Search results for: multi-objective particle swarm optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4754

Search results for: multi-objective particle swarm optimization

1724 Revolutionizing Interior Design with AI: A Comprehensive Analysis of Coohom’s Innovative Features

Authors: Raghad Alshabrawi, Raghad Alafif

Abstract:

Coohom is revolutionizing the world of interior design by seamlessly blending cutting-edge AI technology with an intuitive, user-friendly platform. Catering to both professionals and enthusiasts, Coohom empowers users to transform their creative visions into stunning 3D realities with unmatched speed and precision. This research explores Coohom’s groundbreaking AI capabilities, from personalized design suggestions to real-time layout optimization and photorealistic rendering. Compared to competitors like SketchUp and AutoCAD, Coohom stands out with its simplicity, accessibility, and AI-driven innovation. User feedback reveals overwhelming satisfaction, with Coohom’s AI praised for delivering diverse design options, unparalleled accuracy, and significant time savings. As AI continues to reshape the design landscape, Coohom leads the charge, making professional-grade design effortless and accessible to all. This paper highlights the transformative potential of Coohom, showcasing how it is setting a new benchmark for creativity, efficiency, and innovation in the digital design industry.

Keywords: interor design, coohom AI 3D, 3D Models, sketced

Procedia PDF Downloads 5
1723 Stock Prediction and Portfolio Optimization Thesis

Authors: Deniz Peksen

Abstract:

This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.

Keywords: stock prediction, portfolio optimization, data science, machine learning

Procedia PDF Downloads 81
1722 Design of Non-uniform Circular Antenna Arrays Using Firefly Algorithm for Side Lobe Level Reduction

Authors: Gopi Ram, Durbadal Mandal, Rajib Kar, Sakti Prasad Ghoshal

Abstract:

A design problem of non-uniform circular antenna arrays for maximum reduction of both the side lobe level (SLL) and first null beam width (FNBW) is dealt with. This problem is modeled as a simple optimization problem. The method of Firefly algorithm (FFA) is used to determine an optimal set of current excitation weights and antenna inter-element separations that provide radiation pattern with maximum SLL reduction and much improvement on FNBW as well. Circular array antenna laid on x-y plane is assumed. FFA is applied on circular arrays of 8-, 10-, and 12- elements. Various simulation results are presented and hence performances of side lobe and FNBW are analyzed. Experimental results show considerable reductions of both the SLL and FNBW with respect to those of the uniform case and some standard algorithms GA, PSO, and SA applied to the same problem.

Keywords: circular arrays, first null beam width, side lobe level, FFA

Procedia PDF Downloads 260
1721 Crude Oil Electrostatic Mathematical Modelling on an Existing Industrial Plant

Authors: Fatemeh Yazdanmehr, Iulian Nistor

Abstract:

The scope of the current study is the prediction of water separation in a two-stage industrial crude oil desalting plant. This research study was focused on developing a desalting operation in an existing production unit of one Iranian heavy oil field with 75 MBPD capacity. Because of some operational issues, such as oil dehydration at high temperatures, the optimization of the desalter operational parameters was essential. The mathematical desalting is modeled based on the population balance method. The existing operational data is used for tuning and validation of the accuracy of the modeling. The inlet oil temperature to desalter used was decreased from 110°C to 80°C, and the desalted electrical field was increased from 0.75 kv to 2.5 kv. The proposed condition for the desalter also meets the water oil specification. Based on these conditions of desalter, the oil recovery is increased by 574 BBL/D, and the gas flaring decrease by 2.8 MMSCF/D. Depending on the oil price, the additional production of oil can increase the annual income by about $15 MM and reduces greenhouse gas production caused by gas flaring.

Keywords: desalter, demulsification, modelling, water-oil separation, crude oil emulsion

Procedia PDF Downloads 79
1720 The Effect of Zeolite on Sandy-Silt Soil Mechanical Properties

Authors: Shahryar Aftabi, Saeed Fathi, Mohammad H. Aminfar

Abstract:

It is well known that cemented sand is one of the best approaches for soil stabilization. In some cases, a blend of sand, cement and other pozzolan materials such as zeolite, nano-particles and fiber can be widely (commercially) available and be effectively used in soil stabilization, especially in road construction. In this research, we investigate the effects of CaO which is based on the geotechnical characteristics of zeolite composition with sandy silt soil. Zeolites have low amount of CaO in their structures, that is, varying from 3% to 10%, and by removing the cement paste, we want to investigate the effect of zeolite pozzolan without any activator on soil samples strength. In this research, experiments are concentrated on various weight percentages of zeolite in the soil to examine the effect of the zeolite on drainage shear strength and California Bearing Ratio (CBR) both with and without curing. The study also investigates their liquid limit and plastic limit behavior and makes a comparative result by using Feng's and Wroth-Wood's methods in fall cone (cone penetrometer) device; in the final the SEM images have been presented. The results show that by increasing the percentage of zeolite in without-curing samples, the fine zeolite particles increase some soil's strength, but in the curing-state we can see a relatively higher strength toward without-curing state, since the zeolites have no plastic behavior, the pozzolanic property of zeolites plays a much higher role than cementing properties. Indeed, it is better to combine zeolite particle with activator material such as cement or lime to gain better results.

Keywords: California bearing ratio, CBR, direct shear, fall-cone, sandy silt, SEM, zeolite

Procedia PDF Downloads 137
1719 Optimized and Secured Digital Watermarking Using Fuzzy Entropy, Bezier Curve and Visual Cryptography

Authors: R. Rama Kishore, Sunesh

Abstract:

Recent development in the usage of internet for different purposes creates a great threat for the copyright protection of the digital images. Digital watermarking can be used to address the problem. This paper presents detailed review of the different watermarking techniques, latest trends in the field of secured, robust and imperceptible watermarking. It also discusses the different optimization techniques used in the field of watermarking in order to improve the robustness and imperceptibility of the method. Different measures are discussed to evaluate the performance of the watermarking algorithm. At the end, this paper proposes a watermarking algorithm using (2, 2) share visual cryptography and Bezier curve based algorithm to improve the security of the watermark. The proposed method uses fractional transformation to improve the robustness of the copyright protection of the method. The algorithm is optimized using fuzzy entropy for better results.

Keywords: digital watermarking, fractional transform, visual cryptography, Bezier curve, fuzzy entropy

Procedia PDF Downloads 368
1718 Monomial Form Approach to Rectangular Surface Modeling

Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong

Abstract:

Geometric modeling plays an important role in the constructions and manufacturing of curve, surface and solid modeling. Their algorithms are critically important not only in the automobile, ship and aircraft manufacturing business, but are also absolutely necessary in a wide variety of modern applications, e.g., robotics, optimization, computer vision, data analytics and visualization. The calculation and display of geometric objects can be accomplished by these six techniques: Polynomial basis, Recursive, Iterative, Coefficient matrix, Polar form approach and Pyramidal algorithms. In this research, the coefficient matrix (simply called monomial form approach) will be used to model polynomial rectangular patches, i.e., Said-Ball, Wang-Ball, DP, Dejdumrong and NB1 surfaces. Some examples of the monomial forms for these surface modeling are illustrated in many aspects, e.g., construction, derivatives, model transformation, degree elevation and degress reduction.

Keywords: monomial forms, rectangular surfaces, CAGD curves, monomial matrix applications

Procedia PDF Downloads 146
1717 Laser-Hole Boring into Overdense Targets: A Detailed Study on Laser and Target Properties

Authors: Florian Wagner, Christoph Schmidt, Vincent Bagnoud

Abstract:

Understanding the interaction of ultra-intense laser pulses with overcritical targets is of major interest for many applications such as laser-driven ion acceleration, fast ignition in the frame of inertial confinement fusion or high harmonic generation and the creation of attosecond pulses. One particular aspect of this interaction is the shift of the critical surface, where the laser pulse is stopped and the absorption is at maximum, due to the radiation pressure induced by the laser pulse, also referred to as laser hole boring. We investigate laser-hole boring experimentally by measuring the backscattered spectrum which is doppler-broadened because of the movement of the reflecting surface. Using the high-power, high-energy laser system PHELIX in Darmstadt, we gathered an extensive set of data for different laser intensities ranging from 10^18 W/cm2 to 10^21 W/cm2, two different levels of the nanosecond temporal contrast (10^6 vs. 10^11), elliptical and linear polarization and varying target configurations. In this contribution we discuss how the maximum velocity of the critical surface depends on these parameters. In particular we show that by increasing the temporal contrast the maximum hole boring velocity is decreased by more than a factor of three. Our experimental findings are backed by a basic analytical model based on momentum and mass conservation as well as particle in cell simulations. These results are of particular importance for fast ignition since they contribute to a better understanding of the transport of the ignitor pulse into the overdense region.

Keywords: laser-hole boring, interaction of ultra-intense lasers with overcritical targets, fast ignition, relativistic laser motter interaction

Procedia PDF Downloads 412
1716 Challenges in the Characterization of Black Mass in the Recovery of Graphite from Spent Lithium Ion Batteries

Authors: Anna Vanderbruggen, Kai Bachmann, Martin Rudolph, Rodrigo Serna

Abstract:

Recycling of lithium-ion batteries has attracted a lot of attention in recent years and focuses primarily on valuable metals such as cobalt, nickel, and lithium. Despite the growth in graphite consumption and the fact that it is classified as a critical raw material in the European Union, USA, and Australia, there is little work focusing on graphite recycling. Thus, graphite is usually considered waste in recycling treatments, where graphite particles are concentrated in the “black mass”, a fine fraction below 1mm, which also contains the foils and the active cathode particles such as LiCoO2 or LiNiMnCoO2. To characterize the material, various analytical methods are applied, including X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Atomic Absorption Spectrometry (AAS), and SEM-based automated mineralogy. The latter consists of the combination of a scanning electron microscopy (SEM) image analysis and energy-dispersive X-ray spectroscopy (EDS). It is a powerful and well-known method for primary material characterization; however, it has not yet been applied to secondary material such as black mass, which is a challenging material to analyze due to fine alloy particles and to the lack of an existing dedicated database. The aim of this research is to characterize the black mass depending on the metals recycling process in order to understand the liberation mechanisms of the active particles from the foils and their effect on the graphite particle surfaces and to understand their impact on the subsequent graphite flotation. Three industrial processes were taken into account: purely mechanical, pyrolysis-mechanical, and mechanical-hydrometallurgy. In summary, this article explores various and common challenges for graphite and secondary material characterization.

Keywords: automated mineralogy, characterization, graphite, lithium ion battery, recycling

Procedia PDF Downloads 247
1715 Recovery of Fried Soybean Oil Using Bentonite as an Adsorbent: Optimization, Isotherm and Kinetics Studies

Authors: Prakash Kumar Nayak, Avinash Kumar, Uma Dash, Kalpana Rayaguru

Abstract:

Soybean oil is one of the most widely consumed cooking oils, worldwide. Deep-fat frying of foods at higher temperatures adds unique flavour, golden brown colour and crispy texture to foods. But it brings in various changes like hydrolysis, oxidation, hydrogenation and thermal alteration to oil. The presence of Peroxide value (PV) is one of the most important factors affecting the quality of the deep-fat fried oil. Using bentonite as an adsorbent, the PV can be reduced, thereby improving the quality of the soybean oil. In this study, operating parameters like heating time of oil (10, 15, 20, 25 & 30 h), contact time ( 5, 10, 15, 20, 25 h) and concentration of adsorbent (0.25, 0.5, 0.75, 1.0 and 1.25 g/ 100 ml of oil) have been optimized by response surface methodology (RSM) considering percentage reduction of PV as a response. Adsorption data were analysed by fitting with Langmuir and Freundlich isotherm model. The results show that the Langmuir model shows the best fit compared to the Freundlich model. The adsorption process was also found to follow a pseudo-second-order kinetic model.

Keywords: bentonite, Langmuir isotherm, peroxide value, RSM, soybean oil

Procedia PDF Downloads 375
1714 Experimental and Finite Element Analysis for Mechanics of Soil-Tool Interaction

Authors: A. Armin, R. Fotouhi, W. Szyszkowski

Abstract:

In this paper a 3-D finite element (FE) investigation of soil-blade interaction is described. The effects of blade’s shape and rake angle are examined both numerically and experimentally. The soil is considered as an elastic-plastic granular material with non-associated Drucker-Prager material model. Contact elements with different properties are used to mimic soil-blade sliding and soil-soil cutting phenomena. A separation criterion is presented and a procedure to evaluate the forces acting on the blade is given and discussed in detail. Experimental results were derived from tests using soil bin facility and instruments at the University of Saskatchewan. During motion of the blade, load cells collect data and send them to a computer. The measured forces using load cells had noisy signals which are needed to be filtered. The FE results are compared with experimental results for verification. This technique can be used in blade shape optimization and design of more complicated blade’s shape.

Keywords: finite element analysis, experimental results, blade force, soil-blade contact modeling

Procedia PDF Downloads 321
1713 Optimization of Machining Parameters in AlSi/10%AlN Metal Matrix Composite Material by TiN Coating Insert

Authors: Nurul Na'imy Wan, Mohamad Sazali Said, Jaharah Ab. Ghani, Rusli Othman

Abstract:

This paper presents the surface roughness of the aluminium silicon alloy (AlSi) matrix composite which has been reinforced with aluminium nitride (AlN). Experiments were conducted at various cutting speeds, feed rates, and depths of cut, according to a standard orthogonal array L27 of Taguchi method using TiN coating tool of insert. The signal-to-noise (S/N) ratio and analysis of variance are applied to study the characteristic performance of cutting speeds, feed rates and depths of cut in measuring the surface roughness during the milling operation. The surface roughness was observed using Mitutoyo Formtracer CS-500 and analyzed using the Taguchi method. From the Taguchi analysis, it was found that cutting speed of 230 m/min, feed rate of 0.4 mm/tooth, depth of cut of 0.3 mm were the optimum machining parameters using TiN coating insert.

Keywords: AlSi/AlN metal matrix composite (MMC), surface roughness, Taguchi method, machining parameters

Procedia PDF Downloads 433
1712 Design and Implementation of an AI-Enabled Task Assistance and Management System

Authors: Arun Prasad Jaganathan

Abstract:

In today's dynamic industrial world, traditional task allocation methods often fall short in adapting to evolving operational conditions. This paper introduces an AI-enabled task assistance and management system designed to overcome the limitations of conventional approaches. By using artificial intelligence (AI) and machine learning (ML), the system intelligently interprets user instructions, analyzes tasks, and allocates resources based on real-time data and environmental factors. Additionally, geolocation tracking enables proactive identification of potential delays, ensuring timely interventions. With its transparent reporting mechanisms, the system provides stakeholders with clear insights into task progress, fostering accountability and informed decision-making. The paper presents a comprehensive overview of the system architecture, algorithm, and implementation, highlighting its potential to revolutionize task management across diverse industries.

Keywords: artificial intelligence, machine learning, task allocation, operational efficiency, resource optimization

Procedia PDF Downloads 62
1711 An Investigation of the Fracture Behavior of Model MgO-C Refractories Using the Discrete Element Method

Authors: Júlia Cristina Bonaldo, Christophe L. Martin, Martiniano Piccico, Keith Beale, Roop Kishore, Severine Romero-Baivier

Abstract:

Refractory composite materials employed in steel casting applications are prone to cracking and material damage because of the very high operating temperature (thermal shock) and mismatched properties of the constituent phases. The fracture behavior of a model MgO-C composite refractory is investigated to quantify and characterize its thermal shock resistance, employing a cold crushing test and Brazilian test with fractographic analysis. The discrete element method (DEM) is used to generate numerical refractory composites. The composite in DEM is represented by an assembly of bonded particle clusters forming perfectly spherical aggregates and single spherical particles. For the stresses to converge with a low standard deviation and a minimum number of particles to allow reasonable CPU calculation time, representative volume element (RVE) numerical packings are created with various numbers of particles. Key microscopic properties are calibrated sequentially by comparing stress-strain curves from crushing experimental data. Comparing simulations with experiments also allows for the evaluation of crack propagation, fracture energy, and strength. The crack propagation during Brazilian experimental tests is monitored with digital image correlation (DIC). Simulations and experiments reveal three distinct types of fracture. The crack may spread throughout the aggregate, at the aggregate-matrix interface, or throughout the matrix.

Keywords: refractory composite, fracture mechanics, crack propagation, DEM

Procedia PDF Downloads 81
1710 Oil Producing Wells Using a Technique of Gas Lift on Prosper Software

Authors: Nikhil Yadav, Shubham Verma

Abstract:

Gas lift is a common technique used to optimize oil production in wells. Prosper software is a powerful tool for modeling and optimizing gas lift systems in oil wells. This review paper examines the effectiveness of Prosper software in optimizing gas lift systems in oil-producing wells. The literature review identified several studies that demonstrated the use of Prosper software to adjust injection rate, depth, and valve characteristics to optimize gas lift system performance. The results showed that Prosper software can significantly improve production rates and reduce operating costs in oil-producing wells. However, the accuracy of the model depends on the accuracy of the input data, and the cost of Prosper software can be high. Therefore, further research is needed to improve the accuracy of the model and evaluate the cost-effectiveness of using Prosper software in gas lift system optimization

Keywords: gas lift, prosper software, injection rate, operating costs, oil-producing wells

Procedia PDF Downloads 91
1709 Numerical Design and Characterization of SiC Single Crystals Obtained with PVT Method

Authors: T. Wejrzanowski, M. Grybczuk, E. Tymicki, K. J. Kurzydlowski

Abstract:

In the present study, numerical simulations of heat and mass transfer in Physical Vapor Transport reactor during silicon carbide single crystal growth are addressed. Silicon carbide is a wide bandgap material with unique properties making it highly applicable for high power electronics applications. Because of high manufacturing costs improvements of SiC production process are required. In this study, numerical simulations were used as a tool of process optimization. Computer modeling allows for cost and time effective analysis of processes occurring during SiC single crystal growth and provides essential information needed for improvement of the process. Quantitative relationship between process conditions, such as temperature or pressure, and crystal growth rate and shape of crystallization front have been studied and verified using experimental data. Basing on modeling results, several process improvements were proposed and implemented.

Keywords: Finite Volume Method, semiconductors, Physica Vapor Transport, silicon carbide

Procedia PDF Downloads 498
1708 Design and Optimization of a Customized External Fixation Device for Lower Limb Injuries

Authors: Mohammed S. Alqahtani, Paulo J. Bartolo

Abstract:

External fixation is a common technique for the treatment and stabilization of bone fractures. Different designs have been proposed by companies and research groups, but all of them present limitations such as high weight, not comfortable to use, and not customized to individual patients. This paper proposes a lightweight customized external fixator, overcoming some of these limitations. External fixators are designed using a set of techniques such as medical imaging, CAD modelling, finite element analysis, and full factorial design of experiments. Key design parameters are discussed, and the optimal set of parameters is used to design the final external fixator. Numerical simulations are used to validate design concepts. Results present an optimal external fixation design with weight reduction of 13% without compromising its stiffness and structural integrity. External fixators are also designed to be additively manufactured, allowing to develop a strategy for personalization.

Keywords: computer-aided design modelling, external fixation, finite element analysis, full factorial, personalization

Procedia PDF Downloads 161
1707 Credit Risk Evaluation Using Genetic Programming

Authors: Ines Gasmi, Salima Smiti, Makram Soui, Khaled Ghedira

Abstract:

Credit risk is considered as one of the important issues for financial institutions. It provokes great losses for banks. To this objective, numerous methods for credit risk evaluation have been proposed. Many evaluation methods are black box models that cannot adequately reveal information hidden in the data. However, several works have focused on building transparent rules-based models. For credit risk assessment, generated rules must be not only highly accurate, but also highly interpretable. In this paper, we aim to build both, an accurate and transparent credit risk evaluation model which proposes a set of classification rules. In fact, we consider the credit risk evaluation as an optimization problem which uses a genetic programming (GP) algorithm, where the goal is to maximize the accuracy of generated rules. We evaluate our proposed approach on the base of German and Australian credit datasets. We compared our finding with some existing works; the result shows that the proposed GP outperforms the other models.

Keywords: credit risk assessment, rule generation, genetic programming, feature selection

Procedia PDF Downloads 355
1706 Analysis of Joint Source Channel LDPC Coding for Correlated Sources Transmission over Noisy Channels

Authors: Marwa Ben Abdessalem, Amin Zribi, Ammar Bouallègue

Abstract:

In this paper, a Joint Source Channel coding scheme based on LDPC codes is investigated. We consider two concatenated LDPC codes, one allows to compress a correlated source and the second to protect it against channel degradations. The original information can be reconstructed at the receiver by a joint decoder, where the source decoder and the channel decoder run in parallel by transferring extrinsic information. We investigate the performance of the JSC LDPC code in terms of Bit-Error Rate (BER) in the case of transmission over an Additive White Gaussian Noise (AWGN) channel, and for different source and channel rate parameters. We emphasize how JSC LDPC presents a performance tradeoff depending on the channel state and on the source correlation. We show that, the JSC LDPC is an efficient solution for a relatively low Signal-to-Noise Ratio (SNR) channel, especially with highly correlated sources. Finally, a source-channel rate optimization has to be applied to guarantee the best JSC LDPC system performance for a given channel.

Keywords: AWGN channel, belief propagation, joint source channel coding, LDPC codes

Procedia PDF Downloads 358
1705 Arsenite Remediation by Green Nano Zero Valent Iron

Authors: Ratthiwa Deewan, Visanu Tanboonchuy

Abstract:

The optimal conditions for green synthesis of zero-valent (G-NZVI) synthesis are investigated in this study using a Box Behnken design. The factors that were used in the study consisted of 3 factors as follows: the iron solution to mango peel extract ratio (1:1-1:3), feeding rate of mango peel extracts (1-5 mL/min), and agitation speed (300-30 rpm). The results showed that the optimization of conditions using the regression model was appropriate. The optimal conditions of the synthesis of G-NZVI for arsenate removal are the iron solution to mango peel extract ratio of 1:1, the feeding rate of mango peel extract at 5 mL/min, and the agitation speed rate of 300 rpm, which was able to arsenate removal of 100%.

Keywords: Box Behnken design, arsenate removal, green nano zero valent iron, arsenic

Procedia PDF Downloads 33
1704 The Study of Spray Drying Process for Skimmed Coconut Milk

Authors: Jaruwan Duangchuen, Siwalak Pathaveerat

Abstract:

Coconut (Cocos nucifera) belongs to the family Arecaceae. Coconut juice and meat are consumed as food and dessert in several regions of the world. Coconut juice contains low proteins, and arginine is the main amino acid content. Coconut meat is the endosperm of coconut that has nutritional value. It composes of carbohydrate, protein and fat. The objective of this study is utilization of by-products from the virgin coconut oil extraction process by using the skimmed coconut milk as a powder. The skimmed coconut milk was separated from the coconut milk in virgin coconut oil extraction process that consists approximately of protein 6.4%, carbohydrate 7.2%, dietary fiber 0.27 %, sugar 6.27%, fat 3.6 % and moisture content of 86.93%. This skimmed coconut milk can be made to powder for value - added product by using spray drying. The factors effect to the yield and properties of dry skimmed coconut milk in spraying process are inlet, outlet air temperature and the maltodextrin concentration. The percentage of maltodextrin content (15, 20%), outlet air temperature (80 ºC, 85 ºC, 90 ºC) and inlet air temperature (190 ºC, 200 ºC, 210 ºC) were conducted to the skimmed coconut milk spray drying process. The spray dryer was kept air flow rate (0.2698 m3 /s). The result that shown 2.22 -3.23% of moisture content, solubility, bulk density (0.4-0.67g/mL), solubility, wettability (4.04 -19.25 min) for solubility in the water, color, particle size were analyzed for the powder samples. The maximum yield (18.00%) of spray dried coconut milk powder was obtained at 210 °C of temperature, 80°C of outlet temperature and 20% maltodextrin for 27.27 second for drying time. For the amino analysis shown that the high amino acids are Glutamine (16.28%), Arginine (10.32%) and Glycerin (9.59%) by using HPLP method (UV detector).

Keywords: skimmed coconut milk, spray drying, virgin coconut oil process (VCO), maltodextrin

Procedia PDF Downloads 336
1703 Design and Radio Frequency Characterization of Radial Reentrant Narrow Gap Cavity for the Inductive Output Tube

Authors: Meenu Kaushik, Ayon K. Bandhoyadhayay, Lalit M. Joshi

Abstract:

Inductive output tubes (IOTs) are widely used as microwave power amplifiers for broadcast and scientific applications. It is capable of amplifying radio frequency (RF) power with very good efficiency. Its compactness, reliability, high efficiency, high linearity and low operating cost make this device suitable for various applications. The device consists of an integrated structure of electron gun and RF cavity, collector and focusing structure. The working principle of IOT is a combination of triode and klystron. The cathode lies in the electron gun produces a stream of electrons. A control grid is placed in close proximity to the cathode. Basically, the input part of IOT is the integrated structure of gridded electron gun which acts as an input cavity thereby providing the interaction gap where the input RF signal is applied to make it interact with the produced electron beam for supporting the amplification phenomena. The paper presents the design, fabrication and testing of a radial re-entrant cavity for implementing in the input structure of IOT at 350 MHz operating frequency. The model’s suitability has been discussed and a generalized mathematical relation has been introduced for getting the proper transverse magnetic (TM) resonating mode in the radial narrow gap RF cavities. The structural modeling has been carried out in CST and SUPERFISH codes. The cavity is fabricated with the Aluminum material and the RF characterization is done using vector network analyzer (VNA) and the results are presented for the resonant frequency peaks obtained in VNA.

Keywords: inductive output tubes, IOT, radial cavity, coaxial cavity, particle accelerators

Procedia PDF Downloads 125
1702 Optimizing Load Shedding Schedule Problem Based on Harmony Search

Authors: Almahd Alshereef, Ahmed Alkilany, Hammad Said, Azuraliza Abu Bakar

Abstract:

From time to time, electrical power grid is directed by the National Electricity Operator to conduct load shedding, which involves hours' power outages on the area of this study, Southern Electrical Grid of Libya (SEGL). Load shedding is conducted in order to alleviate pressure on the National Electricity Grid at times of peak demand. This approach has chosen a set of categories to study load-shedding problem considering the effect of the demand priorities on the operation of the power system during emergencies. Classification of category region for load shedding problem is solved by a new algorithm (the harmony algorithm) based on the "random generation list of category region", which is a possible solution with a proximity degree to the optimum. The obtained results prove additional enhancements compared to other heuristic approaches. The case studies are carried out on SEGL.

Keywords: optimization, harmony algorithm, load shedding, classification

Procedia PDF Downloads 399
1701 Characterization of Nano Coefficient of Friction through Lfm of Superhydrophobic/Oleophobic Coatings Applied on 316l Ss

Authors: Hamza Shams, Sajid Saleem, Bilal A. Siddiqui

Abstract:

This paper investigates the coefficient of friction at nano-levels of commercially available superhydrophobic/oleophobic coatings when applied over 316L SS. 316L Stainless Steel or Marine Stainless Steel has been selected for its widespread uses in structures, marine and biomedical applications. The coatings were investigated in harsh sand-storm and sea water environments. The particle size of the sand during the procedure was carefully selected to simulate sand-storm conditions. Sand speed during the procedure was carefully modulated to simulate actual wind speed during a sand-storm. Sample preparation was carried out using prescribed methodology by the coating manufacturer. The coating’s adhesion and thickness was verified before and after the experiment with the use of Scanning Electron Microscopy (SEM). The value for nano-level coefficient of friction has been determined using Lateral Force Microscopy (LFM). The analysis has been used to formulate a value of friction coefficient which in turn is associative of the amount of wear the coating can bear before the exposure of the base substrate to the harsh environment. The analysis aims to validate the coefficient of friction value as marketed by the coating manufacturers and more importantly test the coating in real-life applications to justify its use. It is expected that the coating would resist exposure to the harsh environment for a considerable amount of time. Further, it would prevent the sample from getting corroded in the process.

Keywords: 316L SS, scanning electron microscopy, lateral force microscopy, marine stainless steel, oleophobic coating, superhydrophobic coating

Procedia PDF Downloads 488
1700 Computational Fluids Dynamics Investigation of the Effect of Geometric Parameters on the Ejector Performance

Authors: Michel Wakim, Rodrigo Rivera Tinoco

Abstract:

Supersonic ejector is an economical device that use high pressure vapor to compress a low pressure vapor without any rotating parts or external power sources. Entrainment ratio is a major characteristic of the ejector performance, so the ejector performance is highly dependent on its geometry. The aim of this paper is to design ejector geometry, based on pre-specified operating conditions, and to study the flow behavior inside the ejector by using computational fluid dynamics ‘CFD’ by using ‘ANSYS FLUENT 15.0’ software. In the first section; 1-D mathematical model is carried out to predict the ejector geometry. The second part describes the flow behavior inside the designed model. CFD is the most reliable tool to reveal the mixing process at different parts of the supersonic turbulent flow and to study the effect of the geometry on the effective ejector area. Finally, the results show the effect of the geometry on the entrainment ratio.

Keywords: computational fluids dynamics, ejector, entrainment ratio, geometry optimization, performance

Procedia PDF Downloads 277
1699 Optimal Cropping Pattern in an Irrigation Project: A Hybrid Model of Artificial Neural Network and Modified Simplex Algorithm

Authors: Safayat Ali Shaikh

Abstract:

Software has been developed for optimal cropping pattern in an irrigation project considering land constraint, water availability constraint and pick up flow constraint using modified Simplex Algorithm. Artificial Neural Network Models (ANN) have been developed to predict rainfall. AR (1) model used to generate 1000 years rainfall data to train the ANN. Simulation has been done with expected rainfall data. Eight number crops and three types of soil class have been considered for optimization model. Area under each crop and each soil class have been quantified using Modified Simplex Algorithm to get optimum net return. Efficacy of the software has been tested using data of large irrigation project in India.

Keywords: artificial neural network, large irrigation project, modified simplex algorithm, optimal cropping pattern

Procedia PDF Downloads 203
1698 Using Greywolf Optimized Machine Learning Algorithms to Improve Accuracy for Predicting Hospital Readmission for Diabetes

Authors: Vincent Liu

Abstract:

Machine learning algorithms (ML) can achieve high accuracy in predicting outcomes compared to classical models. Metaheuristic, nature-inspired algorithms can enhance traditional ML algorithms by optimizing them such as by performing feature selection. We compare ten ML algorithms to predict 30-day hospital readmission rates for diabetes patients in the US using a dataset from UCI Machine Learning Repository with feature selection performed by Greywolf nature-inspired algorithm. The baseline accuracy for the initial random forest model was 65%. After performing feature engineering, SMOTE for class balancing, and Greywolf optimization, the machine learning algorithms showed better metrics, including F1 scores, accuracy, and confusion matrix with improvements ranging in 10%-30%, and a best model of XGBoost with an accuracy of 95%. Applying machine learning this way can improve patient outcomes as unnecessary rehospitalizations can be prevented by focusing on patients that are at a higher risk of readmission.

Keywords: diabetes, machine learning, 30-day readmission, metaheuristic

Procedia PDF Downloads 63
1697 Effect of Process Parameters on Tensile Strength of Aluminum Alloy ADC 10 Produced through Ceramic Shell Investment Casting

Authors: Balwinder Singh

Abstract:

Castings are produced by using aluminum alloy ADC 10 through the process of Ceramic Shell Investment Casting. Experiments are conducted as per the Taguchi L9 orthogonal array. In order to evaluate the effect of process parameters such as mould preheat temperature, preheat time, firing temperature and pouring temperature on surface roughness of ceramic shell investment castings, the Taguchi parameter design and optimization approach is used. Plots of means of significant factors and S/N ratios have been used to determine the best relationship between the responses and model parameters. It is found that the pouring temperature is the most significant factor. The best tensile strength of aluminum alloy ADC 10 is given by 150 ºC shell preheat temperature, 45 minutes preheat time, 900 ºC firing temperature, 650 ºC pouring temperature.

Keywords: investment casting, shell preheat temperature, firing temperature, Taguchi method

Procedia PDF Downloads 175
1696 Development of Eco-friendly Materials Based on Micro-filled Resin: Process Study and Mixture Optimization

Authors: Chenine Halima, Ouinas Djamel, Bekki Hamed Essiddik

Abstract:

The matrix is made up of resin mixed with fillers. However, with the growing demand to reduce CO2 emissions, the market is increasingly leaning toward eco-friendly materials. In this context, this research focuses on developing an environmentally friendly material, with or without sand, by following various stages using micro-filled resin. Three manufacturing techniques will be explored: infusion, RTM-Eco, and molding. The process begins with incorporating sand directly into the resin matrix, a critical step in creating this type of composite. To achieve this, two mixing methods will be tested: one by hand and the other using a mechanical mixer. The best method will be selected based on key criteria, such as achieving a uniform sand distribution and determining the optimal sand-to-resin ratio. The final material must meet specific requirements, including strong mechanical performance, high-temperature resistance, cost-efficiency, and outstanding durability against corrosion.

Keywords: micro-charging of sand particles, laminated composites, polymer, resin, corrosion

Procedia PDF Downloads 5
1695 Order Picking Problem: An Exact and Heuristic Algorithms for the Generalized Travelling Salesman Problem With Geographical Overlap Between Clusters

Authors: Farzaneh Rajabighamchi, Stan van Hoesel, Christof Defryn

Abstract:

The generalized traveling salesman problem (GTSP) is an extension of the traveling salesman problem (TSP) where the set of nodes is partitioned into clusters, and the salesman must visit exactly one node per cluster. In this research, we apply the definition of the GTSP to an order picker routing problem with multiple locations per product. As such, each product represents a cluster and its corresponding nodes are the locations at which the product can be retrieved. To pick a certain product item from the warehouse, the picker needs to visit one of these locations during its pick tour. As all products are scattered throughout the warehouse, the product clusters not separated geographically. We propose an exact LP model as well as heuristic and meta-heuristic solution algorithms for the order picking problem with multiple product locations.

Keywords: warehouse optimization, order picking problem, generalised travelling salesman problem, heuristic algorithm

Procedia PDF Downloads 113