Search results for: enhancing learning experiences
7951 The Studies of Client Requirements in Home Stay: A Case Study of Thailand
Authors: Kanamon Suwantada
Abstract:
The purpose of this research is to understand customer’s expectations towards homestays and to establish the precise strategies to increase numbers of tourists for homestay business in Amphawa district, Samutsongkram, Thailand. The researcher aims to ensure that each host provides experiences to travelers who are looking for and determining new targets for homestay business in Amphawa as well as creating sustainable homestay using marketing strategies to increase customers. The methods allow interview and questionnaire to gain both overview data from the tourists and qualitative data from the homestay owner’s perspective to create a GAP analysis. The data was collected from 200 tourists, during 15th May - 30th July, 2011 from homestay in Amphawa Community. The questionnaires were divided into three sections: the demographic profile, customer information and influencing on purchasing position, and customer expectation towards homestay. The analysis, in fact, will be divided into two methods which are percentage and correlation analyses. The result of this research revealed that homestay had already provided customers with reasonable prices in good locations. Antithetically, activities that they offered still could not have met the customer’s requirements. Homestay providers should prepare additional activities such as village tour, local attraction tour, village daily life experiences, local ceremony participation, and interactive conversation with local people. Moreover, the results indicated that a price was the most important factor for choosing homestay.Keywords: ecotourism, homestay, marketing, sufficiency economic philosophy
Procedia PDF Downloads 3117950 Moulding Photovoice to Community: Supporting Aboriginal People Experiencing Homelessness to Share Their Stories through Photography
Authors: Jocelyn Jones, Louise Southalan, Lindey Andrews, Mandy Wilson, Emma Vieira, Jackie Oakley, Dorothy Bagshaw, Alice V. Brown, Patrick Egan, Duc Dau, Lucy Spanswick
Abstract:
Working with people experiencing homelessness requires careful use of methods that support them to comfortably share their experiences. This is particularly important for Aboriginal and Torres Strait Islander peoples, the traditional owners of Australia, who have experienced intergenerational and compounding trauma since colonisation. Aboriginal cultures regularly experience research fatigue and distrust in research’s potential for impact. They often view research as an extraction -a process of taking the knowledge that empowers the research team and its institution, rather than benefiting those being researched. Through a partnership between an Aboriginal Community Controlled Organisation and a university research institute, we conducted a community-driven research project with 70-90 Aboriginal people experiencing homelessness in Perth, Western Australia. The project aimed to listen to and advocate for the voices of those who are experiencing homelessness, guided by the Aboriginal community. In consultation with Aboriginal Elders, we selected methods that are considered culturally safe, including those who would prefer to express their experiences creatively. This led us to run a series of Photovoice workshops -an established method that supports people to share their experiences through photography. This method treats participants as experts and is regularly used with marginalised groups across the world. We detail our experience and lessons in using Photovoice with Aboriginal community members experiencing homelessness. This includes the ways the method needed to be moulded to community needs and driven by their individual choices, such as being dynamic in the length of time participants would spend with us, how we would introduce the method to them, and providing support workers for participants when taking photos. We also discuss lessons in establishing and retaining engagement and how the method was successful in supporting participants to comfortably share their stories. Finally, we outline the insights into homelessness that the method offered, including highlighting the difficulty experienced by participants in transitioning from homelessness to accommodation and the diversity of hopes people who have experienced homelessness have for the future.Keywords: Aboriginal and Torres Strait Islander peoples, photovoice, homelessness, community-led research
Procedia PDF Downloads 1007949 Infusing Social Business Skills into the Curriculum of Higher Learning Institutions with Special Reference to Albukhari International University
Authors: Abdi Omar Shuriye
Abstract:
A social business is a business designed to address socio-economic problems to enhance the welfare of the communities involved. Lately, social business, with its focus on innovative ideas, is capturing the interest of educational institutions, governments, and non-governmental organizations. Social business uses a business model to achieve a social goal, and in the last few decades, the idea of imbuing social business into the education system of higher learning institutions has spurred much excitement. This is due to the belief that it will lead to job creation and increased social resilience. One of the higher learning institutions which have invested immensely in the idea is Albukhari International University; it is a private education institution, on a state-of-the-art campus, providing an advantageous learning ecosystem. The niche area of this institution is social business, and it graduates job creators, not job seekers; this Malaysian institution is unique and one of its kind. The objective of this paper is to develop a work plan, direction, and milestone as well as the focus area for the infusion of social business into higher learning institutions with special reference to Al-Bukhari International University. The purpose is to develop a prototype and model full-scale to enable higher learning education institutions to construct the desired curriculum fermented with social business. With this model, major predicaments faced by these institutions could be overcome. The paper sets forth an educational plan and will spell out the basic tenets of social business, focusing on the nature and implementational aspects of the curriculum. It will also evaluate the mechanisms applied by these educational institutions. Currently, since research in this area remains scarce, institutions adopt the process of experimenting with various methods to find the best way to reach the desired result on the matter. The author is of the opinion that social business in education is the main tool to educate holistic future leaders; hence educational institutions should inspire students in the classroom to start up their own businesses by adopting creative and proactive teaching methods. This proposed model is a contribution in that direction.Keywords: social business, curriculum, skills, university
Procedia PDF Downloads 937948 Children’s (re)actions in the Scaffolding Process Using Digital Technologies
Authors: Davoud Masoumi, Maryam Bourbour
Abstract:
By characterizing children’s actions in the scaffolding process, which is often undermined and ignored in the studies reviewed, this study aimed to examine children’s different (re)actions in relation to the teachers’ actions in a context where digital technologies are used. Over five months, 22 children aged 4-6 with five preschool teachers were video observed. The study brought in rich details of the children’s actions in relation to the teacher’s actions in the scaffolding process. The findings of the study reveal thirteen (re)actions, including Giving short response; Explaining; Participating in the activities; Examining; Smiling and laughing; Pointing and showing; Working together; Challenging each other; Problem-solving skills; Developing vocabulary; Choosing the activity; Expressing of the emotions; and Identifying the similarities and differences. Our findings expanded and deepened the understanding of the scaffolding process, which can contribute to the notion of scaffolding and help us to gain further understanding about scaffolding of children’s learning. Characterizing the children’s (re)action in relation to teacher’s scaffolding actions further can contribute to ongoing discussions about how teachers can scaffold children’s learning using digital technologies in the learning process.Keywords: children’ (re)actions, scaffolding process, technologies, preschools
Procedia PDF Downloads 837947 FlexPoints: Efficient Algorithm for Detection of Electrocardiogram Characteristic Points
Authors: Daniel Bulanda, Janusz A. Starzyk, Adrian Horzyk
Abstract:
The electrocardiogram (ECG) is one of the most commonly used medical tests, essential for correct diagnosis and treatment of the patient. While ECG devices generate a huge amount of data, only a small part of them carries valuable medical information. To deal with this problem, many compression algorithms and filters have been developed over the past years. However, the rapid development of new machine learning techniques poses new challenges. To address this class of problems, we created the FlexPoints algorithm that searches for characteristic points on the ECG signal and ignores all other points that do not carry relevant medical information. The conducted experiments proved that the presented algorithm can significantly reduce the number of data points which represents ECG signal without losing valuable medical information. These sparse but essential characteristic points (flex points) can be a perfect input for some modern machine learning models, which works much better using flex points as an input instead of raw data or data compressed by many popular algorithms.Keywords: characteristic points, electrocardiogram, ECG, machine learning, signal compression
Procedia PDF Downloads 1647946 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer
Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom
Abstract:
Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN
Procedia PDF Downloads 787945 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-time
Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl
Abstract:
In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method Web-App auto-generated twin data structure replication. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi" has been developed. A special login form has been developed with a special instance of data validation; this verification process secures the web application from its early stages. The system has been tested and validated, up to 99% of SQLi attacks have been prevented.Keywords: SQL injection, attacks, web application, accuracy, database
Procedia PDF Downloads 1537944 Connecting Lives Inside and Outside the Classroom: Why and How to Implement Technology in the Language Learning Classroom
Authors: Geoffrey Sinha
Abstract:
This paper is primarily addressed to teachers who stand on the threshold of bringing technology and new media into their classrooms. Technology and new media, such as smart phones and tablets have changed the face of communication in general and of language teaching more specifically. New media has widespread appeal among young people in particular, so it is in the teacher’s best interests to bring new media into their lessons. It is the author’s firm belief that technology will never replace the teacher, but it is without question that the twenty-first century teacher must employ technology and new media in some form, or run the risk of failure. The level that one chooses to incorporate new media within their class is entirely in their hands.Keywords: new media, social media, technology, education, language learning
Procedia PDF Downloads 3337943 Information and Communication Technology Application in the Face of COVID-19 Pandemic in Effective Service Delivery in Schools
Authors: Odigie Veronica
Abstract:
The paper focused on the application of Information and Communication Technology (ICT) in effective service delivery in view of the ongoing COVID-19 experience. It adopted the exploratory research method with three research objectives captured. Consequently, the objectives were to ascertain the meaning of online education, understand the concept of COVID-19 and to determine the relevance of online education in effective service delivery in institutions of learning. It is evident from the findings that through ICT, online mode of learning can be adopted in schools which helps greatly in promoting continual education. Online mode of education is practiced online; it brings both the teacher and learners from different places together, without any physical boundary/contact (at least 75%); and has helped greatly in human development in countries where it has been practiced. It is also a welcome development owing to its many benefits such as exposure to digital learning, having access to works of great teachers and educationists such as Socrates, Plato, Dewey, R.S. Peters, J. J. Rosseau, Nnamdi Azikwe, Carol Gilligan, J. I. Omoregbe, Jane Roland Martin, Jean Piaget, among others; and the facilitation of uninterrupted learning for class promotion and graduation of students. Developing the learners all round is part of human development which helps in developing a nation. These and many more are some benefits online education offers which make ICT very relevant in our contemporary societyKeywords: online education, COVID-19 pandemic, effective service delivery, human development
Procedia PDF Downloads 1007942 Aligning Informatics Study Programs with Occupational and Qualifications Standards
Authors: Patrizia Poscic, Sanja Candrlic, Danijela Jaksic
Abstract:
The University of Rijeka, Department of Informatics participated in the Stand4Info project, co-financed by the European Union, with the main idea of an alignment of study programs with occupational and qualifications standards in the field of Informatics. A brief overview of our research methodology, goals and deliverables is shown. Our main research and project objectives were: a) development of occupational standards, qualification standards and study programs based on the Croatian Qualifications Framework (CROQF), b) higher education quality improvement in the field of information and communication sciences, c) increasing the employability of students of information and communication technology (ICT) and science, and d) continuously improving competencies of teachers in accordance with the principles of CROQF. CROQF is a reform instrument in the Republic of Croatia for regulating the system of qualifications at all levels through qualifications standards based on learning outcomes and following the needs of the labor market, individuals and society. The central elements of CROQF are learning outcomes - competences acquired by the individual through the learning process and proved afterward. The place of each acquired qualification is set by the level of the learning outcomes belonging to that qualification. The placement of qualifications at respective levels allows the comparison and linking of different qualifications, as well as linking of Croatian qualifications' levels to the levels of the European Qualifications Framework and the levels of the Qualifications framework of the European Higher Education Area. This research has made 3 proposals of occupational standards for undergraduate study level (System Analyst, Developer, ICT Operations Manager), and 2 for graduate (master) level (System Architect, Business Architect). For each occupational standard employers have provided a list of key tasks and associated competencies necessary to perform them. A set of competencies required for each particular job in the workplace was defined and each set of competencies as described in more details by its individual competencies. Based on sets of competencies from occupational standards, sets of learning outcomes were defined and competencies from the occupational standard were linked with learning outcomes. For each learning outcome, as well as for the set of learning outcomes, it was necessary to specify verification method, material, and human resources. The task of the project was to suggest revision and improvement of the existing study programs. It was necessary to analyze existing programs and determine how they meet and fulfill defined learning outcomes. This way, one could see: a) which learning outcomes from the qualifications standards are covered by existing courses, b) which learning outcomes have yet to be covered, c) are they covered by mandatory or elective courses, and d) are some courses unnecessary or redundant. Overall, the main research results are: a) completed proposals of qualification and occupational standards in the field of ICT, b) revised curricula of undergraduate and master study programs in ICT, c) sustainable partnership and association stakeholders network, d) knowledge network - informing the public and stakeholders (teachers, students, and employers) about the importance of CROQF establishment, and e) teachers educated in innovative methods of teaching.Keywords: study program, qualification standard, occupational standard, higher education, informatics and computer science
Procedia PDF Downloads 1437941 Employee Happiness: The Influence of Providing Consumers with an Experience versus an Object
Authors: Wilson Bastos, Sigal G. Barsade
Abstract:
Much of what happens in the marketplace revolves around the provision and consumption of goods. Recent research has advanced a useful categorization of these goods—as experiential versus material—and shown that, from the consumers’ perspective, experiences (e.g., a theater performance) are superior to objects (e.g., an electronic gadget) in offering various social and psychological benefits. A common finding in this growing research stream is that consumers gain more happiness from the experiences they have than the objects they own. By focusing solely on those acquiring the experiential or material goods (the consumers), prior research has remained silent regarding another important group of individuals—those providing the goods (the employees). Do employees whose jobs are primarily focused on offering consumers an experience (vs. object) also gain more happiness from their occupation? We report evidence from four experiments supporting an experiential-employee advantage. Further, we use mediation and moderation tests to unearth the mechanism responsible for this effect. Results reveal that work meaningfulness is the primary driver of the experiential-employee advantage. Overall, our findings suggest that employees find it more meaningful to provide people with an experience as compared to a material object, which in turn shapes the happiness they derive from their jobs. We expect this finding to have implications on human development, and to be of relevance to researchers and practitioners interested in how to advance human condition in the workplace.Keywords: employee happiness, experiential versus material jobs, work meaningfulness
Procedia PDF Downloads 2727940 Best Practices in Designing a Mentoring Programme for Soft Skills Development
Authors: D. Kokt, T. F. Dreyer
Abstract:
The main objective of the study was to design a mentoring programme aimed at developing the soft skills of mentors. The mentors are all employed by a multinational corporation. The company had a mentoring plan in place that did not yield the required results, especially related to the development of soft skills. This prompted the researchers to conduct an extensive literature review followed by a mixed methods approach to ascertain the best practices in developing the soft skills of mentors. The outcomes of the study led to the development of a structured mentoring programme using 25 modules to be completed by mentors. The design incorporated a blended modular approach using both face-to-face teaching and teaching supported by Information Communication Technology (ICT). Blended learning was ideal as the ICT component helped to minimise instructor-mentor physical contact as part of the health measures during the Covid-19 pandemic. The blended learning approach also allowed instructors and mentors an online or offline mode, so that mentors could have more time for creative and cooperative exercises. A range of delivery methodologies were spread out across the different modules to ensure mentor engagement and accelerate mentor development. This included concept development through in-person instructor-led training sessions, concept development through virtual instructor-led training sessions, simulations, case studies, e-learning, role plays, interactive learning using mentoring toolkits, and experiential learning through application. The mentor development journey included formal modular competency assessments. All modules contained post-competency assessment consisting of 10 questions (comprising of a combination of explanatory questions and multiple-choice questions) to ensure understanding and deal with identified competency gaps. The minimum pass mark for all modular competency assessments was 80%. Mentors were allowed to retake the assessment if they scored less than 80% until they demonstrated understanding at the required level.Keywords: mentor, mentee, soft skills, mentor development, blended learning, modular approach
Procedia PDF Downloads 307939 Locative Media Apps for Re-Building Urban Experience: Discovering Cities Through Technology
Authors: Kerem Rızvanoglu, Serhat Güney, Betül Aydoğan, Emre Kızılkaya, Ayşegül Boyalı, Onurcan Güden
Abstract:
This study investigates the urban experience of international students coming to Istanbul with exchange programs and reveals how locative media applications accompany their urban experiences. The sample of the research consists of international students who lived, perceived, and conceived the city on a daily basis during the academic year of 2022. Focusing on this particular sample would demonstrate the opportunities and authentic experiences offered by the city as well as the prevalent urban problems for the foreigners. In this regard, international students' urban experience in Istanbul, the blockages they encounter as resident tourists, the hotspots that the city offers, and the role of locative media in enriching the urban experience are the main axes to be evaluated. In the first step of the multi-staged research, we conduct an online qualitative survey with a sample; then, we evaluate the data obtained from the survey using cluster analysis to identify the urban experience, consumption habits, and tastes. In the final stage, digital ethnographic fieldwork will be carried out with representative personas identified by the cluster analysis. With this field research on the urban experience accompanied by locative media applications, suggestions will be developed by evaluating the opportunities these applications offer to enrich the urban practice of foreigners.Keywords: digital ethnography, international students, locative media applications, urban experience
Procedia PDF Downloads 1407938 Maternal Adverse Childhood Experiences and Preschool Children’s Behavioural Problems: Mediation via Adult Attachment and Moderation by Maternal Mental Health, Social Support, and Child Sex
Authors: Stefan Kurbatfinski, Aliyah Dosani, Andrew F. Hayes, Deborah Dewey, Nicole Letourneau
Abstract:
Background: Maternal adverse childhood experiences (ACEs) have been associated with internalizing and externalizing behavioral problems in preschool children. However, little is known about the influence of maternal adult attachment patterns on this association. Further, potential moderation by maternal mental health, maternal social support, or child sex is poorly understood. Therefore, this study examined associations between 1) maternal ACEs and preschool children’s behavioural problems, with mediation through maternal attachment patterns and moderation by maternal mental health, maternal social support, and child sex; and 2) maternal attachment patterns and children’s behavioural problems, with mediation through maternal mental health and social support and moderation by child sex. Methods: This secondary analysis used data (n=625) from a high socioeconomic, longitudinally prospective cohort (Alberta Pregnancy Outcomes and Nutrition). Child behaviour (BASC-2) and maternal adult attachment (ECR-Q) were measured at five years of child age, maternal ACEs (ACEs Questionnaire) at around 12 months, and maternal mental health (CESD and SCL-90-R) and social support (SSQ) across various prenatal and postnatal time points. All moderation and mediation analyses occurred through RStudio using PROCESS, interpreting significant interactions through Johnson-Neyman plots. Findings: Maternal ACEs interacted with maternal anxiety symptoms to predict both behavioural problems (pexternalizing=0.007; pinternalizing=0.0159). An indirect pathway via dismissive attachment was moderated by maternal social support ([0.0058, 0.0596]). Attachment patterns predicted all behavioural problems (p<0.05) and interacted with maternal anxiety symptoms to predict internalizing behaviours among male children ([0.0321, 0.1307]; [0.0321, 0.1291]). Interpretation: Maternal attachment patterns may predict children’s behavioural problems more than ACEs. Social support interventions may not always be beneficial for highly dismissively attached mothers. Implications for policy and child health include mandatory sex and gender education for teachers; assessing attachment patterns prior to recommending social support as an intervention; and anxiety-focused interventions for mothers in higher socioeconomic populations.Keywords: maternal adverse childhood experiences, internalizing behaviours, externalizing behaviours, mediators and moderators, attachment patterns, child health
Procedia PDF Downloads 727937 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring
Authors: A. Degale Desta, Cheng Jian
Abstract:
Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning
Procedia PDF Downloads 1657936 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning
Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie
Abstract:
Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue
Procedia PDF Downloads 1917935 Distangling Biological Noise in Cellular Images with a Focus on Explainability
Authors: Manik Sharma, Ganapathy Krishnamurthi
Abstract:
The cost of some drugs and medical treatments has risen in recent years, that many patients are having to go without. A classification project could make researchers more efficient. One of the more surprising reasons behind the cost is how long it takes to bring new treatments to market. Despite improvements in technology and science, research and development continues to lag. In fact, finding new treatment takes, on average, more than 10 years and costs hundreds of millions of dollars. If successful, we could dramatically improve the industry's ability to model cellular images according to their relevant biology. In turn, greatly decreasing the cost of treatments and ensure these treatments get to patients faster. This work aims at solving a part of this problem by creating a cellular image classification model which can decipher the genetic perturbations in cell (occurring naturally or artificially). Another interesting question addressed is what makes the deep-learning model decide in a particular fashion, which can further help in demystifying the mechanism of action of certain perturbations and paves a way towards the explainability of the deep-learning model.Keywords: cellular images, genetic perturbations, deep-learning, explainability
Procedia PDF Downloads 1137934 A Deep Learning Based Approach for Dynamically Selecting Pre-processing Technique for Images
Authors: Revoti Prasad Bora, Nikita Katyal, Saurabh Yadav
Abstract:
Pre-processing plays an important role in various image processing applications. Most of the time due to the similar nature of images, a particular pre-processing or a set of pre-processing steps are sufficient to produce the desired results. However, in the education domain, there is a wide variety of images in various aspects like images with line-based diagrams, chemical formulas, mathematical equations, etc. Hence a single pre-processing or a set of pre-processing steps may not yield good results. Therefore, a Deep Learning based approach for dynamically selecting a relevant pre-processing technique for each image is proposed. The proposed method works as a classifier to detect hidden patterns in the images and predicts the relevant pre-processing technique needed for the image. This approach experimented for an image similarity matching problem but it can be adapted to other use cases too. Experimental results showed significant improvement in average similarity ranking with the proposed method as opposed to static pre-processing techniques.Keywords: deep-learning, classification, pre-processing, computer vision, image processing, educational data mining
Procedia PDF Downloads 1667933 Learning the Dynamics of Articulated Tracked Vehicles
Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri
Abstract:
In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.Keywords: Dirichlet processes, gaussian mixture models, learning motion patterns, tracked robots for urban search and rescue
Procedia PDF Downloads 4507932 A Machine Learning-Based Approach to Capture Extreme Rainfall Events
Authors: Willy Mbenza, Sho Kenjiro
Abstract:
Increasing efforts are directed towards a better understanding and foreknowledge of extreme precipitation likelihood, given the adverse effects associated with their occurrence. This knowledge plays a crucial role in long-term planning and the formulation of effective emergency response. However, predicting extreme events reliably presents a challenge to conventional empirical/statistics due to the involvement of numerous variables spanning different time and space scales. In the recent time, Machine Learning has emerged as a promising tool for predicting the dynamics of extreme precipitation. ML techniques enables the consideration of both local and regional physical variables that have a strong influence on the likelihood of extreme precipitation. These variables encompasses factors such as air temperature, soil moisture, specific humidity, aerosol concentration, among others. In this study, we develop an ML model that incorporates both local and regional variables while establishing a robust relationship between physical variables and precipitation during the downscaling process. Furthermore, the model provides valuable information on the frequency and duration of a given intensity of precipitation.Keywords: machine learning (ML), predictions, rainfall events, regional variables
Procedia PDF Downloads 907931 Human Resource Management Practices and Employee Retention in Public Higher Learning Institutions in the Maldives
Authors: Shaheeb Abdul Azeez, Siong-Choy Chong
Abstract:
Background: Talent retention is increasingly becoming a major challenge for many industries due to the high turnover rate. Public higher learning institutions in the Maldives have a similar situation with the turnover of their employees'. This paper is to identify whether Human Resource Management (HRM) practices have any impact on employee retention in public higher learning institutions in the Maldives. Purpose: This paper aims to identify the influence of HRM practices on employee retention in public higher learning institutions in the Maldives. A total of 15 variables used in this study; 11 HRM practices as independent variables (leadership, rewards, salary, employee participation, compensation, training and development, career development, recognition, appraisal system and supervisor support); job satisfaction and motivation as mediating variables; demographic profile as moderating variable and employee retention as dependent variable. Design/Methodology/Approach: A structured self-administered questionnaire was used for data collection. A total of 300 respondents were selected as the study sample, representing the academic and administrative from public higher learning institutions using a stratified random sampling method. AMOS was used to test the hypotheses constructed. Findings: The results suggest that there is no direct effect between the independent variable and dependent variable. Also, the study concludes that no moderate effects of demographic profile between independent and dependent variables. However, the mediating effects of job satisfaction and motivation in the relationship between HRM practices and employee retention were significant. Salary had a significant influence on job satisfaction, whilst both compensation and recognition have significant influence on motivation. Job satisfaction and motivation were also found to significantly influence employee retention. Research Limitations: The study consists of many variables more time consuming for the respondents to answer the questionnaire. The study is focussed only on public higher learning institutions in the Maldives due to no participation from the private sector higher learning institutions. Therefore, the researcher is unable to identify the actual situation of the higher learning industry in the Maldives. Originality/Value: To our best knowledge, no study has been conducted using the same framework throughout the world. This study is the initial study conducted in the Maldives in this study area and can be used as a baseline for future researches. But there are few types of research conducted on the same subject throughout the world. Some of them concluded with positive findings while others with negative findings. Also, they have used 4 to 7 HRM practices as their study framework.Keywords: human resource management practices, employee retention, motivation, job satisfaction
Procedia PDF Downloads 1577930 Holistic Development of Children through Performing Classical Art Forms: A Study in Tamil Nadu, India
Authors: Meera Rajeev Kumar
Abstract:
An overall social, emotional, and cultural development in a child is what a parent expects. There is no point in comparing the generations of 70’s or 80’s with that of the children of today as the trends are changing drastically. Technology has enabled them to become smart as well as over smart in one way or the other. Children today are quite ignorant of today’s values or ethics and are imbibing different cultures around them and ultimately confused on what to follow. The researcher has gained experience in transmitting or imparting the traditional culture through performing arts. It is understood that the children undergo a transformation from what they knew to what the truth is, through learning and experience. Through performing arts, the child develops an emotional, quick learning, abundant creativity, and ultimately self-realisation on what is right and wrong. The child also gains good organising skills, good decision making skills, therefore summing up to a holistic development. The sample study is 50, and a random sampling technique is adopted to differentiate between a normal child and a child learning an art. The study is conducted in Tamil Nadu, in India.Keywords: creativity, cultural, emotional, empower
Procedia PDF Downloads 2027929 Morphemic Analysis Awareness: A Boon or Bane on ESL Students’ Vocabulary Learning Strategy
Authors: Chandrakala Varatharajoo, Adelina Binti Asmawi, Nabeel Abdallah Mohammad Abedalaziz
Abstract:
This study investigated the impact of inflectional and derivational morphemic analysis awareness on ESL secondary school students’ vocabulary learning strategy. The quasi-experimental study was conducted with 106 low proficiency secondary school students in two experimental groups (inflectional and derivational) and one control group. The students’ vocabulary acquisition was assessed through two measures: Morphemic Analysis Test and Vocabulary- Morphemic Test in the pretest and posttest before and after an intervention programme. Results of ANCOVA revealed that both the experimental groups achieved a significant score in Morphemic Analysis Test and Vocabulary-Morphemic Test. However, the inflectional group obtained a fairly higher score than the derivational group. Thus, the results indicated that ESL low proficiency secondary school students performed better on inflectional morphemic awareness as compared to derivatives. The results also showed that the awareness of inflectional morphology contributed more on the vocabulary acquisition. Importantly, learning inflectional morphology can help ESL low proficiency secondary school students to develop both morphemic awareness and vocabulary gain. Theoretically, these findings show that not all morphemes are equally useful to students for their language development. Practically, these findings indicate that morphological instruction should at least be included in remediation and instructional efforts with struggling learners across all grade levels, allowing them to focus on meaning within the word before they attempt the text in large for better comprehension. Also, by methodologically, by conducting individualized intervention and assessment this study provided fresh empirical evidence to support the existing literature on morphemic analysis awareness and vocabulary learning strategy. Thus, a major pedagogical implication of the study is that morphemic analysis awareness strategy is a definite boon for ESL secondary school students in learning English vocabulary.Keywords: ESL, instruction, morphemic analysis, vocabulary
Procedia PDF Downloads 4027928 Teacher Mental Health during Online Teaching
Authors: Elisabeth Desiana Mayasari, Laurensia Aptik Evanjeli, Brigitta Erlita Tri Anggadewi
Abstract:
The condition of the COVID-19 pandemic demands adaptation in various aspects of human life, including in the field of education. Teachers are expected to do distance learning or Learning From Home (LFH). The teacher said that he experienced stress, anxiety, feeling depressed, and afraid based on the interview. Learning adaptations and pandemic situations can impact the mental health of teachers, so the purpose of this study is to determine the mental health of teachers while teaching online. This research was conducted with a quantitative approach using a survey method. The subjects in this study were 330 elementary school teachers under the auspices of a foundation in Yogyakarta. Teachers' mental health was measured using the Indonesian version of The Mental Health Inventory (MHI-38), which has a reliability of 0.888. The results showed that the teachers generally had a good mental health condition marked by a lower negative aspect score than the positive aspect. In addition, the overall mental health aspect shows that some teachers have better mental health when compared to the average score, as well as higher positive aspect scores in all sub-aspects.Keywords: mental health, teacher, COVID-19 pandemic, MHI-38
Procedia PDF Downloads 1837927 Developing a Web-Based Tender Evaluation System Based on Fuzzy Multi-Attributes Group Decision Making for Nigerian Public Sector Tendering
Authors: Bello Abdullahi, Yahaya M. Ibrahim, Ahmed D. Ibrahim, Kabir Bala
Abstract:
Public sector tendering has traditionally been conducted using manual paper-based processes which are known to be inefficient, less transparent and more prone to manipulations and errors. The advent of the Internet and the World Wide Web has led to the development of numerous e-Tendering systems that addressed some of the problems associated with the manual paper-based tendering system. However, most of these systems rarely support the evaluation of tenders and where they do it is mostly based on the single decision maker which is not suitable in public sector tendering, where for the sake of objectivity, transparency, and fairness, it is required that the evaluation is conducted through a tender evaluation committee. Currently, in Nigeria, the public tendering process in general and the evaluation of tenders, in particular, are largely conducted using manual paper-based processes. Automating these manual-based processes to digital-based processes can help in enhancing the proficiency of public sector tendering in Nigeria. This paper is part of a larger study to develop an electronic tendering system that supports the whole tendering lifecycle based on Nigerian procurement law. Specifically, this paper presents the design and implementation of part of the system that supports group evaluation of tenders based on a technique called fuzzy multi-attributes group decision making. The system was developed using Object-Oriented methodologies and Unified Modelling Language and hypothetically applied in the evaluation of technical and financial proposals submitted by bidders. The system was validated by professionals with extensive experiences in public sector procurement. The results of the validation showed that the system called NPS-eTender has an average rating of 74% with respect to correct and accurate modelling of the existing manual tendering domain and an average rating of 67.6% with respect to its potential to enhance the proficiency of public sector tendering in Nigeria. Thus, based on the results of the validation, the automation of the evaluation process to support tender evaluation committee is achievable and can lead to a more proficient public sector tendering system.Keywords: e-Tendering, e-Procurement, group decision making, tender evaluation, tender evaluation committee, UML, object-oriented methodologies, system development
Procedia PDF Downloads 2637926 Comprehensive Study of Data Science
Authors: Asifa Amara, Prachi Singh, Kanishka, Debargho Pathak, Akshat Kumar, Jayakumar Eravelly
Abstract:
Today's generation is totally dependent on technology that uses data as its fuel. The present study is all about innovations and developments in data science and gives an idea about how efficiently to use the data provided. This study will help to understand the core concepts of data science. The concept of artificial intelligence was introduced by Alan Turing in which the main principle was to create an artificial system that can run independently of human-given programs and can function with the help of analyzing data to understand the requirements of the users. Data science comprises business understanding, analyzing data, ethical concerns, understanding programming languages, various fields and sources of data, skills, etc. The usage of data science has evolved over the years. In this review article, we have covered a part of data science, i.e., machine learning. Machine learning uses data science for its work. Machines learn through their experience, which helps them to do any work more efficiently. This article includes a comparative study image between human understanding and machine understanding, advantages, applications, and real-time examples of machine learning. Data science is an important game changer in the life of human beings. Since the advent of data science, we have found its benefits and how it leads to a better understanding of people, and how it cherishes individual needs. It has improved business strategies, services provided by them, forecasting, the ability to attend sustainable developments, etc. This study also focuses on a better understanding of data science which will help us to create a better world.Keywords: data science, machine learning, data analytics, artificial intelligence
Procedia PDF Downloads 847925 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique
Authors: C. Manjula, Lilly Florence
Abstract:
Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.Keywords: decision tree, genetic algorithm, machine learning, software defect prediction
Procedia PDF Downloads 3307924 Active Learning Methods in Mathematics
Authors: Daniela Velichová
Abstract:
Plenty of ideas on how to adopt active learning methods in education are available nowadays. Mathematics is a subject where the active involvement of students is required in particular in order to achieve desirable results regarding sustainable knowledge and deep understanding. The present article is based on the outcomes of an Erasmus+ project DrIVE-MATH, that was aimed at developing a novel and integrated framework to teach maths classes in engineering courses at the university level. It is fundamental for students from the early years of their academic life to have agile minds. They must be prepared to adapt to their future working environments, where enterprises’ views are always evolving, where all collaborate in teams, and relations between peers are thought for the well-being of the whole - workers and company profit. This reality imposes new requirements on higher education in terms of adaptation of different pedagogical methods, such as project-based and active-learning methods used within the course curricula. Active learning methodologies are regarded as an effective way to prepare students to meet the challenges posed by enterprises and to help them in building critical thinking, analytic reasoning, and insight to the solved complex problems from different perspectives. Fostering learning-by-doing activities in the pedagogical process can help students to achieve learning independence, as they could acquire deeper conceptual understanding by experimenting with the abstract concept in a more interesting, useful, and meaningful way. Clear information about learning outcomes and goals might help students to take more responsibility for their learning results. Active learning methods implemented by the project team members in their teaching practice, eduScrum and Jigsaw in particular, proved to provide better scientific and soft skills support to students than classical teaching methods. EduScrum method enables teachers to generate a working environment that stimulates students' working habits and self-initiative as they become aware of their responsibilities within the team, their own acquired knowledge, and their abilities to solve problems independently, though in collaboration with other team members. This method enhances collaborative learning, as students are working in teams towards a common goal - knowledge acquisition, while they are interacting with each other and evaluated individually. Teams consisting of 4-5 students work together on a list of problems - sprint; each member is responsible for solving one of them, while the group leader – a master, is responsible for the whole team. A similar principle is behind the Jigsaw technique, where the classroom activity makes students dependent on each other to succeed. Students are divided into groups, and assignments are split into pieces, which need to be assembled by the whole group to complete the (Jigsaw) puzzle. In this paper, analysis of students’ perceptions concerning the achievement of deeper conceptual understanding in mathematics and the development of soft skills, such as self-motivation, critical thinking, flexibility, leadership, responsibility, teamwork, negotiation, and conflict management, is presented. Some new challenges are discussed as brought by introducing active learning methods in the basic mathematics courses. A few examples of sprints developed and used in teaching basic maths courses at technical universities are presented in addition.Keywords: active learning methods, collaborative learning, conceptual understanding, eduScrum, Jigsaw, soft skills
Procedia PDF Downloads 557923 The Lived Experience of Pregnant Saudi Women Carrying a Fetus with Structural Abnormalities
Authors: Nasreen Abdulmannan
Abstract:
Fetal abnormalities are categorized as a structural abnormality, non-structural abnormality, or a combination of both. Fetal structural abnormalities (FSA) include, but are not limited, to Down syndrome, congenital diaphragmatic hernia, and cleft lip and palate. These abnormalities can be detected in the first weeks of pregnancy, which is almost around 9 - 20 weeks gestational. Etiological factors for FSA are unknown; however, transmitted genetic risk can be one of these factors. Consanguineous marriage often referred to as inbreeding, represents a significant risk factor for FSA due to the increased likelihood of deleterious genetic traits shared by both biological parents. In a country such as the Kingdom of Saudi Arabia (KSA), consanguineous marriage is high, which creates a significant risk of children being born with congenital abnormalities. Historically, the practice of consanguinity occurred commonly among European royalty. For example, Great Britain’s Queen Victoria married her German first cousin, Prince Albert of Coburg. Although a distant blood relationship, the United Kingdom’s Queen Elizabeth II married her cousin, Prince Philip of Greece and Denmark—both of them direct descendants of Queen Victoria. In Middle Eastern countries, a high incidence of consanguineous unions still exists, including in the KSA. Previous studies indicated that a significant gap exists in understanding the lived experiences of Saudi women dealing with an FSA-complicated pregnancy. Eleven participants were interviewed using a semi-structured interview format for this qualitative phenomenological study investigating the lived experiences of pregnant Saudi women carrying a child with FSA. This study explored the gaps in current literature regarding the lived experiences of pregnant Saudi women whose pregnancies were complicated by FSA. In addition, the researcher acquired knowledge about the available support and resources as well as the Saudi cultural perspective on FSA. This research explored the lived experiences of pregnant Saudi women utilizing Giorgi’s (2009) approach to data collection and data management. Findings for this study cover five major themes: (1) initial maternal reaction to the FSA diagnosis per ultrasound screening; (2) strengthening of the maternal relationship with God; (3) maternal concern for their child’s future; (4) feeling supported by their loved ones; and (5) lack of healthcare provider support and guidance. Future research in the KSA is needed to explore the network support for these mothers. This study recommended further clinical nursing research, nursing education, clinical practice, and healthcare policy/procedures to provide opportunities for improvement in nursing care and increase awareness in KSA society.Keywords: fetal structural abnormalities, psychological distress, health provider, health care
Procedia PDF Downloads 1567922 The Acquisition of Spanish L4 by Learners with Croatian L1, English L2 and Italian L3
Authors: Barbara Peric
Abstract:
The study of acquiring a third and additional language has garnered significant focus within second language acquisition (SLA) research. Initially, it was commonly viewed as merely an extension of second language acquisition (SLA). However, in the last two decades, numerous researchers have emphasized the need to recognize the unique characteristics of third language acquisition (TLA). This recognition is crucial for understanding the intricate cognitive processes that arise from the interaction of more than two linguistic systems in the learner's mind. This study investigates cross-linguistic influences in the acquisition of Spanish as a fourth language by students who have Croatian as a first language (L1). English as a second language (L2), and Italian as a third language (L3). Observational data suggests that influence or transfer of linguistic elements can arise not only from one's native language (L1) but also from non-native languages. This implies that, for individuals proficient in multiple languages, the native language doesn't consistently hold a superior position. Instead, it should be examined alongside other potential sources of linguistic transfer. Earlier studies have demonstrated that high proficiency in a second language can significantly impact cross-linguistic influences when acquiring a third and additional language. Among the extensively examined factors, the typological relationship stands out as one of the most scrutinized variables. The goal of the present study was to explore whether language typology and formal similarity or proficiency in the second language had a more significant impact on L4 acquisition. Participants in this study were third-year undergraduate students at Rochester Institute of Technology’s subsidiary in Croatia (RIT Croatia). All the participants had exclusively Croatian as L1, English as L2, Italian as L3 and were learning Spanish as L4 at the time of the study. All the participants had a high level of proficiency in English and low level of proficiency in Italian. Based on the error analysis the findings indicate that for some types of lexical errors such as coinage, language typology had a more significant impact and Italian language was the preferred source of transfer despite the law proficiency in that language. For some other types of lexical errors, such as calques, second language proficiency had a more significant impact, and English language was the preferred source of transfer. On the other hand, Croatian, Italian, and Spanish are more similar in the area of morphology due to higher degree of inflection compared to English and the strongest influence of the Croatian language was precisely in the area of morphology. The results emphasize the need to consider linguistic resemblances between the native language (L1) and the third and additional language as well as the learners' proficiency in the second language when developing successful teaching strategies for acquiring the third and additional language. These conclusions add to the expanding knowledge in the realm of Second Language Acquisition (SLA) and offer practical insights for language educators aiming to enhance the effectiveness of learning experiences in acquiring a third and additional language.Keywords: third and additional language acquisition, cross-linguistic influences, language proficiency, language typology
Procedia PDF Downloads 60