Search results for: matching optimization
698 Maximizing Nitrate Absorption of Agricultural Waste Water in a Tubular Microalgae Reactor by Adapting the Illumination Spectrum
Authors: J. Martin, A. Dannenberg, G. Detrell, R. Ewald, S. Fasoulas
Abstract:
Microalgae-based photobioreactors (PBR) for Life Support Systems (LSS) are currently being investigated for future space missions such as a crewed base on planets or moons. Biological components may help reducing resupply masses by closing material mass flows with the help of regenerative components. Via photosynthesis, the microalgae use CO2, water, light and nutrients to provide oxygen and biomass for the astronauts. These capabilities could have synergies with Earth applications that tackle current problems and the developed technologies can be transferred. For example, a current worldwide discussed issue is the increased nitrate and phosphate pollution of ground water from agricultural waste waters. To investigate the potential use of a biological system based on the ability of the microalgae to extract and use nitrate and phosphate for the treatment of polluted ground water from agricultural applications, a scalable test stand is being developed. This test stand investigates the maximization of intake rates of nitrate and quantifies the produced biomass and oxygen. To minimize the required energy, for the uptake of nitrate from artificial waste water (AWW) the Flashing Light Effect (FLE) and the adaption of the illumination spectrum were realized. This paper describes the composition of the AWW, the development of the illumination unit and the possibility of non-invasive process optimization and control via the adaption of the illumination spectrum and illumination cycles. The findings were a doubling of the energy related growth rate by adapting the illumination setting.Keywords: microalgae, illumination, nitrate uptake, flashing light effect
Procedia PDF Downloads 113697 An Intelligent Transportation System for Safety and Integrated Management of Railway Crossings
Authors: M. Magrini, D. Moroni, G. Palazzese, G. Pieri, D. Azzarelli, A. Spada, L. Fanucci, O. Salvetti
Abstract:
Railway crossings are complex entities whose optimal management cannot be addressed unless with the help of an intelligent transportation system integrating information both on train and vehicular flows. In this paper, we propose an integrated system named SIMPLE (Railway Safety and Infrastructure for Mobility applied at level crossings) that, while providing unparalleled safety in railway level crossings, collects data on rail and road traffic and provides value-added services to citizens and commuters. Such services include for example alerts, via variable message signs to drivers and suggestions for alternative routes, towards a more sustainable, eco-friendly and efficient urban mobility. To achieve these goals, SIMPLE is organized as a System of Systems (SoS), with a modular architecture whose components range from specially-designed radar sensors for obstacle detection to smart ETSI M2M-compliant camera networks for urban traffic monitoring. Computational unit for performing forecast according to adaptive models of train and vehicular traffic are also included. The proposed system has been tested and validated during an extensive trial held in the mid-sized Italian town of Montecatini, a paradigmatic case where the rail network is inextricably linked with the fabric of the city. Results of the tests are reported and discussed.Keywords: Intelligent Transportation Systems (ITS), railway, railroad crossing, smart camera networks, radar obstacle detection, real-time traffic optimization, IoT, ETSI M2M, transport safety
Procedia PDF Downloads 497696 Optimal Management of Forest Stands under Wind Risk in Czech Republic
Authors: Zohreh Mohammadi, Jan Kaspar, Peter Lohmander, Robert Marusak, Harald Vacik, Ljusk Ola Eriksson
Abstract:
Storms are important damaging agents in European forest ecosystems. In the latest decades, significant economic losses in European forestry occurred due to storms. This study investigates the problem of optimal harvest planning when forest stands risk to be felled by storms. One of the most applicable mathematical methods which are being used to optimize forest management is stochastic dynamic programming (SDP). This method belongs to the adaptive optimization class. Sequential decisions, such as harvest decisions, can be optimized based on sequential information about events that cannot be perfectly predicted, such as the future storms and the future states of wind protection from other forest stands. In this paper, stochastic dynamic programming is used to maximize the expected present value of the profits from an area consisting of several forest stands. The region of analysis is the Czech Republic. The harvest decisions, in a particular time period, should be simultaneously taken in all neighbor stands. The reason is that different stands protect each other from possible winds. The optimal harvest age of a particular stand is a function of wind speed and different wind protection effects. The optimal harvest age often decreases with wind speed, but it cannot be determined for one stand at a time. When we consider a particular stand, this stand also protects other stands. Furthermore, the particular stand is protected by neighbor stands. In some forest stands, it may even be rational to increase the harvest age under the influence of stronger winds, in order to protect more valuable stands in the neighborhood. It is important to integrate wind risk in forestry decision-making.Keywords: Czech republic, forest stands, stochastic dynamic programming, wind risk
Procedia PDF Downloads 147695 Urban Transport Demand Management Multi-Criteria Decision Using AHP and SERVQUAL Models: Case Study of Nigerian Cities
Authors: Suleiman Hassan Otuoze, Dexter Vernon Lloyd Hunt, Ian Jefferson
Abstract:
Urbanization has continued to widen the gap between demand and resources available to provide resilient and sustainable transport services in many fast-growing developing countries' cities. Transport demand management is a decision-based optimization concept for both benchmarking and ensuring efficient use of transport resources. This study assesses the service quality of infrastructure and mobility services in the Nigerian cities of Kano and Lagos through five dimensions of quality (i.e., Tangibility, Reliability, Responsibility, Safety Assurance and Empathy). The methodology adopts a hybrid AHP-SERVQUAL model applied on questionnaire surveys to gauge the quality of satisfaction and the views of experts in the field. The AHP results prioritize tangibility, which defines the state of transportation infrastructure and services in terms of satisfaction qualities and intervention decision weights in the two cities. The results recorded ‘unsatisfactory’ indices of quality of performance and satisfaction rating values of 48% and 49% for Kano and Lagos, respectively. The satisfaction indices are identified as indicators of low performances of transportation demand management (TDM) measures and the necessity to re-order priorities and take proactive steps towards infrastructure. The findings pilot a framework for comparative assessment of recognizable standards in transport services, best ethics of management and a necessity of quality infrastructure to guarantee both resilient and sustainable urban mobility.Keywords: transportation demand management, multi-criteria decision support, transport infrastructure, service quality, sustainable transport
Procedia PDF Downloads 224694 Check Red Blood Cells Concentrations of a Blood Sample by Using Photoconductive Antenna
Authors: Ahmed Banda, Alaa Maghrabi, Aiman Fakieh
Abstract:
Terahertz (THz) range lies in the area between 0.1 to 10 THz. The process of generating and detecting THz can be done through different techniques. One of the most familiar techniques is done through a photoconductive antenna (PCA). The process of generating THz radiation at PCA includes applying a laser pump in femtosecond and DC voltage difference. However, photocurrent is generated at PCA, which its value is affected by different parameters (e.g., dielectric properties, DC voltage difference and incident power of laser pump). THz radiation is used for biomedical applications. However, different biomedical fields need new technologies to meet patients’ needs (e.g. blood-related conditions). In this work, a novel method to check the red blood cells (RBCs) concentration of a blood sample using PCA is presented. RBCs constitute 44% of total blood volume. RBCs contain Hemoglobin that transfers oxygen from lungs to body organs. Then it returns to the lungs carrying carbon dioxide, which the body then gets rid of in the process of exhalation. The configuration has been simulated and optimized using COMSOL Multiphysics. The differentiation of RBCs concentration affects its dielectric properties (e.g., the relative permittivity of RBCs in the blood sample). However, the effects of four blood samples (with different concentrations of RBCs) on photocurrent value have been tested. Photocurrent peak value and RBCs concentration are inversely proportional to each other due to the change of dielectric properties of RBCs. It was noticed that photocurrent peak value has dropped from 162.99 nA to 108.66 nA when RBCs concentration has risen from 0% to 100% of a blood sample. The optimization of this method helps to launch new products for diagnosing blood-related conditions (e.g., anemia and leukemia). The resultant electric field from DC components can not be used to count the RBCs of the blood sample.Keywords: biomedical applications, photoconductive antenna, photocurrent, red blood cells, THz radiation
Procedia PDF Downloads 205693 Estimation and Removal of Chlorophenolic Compounds from Paper Mill Waste Water by Electrochemical Treatment
Authors: R. Sharma, S. Kumar, C. Sharma
Abstract:
A number of toxic chlorophenolic compounds are formed during pulp bleaching. The nature and concentration of these chlorophenolic compounds largely depends upon the amount and nature of bleaching chemicals used. These compounds are highly recalcitrant and difficult to remove but are partially removed by the biochemical treatment processes adopted by the paper industry. Identification and estimation of these chlorophenolic compounds has been carried out in the primary and secondary clarified effluents from the paper mill by GCMS. Twenty-six chorophenolic compounds have been identified and estimated in paper mill waste waters. Electrochemical treatment is an efficient method for oxidation of pollutants and has successfully been used to treat textile and oil waste water. Electrochemical treatment using less expensive anode material, stainless steel electrodes has been tried to study their removal. The electrochemical assembly comprised a DC power supply, a magnetic stirrer and stainless steel (316 L) electrode. The optimization of operating conditions has been carried out and treatment has been performed under optimized treatment conditions. Results indicate that 68.7% and 83.8% of cholorphenolic compounds are removed during 2 h of electrochemical treatment from primary and secondary clarified effluent respectively. Further, there is a reduction of 65.1, 60 and 92.6% of COD, AOX and color, respectively for primary clarified and 83.8%, 75.9% and 96.8% of COD, AOX and color, respectively for secondary clarified effluent. EC treatment has also been found to increase significantly the biodegradability index of wastewater because of conversion of non- biodegradable fraction into biodegradable fraction. Thus, electrochemical treatment is an efficient method for the degradation of cholorophenolic compounds, removal of color, AOX and other recalcitrant organic matter present in paper mill waste water.Keywords: chlorophenolics, effluent, electrochemical treatment, wastewater
Procedia PDF Downloads 387692 Maximizing Profit Using Optimal Control by Exploiting the Flexibility in Thermal Power Plants
Authors: Daud Mustafa Minhas, Raja Rehan Khalid, Georg Frey
Abstract:
The next generation power systems are equipped with abundantly available free renewable energy resources (RES). During their low-cost operations, the price of electricity significantly reduces to a lower value, and sometimes it becomes negative. Therefore, it is recommended not to operate the traditional power plants (e.g. coal power plants) and to reduce the losses. In fact, it is not a cost-effective solution, because these power plants exhibit some shutdown and startup costs. Moreover, they require certain time for shutdown and also need enough pause before starting up again, increasing inefficiency in the whole power network. Hence, there is always a trade-off between avoiding negative electricity prices, and the startup costs of power plants. To exploit this trade-off and to increase the profit of a power plant, two main contributions are made: 1) introducing retrofit technology for state of art coal power plant; 2) proposing optimal control strategy for a power plant by exploiting different flexibility features. These flexibility features include: improving ramp rate of power plant, reducing startup time and lowering minimum load. While, the control strategy is solved as mixed integer linear programming (MILP), ensuring optimal solution for the profit maximization problem. Extensive comparisons are made considering pre and post-retrofit coal power plant having the same efficiencies under different electricity price scenarios. It concludes that if the power plant must remain in the market (providing services), more flexibility reflects direct economic advantage to the plant operator.Keywords: discrete optimization, power plant flexibility, profit maximization, unit commitment model
Procedia PDF Downloads 143691 Optimization of Smart Beta Allocation by Momentum Exposure
Authors: J. B. Frisch, D. Evandiloff, P. Martin, N. Ouizille, F. Pires
Abstract:
Smart Beta strategies intend to be an asset management revolution with reference to classical cap-weighted indices. Indeed, these strategies allow a better control on portfolios risk factors and an optimized asset allocation by taking into account specific risks or wishes to generate alpha by outperforming indices called 'Beta'. Among many strategies independently used, this paper focuses on four of them: Minimum Variance Portfolio, Equal Risk Contribution Portfolio, Maximum Diversification Portfolio, and Equal-Weighted Portfolio. Their efficiency has been proven under constraints like momentum or market phenomenon, suggesting a reconsideration of cap-weighting. To further increase strategy return efficiency, it is proposed here to compare their strengths and weaknesses inside time intervals corresponding to specific identifiable market phases, in order to define adapted strategies depending on pre-specified situations. Results are presented as performance curves from different combinations compared to a benchmark. If a combination outperforms the applicable benchmark in well-defined actual market conditions, it will be preferred. It is mainly shown that such investment 'rules', based on both historical data and evolution of Smart Beta strategies, and implemented according to available specific market data, are providing very interesting optimal results with higher return performance and lower risk. Such combinations have not been fully exploited yet and justify present approach aimed at identifying relevant elements characterizing them.Keywords: smart beta, minimum variance portfolio, equal risk contribution portfolio, maximum diversification portfolio, equal weighted portfolio, combinations
Procedia PDF Downloads 340690 An Improved Total Variation Regularization Method for Denoising Magnetocardiography
Authors: Yanping Liao, Congcong He, Ruigang Zhao
Abstract:
The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance.Keywords: constraint parameters, derivative matrix, magnetocardiography, regular term, total variation
Procedia PDF Downloads 153689 Angiopermissive Foamed and Fibrillar Scaffolds for Vascular Graft Applications
Authors: Deon Bezuidenhout
Abstract:
Pre-seeding with autologous endothelial cells improves the long-term patency of synthetic vascular grafts levels obtained with autografts, but is limited to a single centre due to resource, time and other constraints. Spontaneous in vivo endothelialization would obviate the need for pre-seeding, but has been shown to be absent in man due to limited transanastomotic and fallout healing, and the lack of transmural ingrowth due to insufficient porosity. Two types of graft scaffolds with increased interconnected porosity for improved tissue ingrowth and healing are thus proposed and described. Foam-type polyurethane (PU) scaffolds with small, medium and large, interconnected pores were made by phase inversion and spherical porogen extraction, with and without additional surface modification with covalently attached heparin and subsequent loading with and delivery of growth factors. Fibrillar scaffolds were made either by standard electrospinning using degradable PU (Degrapol®), or by dual electrospinning using non-degradable PU. The latter process involves sacrificial fibres that are co-spun with structural fibres and subsequently removed to increased porosity and pore size. Degrapol samples were subjected to in vitro degradation, and all scaffold types were evaluated in vivo for tissue ingrowth and vascularization using rat subcutaneous model. The foam scaffolds were additionally evaluated in a circulatory (rat infrarenal aortic interposition) model that allows for the grafts to be anastomotically and/or ablumenally isolated to discern and determine endothelialization mode. Foam-type grafts with large (150 µm) pores showed improved subcutaneous healing in terms of vascularization and inflammatory response over smaller pore sizes (60 and 90µm), and vascularization of the large porosity scaffolds was significantly increased by more than 70% by heparin modification alone, and by 150% to 400% when combined with growth factors. In the circulatory model, extensive transmural endothelialization (95±10% at 12 w) was achieved. Fallout healing was shown to be sporadic and limited in groups that were ablumenally isolated to prevent transmural ingrowth (16±30% wrapped vs. 80±20% control; p<0.002). Heparinization and GF delivery improved both mural vascularization and lumenal endothelialization. Degrapol electrospun scaffolds showed decrease in molecular mass and corresponding tensile strength over the first 2 weeks, but very little decrease in mass over the 4w test period. Studies on the effect of tissue ingrowth with and without concomitant degradation of the scaffolds, are being used to develop material models for the finite element modelling. In the case of the dual-spun scaffolds, the PU fibre fraction could be controlled shown to vary linearly with porosity (P = −0.18FF +93.5, r2=0.91), which in turn showed inverse linear correlation with tensile strength and elastic modulus (r2 > 0.96). Calculated compliance and burst pressures of the scaffolds increased with fibre fraction, and compliances matching the human popliteal artery (5-10 %/100 mmHg), and high burst pressures (> 2000 mmHg) could be achieved. Increasing porosity (76 to 82 and 90%) resulted in increased tissue ingrowth from 33±7 to 77±20 and 98±1% after 28d. Transmural endothelialization of highly porous foamed grafts is achievable in a circulatory model, and the enhancement of porosity and tissue ingrowth may hold the key the development of spontaneously endothelializing electrospun grafts.Keywords: electrospinning, endothelialization, porosity, scaffold, vascular graft
Procedia PDF Downloads 296688 Thermodynamic Modeling and Exergoeconomic Analysis of an Isobaric Adiabatic Compressed Air Energy Storage System
Authors: Youssef Mazloum, Haytham Sayah, Maroun Nemer
Abstract:
The penetration of renewable energy sources into the electric grid is significantly increasing. However, the intermittence of these sources breaks the balance between supply and demand for electricity. Hence, the importance of the energy storage technologies, they permit restoring the balance and reducing the drawbacks of intermittence of the renewable energies. This paper discusses the modeling and the cost-effectiveness of an isobaric adiabatic compressed air energy storage (IA-CAES) system. The proposed system is a combination among a compressed air energy storage (CAES) system with pumped hydro storage system and thermal energy storage system. The aim of this combination is to overcome the disadvantages of the conventional CAES system such as the losses due to the storage pressure variation, the loss of the compression heat and the use of fossil fuel sources. A steady state model is developed to perform an energy and exergy analyses of the IA-CAES system and calculate the distribution of the exergy losses in the latter system. A sensitivity analysis is also carried out to estimate the effects of some key parameters on the system’s efficiency, such as the pinch of the heat exchangers, the isentropic efficiency of the rotating machinery and the pressure losses. The conducted sensitivity analysis is a local analysis since the sensibility of each parameter changes with the variation of the other parameters. Therefore, an exergoeconomic study is achieved as well as a cost optimization in order to reduce the electricity cost produced during the production phase. The optimizer used is OmOptim which is a genetic algorithms based optimizer.Keywords: cost-effectiveness, Exergoeconomic analysis, isobaric adiabatic compressed air energy storage (IA-CAES) system, thermodynamic modeling
Procedia PDF Downloads 246687 The Effect of Electrical Discharge Plasma on Inactivation of Escherichia Coli MG 1655 in Pure Culture
Authors: Zoran Herceg, Višnja Stulić, Anet Režek Jambrak, Tomislava Vukušić
Abstract:
Electrical discharge plasma is a new non-thermal processing technique which is used for the inactivation of contaminating and hazardous microbes in liquids. Plasma is a source of different antimicrobial species including UV photons, charged particles, and reactive species such as superoxide, hydroxyl radicals, nitric oxide and ozone. Escherichia coli was studied as foodborne pathogen. The aim of this work was to examine inactivation effects of electrical discharge plasma treatment on the Escherichia coli MG 1655 in pure culture. Two types of plasma configuration and polarity were used. First configuration was with titanium wire as high voltage needle and another with medical stainless steel needle used to form bubbles in treated volume and titanium wire as high voltage needle. Model solution samples were inoculated with Escerichia coli MG 1655 and treated by electrical discharge plasma at treatment time of 5 and 10 min, and frequency of 60, 90 and 120 Hz. With the first configuration after 5 minutes of treatment at frequency of 120 Hz the inactivation rate was 1.3 log₁₀ reduction and after 10 minutes of treatment the inactivation rate was 3.0 log₁₀ reduction. At the frequency of 90 Hz after 10 minutes inactivation rate was 1.3 log₁₀ reduction. With the second configuration after 5 minutes of treatment at frequency of 120 Hz the inactivation rate was 1.2 log₁₀ reduction and after 10 minutes of treatment the inactivation rate was also 3.0 log₁₀ reduction. In this work it was also examined the formation of biofilm, nucleotide and protein leakage at 260/280 nm, before and after treatment and recuperation of treated samples. Further optimization of method is needed to understand mechanism of inactivation.Keywords: electrical discharge plasma, escherichia coli MG 1655, inactivation, point-to-plate electrode configuration
Procedia PDF Downloads 432686 Biomass and Lipid Enhancement by Response Surface Methodology in High Lipid Accumulating Indigenous Strain Rhodococcus opacus and Biodiesel Study
Authors: Kulvinder Bajwa, Narsi R. Bishnoi
Abstract:
Finding a sustainable alternative for today’s petrochemical industry is a major challenge facing by researchers, scientists, chemical engineers, and society at the global level. Microorganisms are considered to be sustainable feedstock for 3rd generation biofuel production. In this study, we have investigated the potential of a native bacterial strain isolated from a petrol contaminated site for the production of biodiesel. The bacterium was identified to be Rhodococcus opacus by biochemical test and 16S rRNA. Compositional analysis of bacterial biomass has been carried out by Fourier transform infrared spectroscopy (FTIR) in order to confirm lipid profile. Lipid and biomass were optimized by combination with Box Behnken design (BBD) of response surface methodology. The factors selected for the optimization of growth condition were glucose, yeast extract, and ammonium nitrate concentration. The experimental model developed through RSM in terms of effective operational factors (BBD) was found to be suitable to describe the lipid and biomass production, which indicated higher lipid and biomass with a minimum concentration of ammonium nitrate, yeast extract, and quite higher dose of glucose supplementation. Optimum results of the experiments were found to be 2.88 gL⁻¹ biomass and lipid content 38.75% at glucose 20 gL⁻¹, ammonium nitrate 0.5 gL⁻¹ and yeast extract 1.25 gL⁻¹. Furthermore, GCMS study revealed that Rhodococcus opacus has favorable fatty acid profile for biodiesel production.Keywords: biofuel, Oleaginious bacteria, Rhodococcus opacus, FTIR, BBD, free fatty acids
Procedia PDF Downloads 136685 Opto-Electronic Properties and Structural Phase Transition of Filled-Tetrahedral NaZnAs
Authors: R. Khenata, T. Djied, R. Ahmed, H. Baltache, S. Bin-Omran, A. Bouhemadou
Abstract:
We predict structural, phase transition as well as opto-electronic properties of the filled-tetrahedral (Nowotny-Juza) NaZnAs compound in this study. Calculations are carried out by employing the full potential (FP) linearized augmented plane wave (LAPW) plus local orbitals (lo) scheme developed within the structure of density functional theory (DFT). Exchange-correlation energy/potential (EXC/VXC) functional is treated using Perdew-Burke and Ernzerhof (PBE) parameterization for generalized gradient approximation (GGA). In addition to Trans-Blaha (TB) modified Becke-Johnson (mBJ) potential is incorporated to get better precision for optoelectronic properties. Geometry optimization is carried out to obtain the reliable results of the total energy as well as other structural parameters for each phase of NaZnAs compound. Order of the structural transitions as a function of pressure is found as: Cu2Sb type → β → α phase in our study. Our calculated electronic energy band structures for all structural phases at the level of PBE-GGA as well as mBJ potential point out; NaZnAs compound is a direct (Γ–Γ) band gap semiconductor material. However, as compared to PBE-GGA, mBJ potential approximation reproduces higher values of fundamental band gap. Regarding the optical properties, calculations of real and imaginary parts of the dielectric function, refractive index, reflectivity coefficient, absorption coefficient and energy loss-function spectra are performed over a photon energy ranging from 0.0 to 30.0 eV by polarizing incident radiation in parallel to both [100] and [001] crystalline directions.Keywords: NaZnAs, FP-LAPW+lo, structural properties, phase transition, electronic band-structure, optical properties
Procedia PDF Downloads 436684 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights
Authors: Julian Wise
Abstract:
Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.Keywords: mineral technology, big data, machine learning operations, data lake
Procedia PDF Downloads 112683 Scheduling in a Single-Stage, Multi-Item Compatible Process Using Multiple Arc Network Model
Authors: Bokkasam Sasidhar, Ibrahim Aljasser
Abstract:
The problem of finding optimal schedules for each equipment in a production process is considered, which consists of a single stage of manufacturing and which can handle different types of products, where changeover for handling one type of product to the other type incurs certain costs. The machine capacity is determined by the upper limit for the quantity that can be processed for each of the products in a set up. The changeover costs increase with the number of set ups and hence to minimize the costs associated with the product changeover, the planning should be such that similar types of products should be processed successively so that the total number of changeovers and in turn the associated set up costs are minimized. The problem of cost minimization is equivalent to the problem of minimizing the number of set ups or equivalently maximizing the capacity utilization in between every set up or maximizing the total capacity utilization. Further, the production is usually planned against customers’ orders, and generally different customers’ orders are assigned one of the two priorities – “normal” or “priority” order. The problem of production planning in such a situation can be formulated into a Multiple Arc Network (MAN) model and can be solved sequentially using the algorithm for maximizing flow along a MAN and the algorithm for maximizing flow along a MAN with priority arcs. The model aims to provide optimal production schedule with an objective of maximizing capacity utilization, so that the customer-wise delivery schedules are fulfilled, keeping in view the customer priorities. Algorithms have been presented for solving the MAN formulation of the production planning with customer priorities. The application of the model is demonstrated through numerical examples.Keywords: scheduling, maximal flow problem, multiple arc network model, optimization
Procedia PDF Downloads 402682 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision
Procedia PDF Downloads 126681 Explanation of the Main Components of the Unsustainability of Cooperative Institutions in Cooperative Management Projects to Combat Desertification in South Khorasan Province
Authors: Yaser Ghasemi Aryan, Firoozeh Moghiminejad, Mohammadreza Shahraki
Abstract:
Background: The cooperative institution is considered the first and most essential pillar of strengthening social capital, whose sustainability is the main guarantee of survival and continued participation of local communities in natural resource management projects. The Village Development Group and the Microcredit Fund are two important social and economic institutions in the implementation of the International Project for the Restoration of Degraded Forest Lands (RFLDL) in Sarayan City, South Khorasan Province, which has learned positive lessons from the participation of the beneficiaries in the implementation. They have brought more effective projects to deal with desertification. However, the low activity or liquidation of some of these institutions has become one of the important challenges and concerns of project executive experts. The current research was carried out with the aim of explaining the main components of the instability of these institutions. Materials and Methods: This research is descriptive-analytical in terms of method, practical in terms of purpose, and the method of collecting information is two documentary and survey methods. The statistical population of the research included all the members of the village development groups and microcredit funds in the target villages of the RFLDL project of Sarayan city, based on the Kochran formula and matching with the Karjesi and Morgan table. Net people were selected as a statistical sample. After confirming the validity of the expert's opinions, the reliability of the questionnaire was 0.83, which shows the appropriate reliability of the researcher-made questionnaire. Data analysis was done using SPSS software. Results: The results related to the extraction of obstacles to the stability of social and economic networks were classified and prioritized in the form of 5 groups of social-cultural, economic, administrative, educational-promotional and policy-management factors. Based on this, in the socio-cultural factors, the items ‘not paying attention to the structural characteristics and composition of groups’, ‘lack of commitment and moral responsibility in some members of the group,’ and ‘lack of a clear pattern for the preservation and survival of groups’, in the disciplinary factors, The items ‘Irregularity in holding group meetings’ and ‘Irregularity of members to participate in meetings’, in the economic factors of the items "small financial capital of the fund’, ‘the low amount of loans of the fund’ and ‘the fund's inability to conclude contracts and attract capital from other sources’, in the educational-promotional factors of the items ‘non-simultaneity of job training with the granting of loans to create jobs’ and ‘insufficient training for the effective use of loans and job creation’ and in the policy-management factors of the item ‘failure to provide government facilities for support From the funds, they had the highest priority. Conclusion: In general, the results of this research show that policy-management factors and social factors, especially the structure and composition of social and economic institutions, are the most important obstacles to their sustainability. Therefore, it is suggested to form cooperative institutions based on network analysis studies in order to achieve the appropriate composition of members.Keywords: cooperative institution, social capital, network analysis, participation, Sarayan.
Procedia PDF Downloads 55680 Creation of Ultrafast Ultra-Broadband High Energy Laser Pulses
Authors: Walid Tawfik
Abstract:
The interaction of high intensity ultrashort laser pulses with plasma generates many significant applications, including soft x-ray lasers, time-resolved laser induced plasma spectroscopy LIPS, and laser-driven accelerators. The development in producing of femtosecond down to ten femtosecond optical pulses has facilitates scientists with a vital tool in a variety of ultrashort phenomena, such as high field physics, femtochemistry and high harmonic generation HHG. In this research, we generate a two-octave-wide ultrashort supercontinuum pulses with an optical spectrum extending from 3.5 eV (ultraviolet) to 1.3 eV (near-infrared) using a capillary fiber filled with neon gas. These pulses are formed according to nonlinear self-phase modulation in the neon gas as a nonlinear medium. The investigations of the created pulses were made using spectral phase interferometry for direct electric-field reconstruction (SPIDER). A complete description of the output pulses was considered. The observed characterization of the produced pulses includes the beam profile, the pulse width, and the spectral bandwidth. After reaching optimization conditions, the intensity of the reconstructed pulse autocorrelation function was applied for the shorts pulse duration to achieve transform limited ultrashort pulses with durations below 6-fs energies up to 600μJ. Moreover, the effect of neon pressure variation on the pulse width was examined. The nonlinear self-phase modulation realized to be increased with the pressure of the neon gas. The observed results may lead to an advanced method to control and monitor ultrashort transit interaction in femtochemistry.Keywords: supercontinuum, ultrafast, SPIDER, ultra-broadband
Procedia PDF Downloads 224679 Determining Factors for Successful Blended Learning in Higher Education: A Qualitative Study
Authors: Pia Wetzl
Abstract:
The learning process of students can be optimized by combining online teaching with face-to-face sessions. So-called blended learning offers extensive flexibility as well as contact opportunities with fellow students and teachers. Furthermore, learning can be individualized and self-regulated. The aim of this article is to investigate which factors are necessary for blended learning to be successful. Semi-structured interviews were conducted with students (N = 60) and lecturers (N = 21) from different disciplines at two German universities. The questions focused on the perception of online, face-to-face and blended learning courses. In addition, questions focused on possible optimization potential and obstacles to practical implementation. The results show that on-site presence is very important for blended learning to be successful. If students do not get to know each other on-site, there is a risk of loneliness during the self-learning phases. This has a negative impact on motivation. From the perspective of the lecturers, the willingness of the students to participate in the sessions on-site is low. Especially when there is no obligation to attend, group work is difficult to implement because the number of students attending is too low. Lecturers would like to see more opportunities from the university and its administration to enforce attendance. In their view, this is the only way to ensure the success of blended learning. In addition, they see the conception of blended learning courses as requiring a great deal of time, which they are not always willing to invest. More incentives are necessary to keep the lecturers motivated to develop engaging teaching material. The study identifies factors that can help teachers conceptualize blended learning. It also provides specific implementation advice and identifies potential impacts. This catalogue has great value for the future-oriented development of courses at universities. Future studies could test its practical use.Keywords: blended learning, higher education, teachers, student learning, qualitative research
Procedia PDF Downloads 69678 3D Geomechanical Model the Best Solution of the 21st Century for Perforation's Problems
Authors: Luis Guiliana, Andrea Osorio
Abstract:
The lack of comprehension of the reservoir geomechanics conditions may cause operational problems that cost to the industry billions of dollars per year. The drilling operations at the Ceuta Field, Area 2 South, Maracaibo Lake, have been very expensive due to problems associated with drilling. The principal objective of this investigation is to develop a 3D geomechanical model in this area, in order to optimize the future drillings in the field. For this purpose, a 1D geomechanical model was built at first instance, following the workflow of the MEM (Mechanical Earth Model), this consists of the following steps: 1) Data auditing, 2) Analysis of drilling events and structural model, 3) Mechanical stratigraphy, 4) Overburden stress, 5) Pore pressure, 6) Rock mechanical properties, 7) Horizontal stresses, 8) Direction of the horizontal stresses, 9) Wellbore stability. The 3D MEM was developed through the geostatistic model of the Eocene C-SUP VLG-3676 reservoir and the 1D MEM. With this data the geomechanical grid was embedded. The analysis of the results threw, that the problems occurred in the wells that were examined were mainly due to wellbore stability issues. It was determined that the stress field change as the stratigraphic column deepens, it is normal to strike-slip at the Middle Miocene and Lower Miocene, and strike-slipe to reverse at the Eocene. In agreement to this, at the level of the Eocene, the most advantageous direction to drill is parallel to the maximum horizontal stress (157º). The 3D MEM allowed having a tridimensional visualization of the rock mechanical properties, stresses and operational windows (mud weight and pressures) variations. This will facilitate the optimization of the future drillings in the area, including those zones without any geomechanics information.Keywords: geomechanics, MEM, drilling, stress
Procedia PDF Downloads 273677 Magnetic Cellulase/Halloysite Nanotubes as Biocatalytic System for Converting Agro-Waste into Value-Added Product
Authors: Devendra Sillu, Shekhar Agnihotri
Abstract:
The 'nano-biocatalyst' utilizes an ordered assembling of enzyme on to nanomaterial carriers to catalyze desirable biochemical kinetics and substrate selectivity. The current study describes an inter-disciplinary approach for converting agriculture waste, sugarcane bagasse into D-glucose exploiting halloysite nanotubes (HNTs) decorated cellulase enzyme as nano-biocatalytic system. Cellulase was successfully immobilized on HNTs employing polydopamine as an eco-friendly crosslinker while iron oxide nanoparticles were attached to facilitate magnetic recovery of material. The characterization studies (UV-Vis, TEM, SEM, and XRD) displayed the characteristic features of both cellulase and magnetic HNTs in the resulting nanocomposite. Various factors (i.e., working pH, temp., crosslinker conc., enzyme conc.) which may influence the activity of biocatalytic system were investigated. The experimental design was performed using Response Surface Methodology (RSM) for process optimization. Analyses data demonstrated that the nanobiocatalysts retained 80.30% activity even at elevated temperature (55°C) and excellent storage stabilities after 10 days. The repeated usage of system revealed a remarkable consistent relative activity over several cycles. The immobilized cellulase was employed to decompose agro-waste and the maximum decomposition rate of 67.2 % was achieved. Conclusively, magnetic HNTs can serve as a potential support for enzyme immobilization with long term usage, good efficacy, reusability and easy recovery from solution.Keywords: halloysite nanotubes, enzyme immobilization, cellulase, response surface methodology, magnetic recovery
Procedia PDF Downloads 133676 Trading off Accuracy for Speed in Powerdrill
Authors: Filip Buruiana, Alexander Hall, Reimar Hofmann, Thomas Hofmann, Silviu Ganceanu, Alexandru Tudorica
Abstract:
In-memory column-stores make interactive analysis feasible for many big data scenarios. PowerDrill is a system used internally at Google for exploration in logs data. Even though it is a highly parallelized column-store and uses in memory caching, interactive response times cannot be achieved for all datasets (note that it is common to analyze data with 50 billion records in PowerDrill). In this paper, we investigate two orthogonal approaches to optimize performance at the expense of an acceptable loss of accuracy. Both approaches can be implemented as outer wrappers around existing database engines and so they should be easily applicable to other systems. For the first optimization we show that memory is the limiting factor in executing queries at speed and therefore explore possibilities to improve memory efficiency. We adapt some of the theory behind data sketches to reduce the size of particularly expensive fields in our largest tables by a factor of 4.5 when compared to a standard compression algorithm. This saves 37% of the overall memory in PowerDrill and introduces a 0.4% relative error in the 90th percentile for results of queries with the expensive fields. We additionally evaluate the effects of using sampling on accuracy and propose a simple heuristic for annotating individual result-values as accurate (or not). Based on measurements of user behavior in our real production system, we show that these estimates are essential for interpreting intermediate results before final results are available. For a large set of queries this effectively brings down the 95th latency percentile from 30 to 4 seconds.Keywords: big data, in-memory column-store, high-performance SQL queries, approximate SQL queries
Procedia PDF Downloads 259675 Development and Optimization of Colon Targeted Drug Delivery System of Ayurvedic Churna Formulation Using Eudragit L100 and Ethyl Cellulose as Coating Material
Authors: Anil Bhandari, Imran Khan Pathan, Peeyush K. Sharma, Rakesh K. Patel, Suresh Purohit
Abstract:
The purpose of this study was to prepare time and pH dependent release tablets of Ayurvedic Churna formulation and evaluate their advantages as colon targeted drug delivery system. The Vidangadi Churna was selected for this study which contains Embelin and Gallic acid. Embelin is used in Helminthiasis as therapeutic agent. Embelin is insoluble in water and unstable in gastric environment so it was formulated in time and pH dependent tablets coated with combination of two polymers Eudragit L100 and ethyl cellulose. The 150mg of core tablet of dried extract and lactose were prepared by wet granulation method. The compression coating was used in the polymer concentration of 150mg for both the layer as upper and lower coating tablet was investigated. The results showed that no release was found in 0.1 N HCl and pH 6.8 phosphate buffers for initial 5 hours and about 98.97% of the drug was released in pH 7.4 phosphate buffer in total 17 hours. The in vitro release profiles of drug from the formulation could be best expressed first order kinetics as highest linearity (r2= 0.9943). The results of the present study have demonstrated that the time and pH dependent tablets system is a promising vehicle for preventing rapid hydrolysis in gastric environment and improving oral bioavailability of Embelin and Gallic acid for treatment of Helminthiasis.Keywords: embelin, gallic acid, Vidangadi Churna, colon targeted drug delivery
Procedia PDF Downloads 360674 Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils
Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha
Abstract:
Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.Keywords: soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil, geotechnical engineering
Procedia PDF Downloads 338673 The Importance of Visual Communication in Artificial Intelligence
Authors: Manjitsingh Rajput
Abstract:
Visual communication plays an important role in artificial intelligence (AI) because it enables machines to understand and interpret visual information, similar to how humans do. This abstract explores the importance of visual communication in AI and emphasizes the importance of various applications such as computer vision, object emphasis recognition, image classification and autonomous systems. In going deeper, with deep learning techniques and neural networks that modify visual understanding, In addition to AI programming, the abstract discusses challenges facing visual interfaces for AI, such as data scarcity, domain optimization, and interpretability. Visual communication and other approaches, such as natural language processing and speech recognition, have also been explored. Overall, this abstract highlights the critical role that visual communication plays in advancing AI capabilities and enabling machines to perceive and understand the world around them. The abstract also explores the integration of visual communication with other modalities like natural language processing and speech recognition, emphasizing the critical role of visual communication in AI capabilities. This methodology explores the importance of visual communication in AI development and implementation, highlighting its potential to enhance the effectiveness and accessibility of AI systems. It provides a comprehensive approach to integrating visual elements into AI systems, making them more user-friendly and efficient. In conclusion, Visual communication is crucial in AI systems for object recognition, facial analysis, and augmented reality, but challenges like data quality, interpretability, and ethics must be addressed. Visual communication enhances user experience, decision-making, accessibility, and collaboration. Developers can integrate visual elements for efficient and accessible AI systems.Keywords: visual communication AI, computer vision, visual aid in communication, essence of visual communication.
Procedia PDF Downloads 95672 Heat Sink Optimization for a High Power Wearable Thermoelectric Module
Authors: Zohreh Soleimani, Sally Salome Shahzad, Stamatis Zoras
Abstract:
As a result of current energy and environmental issues, the human body is known as one of the promising candidate for converting wasted heat to electricity (Seebeck effect). Thermoelectric generator (TEG) is one of the most prevalent means of harvesting body heat and converting that to eco-friendly electrical power. However, the uneven distribution of the body heat and its curvature geometry restrict harvesting adequate amount of energy. To perfectly transform the heat radiated by the body into power, the most direct solution is conforming the thermoelectric generators (TEG) with the arbitrary surface of the body and increase the temperature difference across the thermoelectric legs. Due to this, a computational survey through COMSOL Multiphysics is presented in this paper with the main focus on the impact of integrating a flexible wearable TEG with a corrugated shaped heat sink on the module power output. To eliminate external parameters (temperature, air flow, humidity), the simulations are conducted within indoor thermal level and when the wearer is stationary. The full thermoelectric characterization of the proposed TEG fabricated by a wavy shape heat sink has been computed leading to a maximum power output of 25µW/cm2 at a temperature gradient nearly 13°C. It is noteworthy that for the flexibility of the proposed TEG and heat sink, the applicability and efficiency of the module stay high even on the curved surfaces of the body. As a consequence, the results demonstrate the superiority of such a TEG to the most state of the art counterparts fabricated with no heat sink and offer a new train of thought for the development of self-sustained and unobtrusive wearable power suppliers which generate energy from low grade dissipated heat from the body.Keywords: device simulation, flexible thermoelectric module, heat sink, human body heat
Procedia PDF Downloads 151671 Aerodynamic Modeling Using Flight Data at High Angle of Attack
Authors: Rakesh Kumar, A. K. Ghosh
Abstract:
The paper presents the modeling of linear and nonlinear longitudinal aerodynamics using real flight data of Hansa-3 aircraft gathered at low and high angles of attack. The Neural-Gauss-Newton (NGN) method has been applied to model the linear and nonlinear longitudinal dynamics and estimate parameters from flight data. Unsteady aerodynamics due to flow separation at high angles of attack near stall has been included in the aerodynamic model using Kirchhoff’s quasi-steady stall model. NGN method is an algorithm that utilizes Feed Forward Neural Network (FFNN) and Gauss-Newton optimization to estimate the parameters and it does not require any a priori postulation of mathematical model or solving of equations of motion. NGN method was validated on real flight data generated at moderate angles of attack before application to the data at high angles of attack. The estimates obtained from compatible flight data using NGN method were validated by comparing with wind tunnel values and the maximum likelihood estimates. Validation was also carried out by comparing the response of measured motion variables with the response generated by using estimates a different control input. Next, NGN method was applied to real flight data generated by executing a well-designed quasi-steady stall maneuver. The results obtained in terms of stall characteristics and aerodynamic parameters were encouraging and reasonably accurate to establish NGN as a method for modeling nonlinear aerodynamics from real flight data at high angles of attack.Keywords: parameter estimation, NGN method, linear and nonlinear, aerodynamic modeling
Procedia PDF Downloads 445670 Integrated Two Stage Processing of Biomass Conversion to Hydroxymethylfurfural Esters Using Ionic Liquid as Green Solvent and Catalyst: Synthesis of Mono Esters
Authors: Komal Kumar, Sreedevi Upadhyayula
Abstract:
In this study, a two-stage process was established for the synthesis of HMF esters using ionic liquid acid catalyst. Ionic liquid catalyst with different strength of the Bronsted acidity was prepared in the laboratory and characterized using 1H NMR, FT-IR, and 13C NMR spectroscopy. Solid acid catalyst from the ionic liquid catalyst was prepared using the immobilization method. The acidity of the synthesized acid catalyst was measured using Hammett function and titration method. Catalytic performance was evaluated for the biomass conversion to 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA) in methyl isobutyl ketone (MIBK)-water biphasic system. A good yield of 5-HMF and LA was found at the different composition of MIBK: Water. In the case of MIBK: Water ratio 10:1, good yield of 5-HMF was observed at ambient temperature 150˚C. Upgrading of 5-HMF into monoesters from the reaction of 5-HMF and reactants using biomass-derived monoacid were performed. Ionic liquid catalyst with -SO₃H functional group was found to be best efficient in comparative of a solid acid catalyst for the esterification reaction and biomass conversion. A good yield of 5-HMF esters with high 5-HMF conversion was found to be at 105˚C using the best active catalyst. In this process, process A was the hydrothermal conversion of cellulose and monomer into 5-HMF and LA using acid catalyst. And the process B was the esterification followed by using similar acid catalyst. All monoesters of 5-HMF synthesized here can be used in chemical, cross linker for adhesive or coatings and pharmaceutical industry. A theoretical density functional theory (DFT) study for the optimization of the ionic liquid structure was performed using the Gaussian 09 program to find out the minimum energy configuration of ionic liquid catalyst.Keywords: biomass conversion, 5-HMF, Ionic liquid, HMF ester
Procedia PDF Downloads 251669 Evidence Theory Based Emergency Multi-Attribute Group Decision-Making: Application in Facility Location Problem
Authors: Bidzina Matsaberidze
Abstract:
It is known that, in emergency situations, multi-attribute group decision-making (MAGDM) models are characterized by insufficient objective data and a lack of time to respond to the task. Evidence theory is an effective tool for describing such incomplete information in decision-making models when the expert and his knowledge are involved in the estimations of the MAGDM parameters. We consider an emergency decision-making model, where expert assessments on humanitarian aid from distribution centers (HADC) are represented in q-rung ortho-pair fuzzy numbers, and the data structure is described within the data body theory. Based on focal probability construction and experts’ evaluations, an objective function-distribution centers’ selection ranking index is constructed. Our approach for solving the constructed bicriteria partitioning problem consists of two phases. In the first phase, based on the covering’s matrix, we generate a matrix, the columns of which allow us to find all possible partitionings of the HADCs with the service centers. Some constraints are also taken into consideration while generating the matrix. In the second phase, based on the matrix and using our exact algorithm, we find the partitionings -allocations of the HADCs to the centers- which correspond to the Pareto-optimal solutions. For an illustration of the obtained results, a numerical example is given for the facility location-selection problem.Keywords: emergency MAGDM, q-rung orthopair fuzzy sets, evidence theory, HADC, facility location problem, multi-objective combinatorial optimization problem, Pareto-optimal solutions
Procedia PDF Downloads 92