structural aspects. For example, he did not fully discuss the issue of gender and he ignored the issue of race. Finally, following the qualitative sociological tradition, Lortie employed many qualitative methods to gather data but only foucused on obtaining and presenting interview data. Moreover, he used measurement methods that were too simplistic for analyzing quantitative data fully.

Keywords: education reform, teacher culture, teaching profession, Lortie’s Schoolteacher

Procedia PDF Downloads 232
3053 Assessing the Effect of Freezing and Thawing of Coverzone of Ground Granulated Blast-Furnace Slag Concrete

Authors: Abdulkarim Mohammed Iliyasu, Mahmud Abba Tahir

Abstract:

Freezing and thawing are considered to be one of the major causes of concrete deterioration in the cold regions. This study aimed at assessing the freezing and thawing of concrete within the cover zone by monitoring the formation of ice and melting at different temperatures using electrical measurement technique. A multi-electrode array system was used to obtain the resistivity of ice formation and melting at discrete depths within the cover zone of the concrete. A total number of four concrete specimens (250 mm x 250 mm x 150 mm) made of ordinary Portland cement concrete and ordinary Portland cement replaced by 65% ground granulated blast furnace slag (GGBS) is investigated. Water/binder ratios of 0.35 and 0.65 were produced and ponded with water to ensure full saturation and then subjected to freezing and thawing process in a refrigerator within a temperature range of -30 0C and 20 0C over a period of time 24 hours. The data were collected and analysed. The obtained results show that the addition of GGBS changed the pore structure of the concrete which resulted in the decrease in conductance. It was recommended among others that, the surface of the concrete structure should be protected as this will help to prevent the instantaneous propagation of ice trough the rebar and to avoid corrosion and subsequent damage.

Keywords: concrete, conductance, deterioration, freezing and thawing

Procedia PDF Downloads 418
3052 Detection of Pharmaceutical Personal Protective Equipment in Video Stream

Authors: Michael Leontiev, Danil Zhilikov, Dmitry Lobanov, Lenar Klimov, Vyacheslav Chertan, Daniel Bobrov, Vladislav Maslov, Vasilii Vologdin, Ksenia Balabaeva

Abstract:

Pharmaceutical manufacturing is a complex process, where each stage requires a high level of safety and sterility. Personal Protective Equipment (PPE) is used for this purpose. Despite all the measures of control, the human factor (improper PPE wearing) causes numerous losses to human health and material property. This research proposes a solid computer vision system for ensuring safety in pharmaceutical laboratories. For this, we have tested a wide range of state-of-the-art object detection methods. Composing previously obtained results in this sphere with our own approach to this problem, we have reached a high accuracy ([email protected]) ranging from 0.77 up to 0.98 in detecting all the elements of a common set of PPE used in pharmaceutical laboratories. Our system is a step towards safe medicine production.

Keywords: sterility and safety in pharmaceutical development, personal protective equipment, computer vision, object detection, monitoring in pharmaceutical development, PPE

Procedia PDF Downloads 90
3051 Minimum Ratio of Flexural Reinforcement for High Strength Concrete Beams

Authors: Azad A. Mohammed, Dunyazad K. Assi, Alan S. Abdulrahman

Abstract:

Current ACI 318 Code provides two limits for minimum steel ratio for concrete beams. When concrete compressive strength be larger than 31 MPa the limit of √(fc')/4fy usually governs. In this paper shortcomings related to using this limit was fairly discussed and showed that the limit is based on 90% safety factor and was derived based on modulus of rupture equation suitable for concretes of compressive strength lower than 31 MPa. Accordingly, the limit is nor suitable and critical for concretes of higher compressive strength. An alternative equation was proposed for minimum steel ratio of rectangular beams and was found that the proposed limit is accurate for beams of wide range of concrete compressive strength. Shortcomings of the current ACI 318 Code equation and accuracy of the proposed equation were supported by test data obtained from testing six reinforced concrete beams.

Keywords: concrete beam, compressive strength, minimum steel ratio, modulus of rupture

Procedia PDF Downloads 556
3050 Convergence of Sinc Methods Applied to Kuramoto-Sivashinsky Equation

Authors: Kamel Al-Khaled

Abstract:

A comparative study of the Sinc-Galerkin and Sinc-Collocation methods for solving the Kuramoto-Sivashinsky equation is given. Both approaches depend on using Sinc basis functions. Firstly, a numerical scheme using Sinc-Galerkin method is developed to approximate the solution of Kuramoto-Sivashinsky equation. Sinc approximations to both derivatives and indefinite integrals reduces the solution to an explicit system of algebraic equations. The error in the solution is shown to converge to the exact solution at an exponential. The convergence proof of the solution for the discrete system is given using fixed-point iteration. Secondly, a combination of a Crank-Nicolson formula in the time direction, with the Sinc-collocation in the space direction is presented, where the derivatives in the space variable are replaced by the necessary matrices to produce a system of algebraic equations. The methods are tested on two examples. The demonstrated results show that both of the presented methods more or less have the same accuracy.

Keywords: Sinc-Collocation, nonlinear PDEs, numerical methods, fixed-point

Procedia PDF Downloads 472
3049 Effect of Varying Levels of Concentrate Ration on the Performance of Nili-Ravi Buffalo Heifer Calves

Authors: Z. M. Iqbal, M. Abdullah, K. Javed, M. A. Jabbar, A. Haque, M. Saadullah, F. Shahzad

Abstract:

The current study was conducted to set the appropriate concentrate level for Nili-Ravi buffalo heifers. Twenty seven buffalo heifers were randomly divided into three different groups A, B and C having nine animals in each group. All the heifers were given free access to chopped green fodder and fresh water. In addition, heifers of group A, B and C were given concentrate at the rate of 0.5%, 1% and 1.5% of their body weight. The average daily dry matter intake was 2.69, 3.06 and 3.83 kg with average daily gain of 456.09, 398.56 and 515.87 gm in group A, B and C, respectively. The feed conversion ratio of heifers of these groups was 5.89, 7.74 and 7.52, respectively. There was non-significant (P>0.05) difference in the body measurements (height at wither, body length and heart girth), final body condition and scoring and blood serum (glucose, total protein and cholesterol) of heifers of all the three groups. The results of current study shows that there is non-significant (P>0.05) difference in the growth rate of Nili-Ravi heifers at varying levels of concentrate so, it is cost effective to raise 6-8 month calves by offering concentrate at the rate of 0.5% body weight along with free access of green fodder.

Keywords: concentrate level, buffalo heifer, body measurement, green fodder

Procedia PDF Downloads 424
3048 Numinous Luminosity: A Mixed Methods Study of Mystical Light Experiences

Authors: J. R. Dinsmore, R. W. Hood

Abstract:

Experiences of a divine or mystical light are frequently reported in religious/spiritual experiences today, most notably in the context of mystical and near-death experiences. Light of a transcendental nature and its experiences of it are also widely present and highly valued in many religious and mystical traditions. Despite the significance of this luminosity to the topic of religious experience, efforts to study the phenomenon empirically have been minimal and scattered. This mixed methods study developed and validated a questionnaire for the measurement of numinous luminosity experience and investigated the dimensions and effects of this novel construct using both quantitative and qualitative methodologies. A sequential explanatory design (participant selection model) was used, which involved a scale development phase, followed by a correlational study testing hypotheses about its effects on beliefs and well-being derived from the literature, and lastly, a phenomenological study of a sample selected from the correlational phase results. The outcomes of the study are a unified theoretical model of numinous luminosity experience across multiple experiential contexts, initial correlational findings regarding the possible mechanism of its reported positive transformational effects, and a valid and reliable instrument for its further empirical study.

Keywords: religious experience, mystical experience, near-death experience, scale development, questionnaire, divine light, mystical light, mystical luminosity

Procedia PDF Downloads 97
3047 Revolutionizing Interior Design with AI: A Comprehensive Analysis of Coohom’s Innovative Features

Authors: Raghad Alshabrawi, Raghad Alafif

Abstract:

Coohom is revolutionizing the world of interior design by seamlessly blending cutting-edge AI technology with an intuitive, user-friendly platform. Catering to both professionals and enthusiasts, Coohom empowers users to transform their creative visions into stunning 3D realities with unmatched speed and precision. This research explores Coohom’s groundbreaking AI capabilities, from personalized design suggestions to real-time layout optimization and photorealistic rendering. Compared to competitors like SketchUp and AutoCAD, Coohom stands out with its simplicity, accessibility, and AI-driven innovation. User feedback reveals overwhelming satisfaction, with Coohom’s AI praised for delivering diverse design options, unparalleled accuracy, and significant time savings. As AI continues to reshape the design landscape, Coohom leads the charge, making professional-grade design effortless and accessible to all. This paper highlights the transformative potential of Coohom, showcasing how it is setting a new benchmark for creativity, efficiency, and innovation in the digital design industry.

Keywords: interor design, coohom AI 3D, 3D Models, sketced

Procedia PDF Downloads 5
3046 Al2O3-Dielectric AlGaN/GaN Enhancement-Mode MOS-HEMTs by Using Ozone Water Oxidization Technique

Authors: Ching-Sung Lee, Wei-Chou Hsu, Han-Yin Liu, Hung-Hsi Huang, Si-Fu Chen, Yun-Jung Yang, Bo-Chun Chiang, Yu-Chuang Chen, Shen-Tin Yang

Abstract:

AlGaN/GaN high electron mobility transistors (HEMTs) have been intensively studied due to their intrinsic advantages of high breakdown electric field, high electron saturation velocity, and excellent chemical stability. They are also suitable for ultra-violet (UV) photodetection due to the corresponding wavelengths of GaN bandgap. To improve the optical responsivity by decreasing the dark current due to gate leakage problems and limited Schottky barrier heights in GaN-based HEMT devices, various metal-oxide-semiconductor HEMTs (MOS-HEMTs) have been devised by using atomic layer deposition (ALD), molecular beam epitaxy (MBE), metal-organic chemical vapor deposition (MOCVD), liquid phase deposition (LPD), and RF sputtering. The gate dielectrics include MgO, HfO2, Al2O3, La2O3, and TiO2. In order to provide complementary circuit operation, enhancement-mode (E-mode) devices have been lately studied using techniques of fluorine treatment, p-type capper, piezoneutralization layer, and MOS-gate structure. This work reports an Al2O3-dielectric Al0.25Ga0.75N/GaN E-mode MOS-HEMT design by using a cost-effective ozone water oxidization technique. The present ozone oxidization method advantages of low cost processing facility, processing simplicity, compatibility to device fabrication, and room-temperature operation under atmospheric pressure. It can further reduce the gate-to-channel distance and improve the transocnductance (gm) gain for a specific oxide thickness, since the formation of the Al2O3 will consume part of the AlGaN barrier at the same time. The epitaxial structure of the studied devices was grown by using the MOCVD technique. On a Si substrate, the layer structures include a 3.9 m C-doped GaN buffer, a 300 nm GaN channel layer, and a 5 nm Al0.25Ga0.75N barrier layer. Mesa etching was performed to provide electrical isolation by using an inductively coupled-plasma reactive ion etcher (ICP-RIE). Ti/Al/Au were thermally evaporated and annealed to form the source and drain ohmic contacts. The device was immersed into the H2O2 solution pumped with ozone gas generated by using an OW-K2 ozone generator. Ni/Au were deposited as the gate electrode to complete device fabrication of MOS-HEMT. The formed Al2O3 oxide thickness 7 nm and the remained AlGaN barrier thickness is 2 nm. A reference HEMT device has also been fabricated in comparison on the same epitaxial structure. The gate dimensions are 1.2 × 100 µm 2 with a source-to-drain spacing of 5 μm for both devices. The dielectric constant (k) of Al2O3 was characterized to be 9.2 by using C-V measurement. Reduced interface state density after oxidization has been verified by the low-frequency noise spectra, Hooge coefficients, and pulse I-V measurement. Improved device characteristics at temperatures of 300 K-450 K have been achieved for the present MOS-HEMT design. Consequently, Al2O3-dielectric Al0.25Ga0.75N/GaN E-mode MOS-HEMTs by using the ozone water oxidization method are reported. In comparison with a conventional Schottky-gate HEMT, the MOS-HEMT design has demonstrated excellent enhancements of 138% (176%) in gm, max, 118% (139%) in IDS, max, 53% (62%) in BVGD, 3 (2)-order reduction in IG leakage at VGD = -60 V at 300 (450) K. This work is promising for millimeter-wave integrated circuit (MMIC) and three-terminal active UV photodetector applications.

Keywords: MOS-HEMT, enhancement mode, AlGaN/GaN, passivation, ozone water oxidation, gate leakage

Procedia PDF Downloads 264
3045 Numerical Computation of Generalized Rosenau Regularized Long-Wave Equation via B-Spline Over Butcher’s Fifth Order Runge-Kutta Approach

Authors: Guesh Simretab Gebremedhin, Saumya Rajan Jena

Abstract:

In this work, a septic B-spline scheme has been used to simplify the process of solving an approximate solution of the generalized Rosenau-regularized long-wave equation (GR-RLWE) with initial boundary conditions. The resulting system of first-order ODEs has dealt with Butcher’s fifth order Runge-Kutta (BFRK) approach without using finite difference techniques for discretizing the time-dependent variables at each time level. Here, no transformation or any kind of linearization technique is employed to tackle the nonlinearity of the equation. Two test problems have been selected for numerical justifications and comparisons with other researchers on the basis of efficiency, accuracy, and results of the two invariants Mᵢ (mass) and Eᵢ (energy) of some motion that has been used to test the conservative properties of the proposed scheme.

Keywords: septic B-spline scheme, Butcher's fifth order Runge-Kutta approach, error norms, generalized Rosenau-RLW equation

Procedia PDF Downloads 68
3044 State Estimation of a Biotechnological Process Using Extended Kalman Filter and Particle Filter

Authors: R. Simutis, V. Galvanauskas, D. Levisauskas, J. Repsyte, V. Grincas

Abstract:

This paper deals with advanced state estimation algorithms for estimation of biomass concentration and specific growth rate in a typical fed-batch biotechnological process. This biotechnological process was represented by a nonlinear mass-balance based process model. Extended Kalman Filter (EKF) and Particle Filter (PF) was used to estimate the unmeasured state variables from oxygen uptake rate (OUR) and base consumption (BC) measurements. To obtain more general results, a simplified process model was involved in EKF and PF estimation algorithms. This model doesn’t require any special growth kinetic equations and could be applied for state estimation in various bioprocesses. The focus of this investigation was concentrated on the comparison of the estimation quality of the EKF and PF estimators by applying different measurement noises. The simulation results show that Particle Filter algorithm requires significantly more computation time for state estimation but gives lower estimation errors both for biomass concentration and specific growth rate. Also the tuning procedure for Particle Filter is simpler than for EKF. Consequently, Particle Filter should be preferred in real applications, especially for monitoring of industrial bioprocesses where the simplified implementation procedures are always desirable.

Keywords: biomass concentration, extended Kalman filter, particle filter, state estimation, specific growth rate

Procedia PDF Downloads 431
3043 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images

Authors: A. Biran, P. Sobhe Bidari, A. Almazroe, V. Lakshminarayanan, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.

Keywords: diabetic retinopathy, fundus images, STARE, Gabor filter, support vector machine

Procedia PDF Downloads 294
3042 A Sensitive Uric Acid Electrochemical Sensing in Biofluids Based on Ni/Zn Hydroxide Nanocatalyst

Authors: Nathalia Florencia Barros Azeredo, Josué Martins Gonçalves, Pamela De Oliveira Rossini, Koiti Araki, Lucio Angnes

Abstract:

This work demonstrates the electroanalysis of uric acid (UA) at very low working potential (0 V vs Ag/AgCl) directly in body fluids such as saliva and sweat using electrodes modified with mixed -Ni0.75Zn0.25(OH)2 nanoparticles exhibiting stable electrocatalytic responses from alkaline down to weakly acidic media (pH 14 to 3 range). These materials were prepared for the first time and fully characterized by TEM, XRD, and spectroscopic techniques. The electrochemical properties of the modified electrodes were evaluated in a fast and simple procedure for uric acid analyses based on cyclic voltammetry and chronoamperometry, pushing down the detection and quantification limits (respectively of 2.3*10-8 and 7.6*10-8 mol L-1) with good repeatability (RSD = 3.2% for 30 successive analyses pH 14). Finally, the possibility of real application was demonstrated upon realization of unexpectedly robust and sensitive modified FTO (fluorine doped tin oxide) glass and screen-printed sensors for measurement of uric acid directly in real saliva and sweat samples, with no significant interference of usual concentrations of ascorbic acid, acetaminophen, lactate and glucose present in those body fluids (Fig. 1).

Keywords: nickel hydroxide, mixed catalyst, uric acid sensors, biofluids

Procedia PDF Downloads 129
3041 Ubiquitous Scaffold Learning Environment Using Problem-based Learning Activities to Enhance Problem-solving Skills and Context Awareness

Authors: Noppadon Phumeechanya, Panita Wannapiroon

Abstract:

The purpose of this research is to design the ubiquitous scaffold learning environment using problem-based learning activities that enhance problem-solving skills and context awareness, and to evaluate the suitability of the ubiquitous scaffold learning environment using problem-based learning activities. We divide the research procedures into two phases. The first phase is to design the ubiquitous scaffold learning environment using problem-based learning activities, and the second is to evaluate the ubiquitous scaffold learning environment using problem-based learning activities. The sample group in this study consists of five experts selected using the purposive sampling method. We analyse data by arithmetic mean and standard deviation. The research findings are as follows; the ubiquitous scaffold learning environment using problem-based learning activities consists of three major steps, the first is preparation before learning. This prepares learners to acknowledge details and learn through u-LMS. The second is the learning process, where learning activities happen in the ubiquitous learning environment and learners learn online with scaffold systems for each step of problem solving. The third step is measurement and evaluation. The experts agree that the ubiquitous scaffold learning environment using problem-based learning activities is highly appropriate.

Keywords: ubiquitous learning environment scaffolding, learning activities, problem-based learning, problem-solving skills, context awareness

Procedia PDF Downloads 499
3040 Prediction of Rolling Forces and Real Exit Thickness of Strips in the Cold Rolling by Using Artificial Neural Networks

Authors: M. Heydari Vini

Abstract:

There is a complicated relation between effective input parameters of cold rolling and output rolling force and exit thickness of strips.in many mathematical models, the effect of some rolling parameters have been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips,the width of the strips,rolling speeds,mandrill tensions and the required exit thickness of strips with rolling force and the real exit thickness of the rolled strip. First of all, in this paper the effective parameters of cold rolling process modeled using an artificial neural network according to the optimum network achieved by using a written program in MATLAB,it has been shown that the prediction of rolling stand parameters with different properties and new dimensions attained from prior rolled strips by an artificial neural network is applicable.

Keywords: cold rolling, artificial neural networks, rolling force, real rolled thickness of strips

Procedia PDF Downloads 507
3039 Crude Oil Electrostatic Mathematical Modelling on an Existing Industrial Plant

Authors: Fatemeh Yazdanmehr, Iulian Nistor

Abstract:

The scope of the current study is the prediction of water separation in a two-stage industrial crude oil desalting plant. This research study was focused on developing a desalting operation in an existing production unit of one Iranian heavy oil field with 75 MBPD capacity. Because of some operational issues, such as oil dehydration at high temperatures, the optimization of the desalter operational parameters was essential. The mathematical desalting is modeled based on the population balance method. The existing operational data is used for tuning and validation of the accuracy of the modeling. The inlet oil temperature to desalter used was decreased from 110°C to 80°C, and the desalted electrical field was increased from 0.75 kv to 2.5 kv. The proposed condition for the desalter also meets the water oil specification. Based on these conditions of desalter, the oil recovery is increased by 574 BBL/D, and the gas flaring decrease by 2.8 MMSCF/D. Depending on the oil price, the additional production of oil can increase the annual income by about $15 MM and reduces greenhouse gas production caused by gas flaring.

Keywords: desalter, demulsification, modelling, water-oil separation, crude oil emulsion

Procedia PDF Downloads 80