Search results for: machine translation
326 Advancing Aviation: A Multidisciplinary Approach to Innovation, Management, and Technology Integration in the 21st Century
Authors: Fatih Frank Alparslan
Abstract:
The aviation industry is at a crucial turning point due to modern technologies, environmental concerns, and changing ways of transporting people and goods globally. The paper examines these challenges and opportunities comprehensively. It emphasizes the role of innovative management and advanced technology in shaping the future of air travel. This study begins with an overview of the current state of the aviation industry, identifying key areas where innovation and technology could be highly beneficial. It explores the latest advancements in airplane design, propulsion, and materials. These technological advancements are shown to enhance aircraft performance and environmental sustainability. The paper also discusses the use of artificial intelligence and machine learning in improving air traffic control, enhancing safety, and making flight operations more efficient. The management of these technologies is critically important. Therefore, the research delves into necessary changes in organization, culture, and operations to support innovation. It proposes a management approach that aligns with these modern technologies, underlining the importance of forward-thinking leaders who collaborate across disciplines and embrace innovative ideas. The paper addresses challenges in adopting these innovations, such as regulatory barriers, the need for industry-wide standards, and the impact of technological changes on jobs and society. It recommends that governments, aviation businesses, and educational institutions collaborate to address these challenges effectively, paving the way for a more innovative and eco-friendly aviation industry. In conclusion, the paper argues that the future of aviation relies on integrating new management practices with innovative technologies. It urges a collective effort to push beyond current capabilities, envisioning an aviation industry that is safer, more efficient, and environmentally responsible. By adopting a broad approach, this research contributes to the ongoing discussion about resolving the complex issues facing today's aviation sector, offering insights and guidance to prepare for future advancements.Keywords: aviation innovation, technology integration, environmental sustainability, management strategies, multidisciplinary approach
Procedia PDF Downloads 49325 Investigation of the Mechanical and Thermal Properties of a Silver Oxalate Nanoporous Structured Sintered Joint for Micro-joining in Relation to the Sintering Process Parameters
Authors: L. Vivet, L. Benabou, O. Simon
Abstract:
With highly demanding applications in the field of power electronics, there is an increasing need to have interconnection materials with properties that can ensure both good mechanical assembly and high thermal/electrical conductivities. So far, lead-free solders have been considered an attractive solution, but recently, sintered joints based on nano-silver paste have been used for die attach and have proved to be a promising solution offering increased performances in high-temperature applications. In this work, the main parameters of the bonding process using silver oxalates are studied, i.e., the heating rate and the bonding pressure mainly. Their effects on both the mechanical and thermal properties of the sintered layer are evaluated following an experimental design. Pairs of copper substrates with gold metallization are assembled through the sintering process to realize the samples that are tested using a micro-traction machine. In addition, the obtained joints are examined through microscopy to identify the important microstructural features in relation to the measured properties. The formation of an intermetallic compound at the junction between the sintered silver layer and the gold metallization deposited on copper is also analyzed. Microscopy analysis exhibits a nanoporous structure of the sintered material. It is found that higher temperature and bonding pressure result in higher densification of the sintered material, with higher thermal conductivity of the joint but less mechanical flexibility to accommodate the thermo-mechanical stresses arising during service. The experimental design allows hence the determination of the optimal process parameters to reach sufficient thermal/mechanical properties for a given application. It is also found that the interphase formed between silver and gold metallization is the location where the fracture occurred after the mechanical testing, suggesting that the inter-diffusion mechanism between the different elements of the assembly leads to the formation of a relatively brittle compound.Keywords: nanoporous structure, silver oxalate, sintering, mechanical strength, thermal conductivity, microelectronic packaging
Procedia PDF Downloads 93324 Embedded Visual Perception for Autonomous Agricultural Machines Using Lightweight Convolutional Neural Networks
Authors: René A. Sørensen, Søren Skovsen, Peter Christiansen, Henrik Karstoft
Abstract:
Autonomous agricultural machines act in stochastic surroundings and therefore, must be able to perceive the surroundings in real time. This perception can be achieved using image sensors combined with advanced machine learning, in particular Deep Learning. Deep convolutional neural networks excel in labeling and perceiving color images and since the cost of high-quality RGB-cameras is low, the hardware cost of good perception depends heavily on memory and computation power. This paper investigates the possibility of designing lightweight convolutional neural networks for semantic segmentation (pixel wise classification) with reduced hardware requirements, to allow for embedded usage in autonomous agricultural machines. Using compression techniques, a lightweight convolutional neural network is designed to perform real-time semantic segmentation on an embedded platform. The network is trained on two large datasets, ImageNet and Pascal Context, to recognize up to 400 individual classes. The 400 classes are remapped into agricultural superclasses (e.g. human, animal, sky, road, field, shelterbelt and obstacle) and the ability to provide accurate real-time perception of agricultural surroundings is studied. The network is applied to the case of autonomous grass mowing using the NVIDIA Tegra X1 embedded platform. Feeding case-specific images to the network results in a fully segmented map of the superclasses in the image. As the network is still being designed and optimized, only a qualitative analysis of the method is complete at the abstract submission deadline. Proceeding this deadline, the finalized design is quantitatively evaluated on 20 annotated grass mowing images. Lightweight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show competitive performance with regards to accuracy and speed. It is feasible to provide cost-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.Keywords: autonomous agricultural machines, deep learning, safety, visual perception
Procedia PDF Downloads 397323 The Psychometric Properties of an Instrument to Estimate Performance in Ball Tasks Objectively
Authors: Kougioumtzis Konstantin, Rylander Pär, Karlsteen Magnus
Abstract:
Ball skills as a subset of fundamental motor skills are predictors for performance in sports. Currently, most tools evaluate ball skills utilizing subjective ratings. The aim of this study was to examine the psychometric properties of a newly developed instrument to objectively measure ball handling skills (BHS-test) utilizing digital instrument. Participants were a convenience sample of 213 adolescents (age M = 17.1 years, SD =3.6; 55% females, 45% males) recruited from upper secondary schools and invited to a sports hall for the assessment. The 8-item instrument incorporated both accuracy-based ball skill tests and repetitive-performance tests with a ball. Testers counted performance manually in the four tests (one throwing and three juggling tasks). Furthermore, assessment was technologically enhanced in the other four tests utilizing a ball machine, a Kinect camera and balls with motion sensors (one balancing and three rolling tasks). 3D printing technology was used to construct equipment, while all results were administered digitally with smart phones/tablets, computers and a specially constructed application to send data to a server. The instrument was deemed reliable (α = .77) and principal component analysis was used in a random subset (53 of the participants). Furthermore, latent variable modeling was employed to confirm the structure with the remaining subset (160 of the participants). The analysis showed good factorial-related validity with one factor explaining 57.90 % of the total variance. Four loadings were larger than .80, two more exceeded .76 and the other two were .65 and .49. The one factor solution was confirmed by a first order model with one general factor and an excellent fit between model and data (χ² = 16.12, DF = 20; RMSEA = .00, CI90 .00–.05; CFI = 1.00; SRMR = .02). The loadings on the general factor ranged between .65 and .83. Our findings indicate good reliability and construct validity for the BHS-test. To develop the instrument further, more studies are needed with various age-groups, e.g. children. We suggest using the BHS-test for diagnostic or assessment purpose for talent development and sports participation interventions that focus on ball games.Keywords: ball-handling skills, ball-handling ability, technologically-enhanced measurements, assessment
Procedia PDF Downloads 94322 A Method for Clinical Concept Extraction from Medical Text
Authors: Moshe Wasserblat, Jonathan Mamou, Oren Pereg
Abstract:
Natural Language Processing (NLP) has made a major leap in the last few years, in practical integration into medical solutions; for example, extracting clinical concepts from medical texts such as medical condition, medication, treatment, and symptoms. However, training and deploying those models in real environments still demands a large amount of annotated data and NLP/Machine Learning (ML) expertise, which makes this process costly and time-consuming. We present a practical and efficient method for clinical concept extraction that does not require costly labeled data nor ML expertise. The method includes three steps: Step 1- the user injects a large in-domain text corpus (e.g., PubMed). Then, the system builds a contextual model containing vector representations of concepts in the corpus, in an unsupervised manner (e.g., Phrase2Vec). Step 2- the user provides a seed set of terms representing a specific medical concept (e.g., for the concept of the symptoms, the user may provide: ‘dry mouth,’ ‘itchy skin,’ and ‘blurred vision’). Then, the system matches the seed set against the contextual model and extracts the most semantically similar terms (e.g., additional symptoms). The result is a complete set of terms related to the medical concept. Step 3 –in production, there is a need to extract medical concepts from the unseen medical text. The system extracts key-phrases from the new text, then matches them against the complete set of terms from step 2, and the most semantically similar will be annotated with the same medical concept category. As an example, the seed symptom concepts would result in the following annotation: “The patient complaints on fatigue [symptom], dry skin [symptom], and Weight loss [symptom], which can be an early sign for Diabetes.” Our evaluations show promising results for extracting concepts from medical corpora. The method allows medical analysts to easily and efficiently build taxonomies (in step 2) representing their domain-specific concepts, and automatically annotate a large number of texts (in step 3) for classification/summarization of medical reports.Keywords: clinical concepts, concept expansion, medical records annotation, medical records summarization
Procedia PDF Downloads 135321 Methodical Approach for the Integration of a Digital Factory Twin into the Industry 4.0 Processes
Authors: R. Hellmuth
Abstract:
The orientation of flexibility and adaptability with regard to factory planning is at machine and process level. Factory buildings are not the focus of current research. Factory planning has the task of designing products, plants, processes, organization, areas and the construction of a factory. The adaptability of a factory can be divided into three types: spatial, organizational and technical adaptability. Spatial adaptability indicates the ability to expand and reduce the size of a factory. Here, the area-related breathing capacity plays the essential role. It mainly concerns the factory site, the plant layout and the production layout. The organizational ability to change enables the change and adaptation of organizational structures and processes. This includes structural and process organization as well as logistical processes and principles. New and reconfigurable operating resources, processes and factory buildings are referred to as technical adaptability. These three types of adaptability can be regarded independently of each other as undirected potentials of different characteristics. If there is a need for change, the types of changeability in the change process are combined to form a directed, complementary variable that makes change possible. When planning adaptability, importance must be attached to a balance between the types of adaptability. The vision of the intelligent factory building and the 'Internet of Things' presupposes the comprehensive digitalization of the spatial and technical environment. Through connectivity, the factory building must be empowered to support a company's value creation process by providing media such as light, electricity, heat, refrigeration, etc. In the future, communication with the surrounding factory building will take place on a digital or automated basis. In the area of industry 4.0, the function of the building envelope belongs to secondary or even tertiary processes, but these processes must also be included in the communication cycle. An integrative view of a continuous communication of primary, secondary and tertiary processes is currently not yet available and is being developed with the aid of methods in this research work. A comparison of the digital twin from the point of view of production and the factory building will be developed. Subsequently, a tool will be elaborated to classify digital twins from the perspective of data, degree of visualization, and the trades. Thus a contribution is made to better integrate the secondary and tertiary processes in a factory into the added value.Keywords: adaptability, digital factory twin, factory planning, industry 4.0
Procedia PDF Downloads 156320 Crime Prevention with Artificial Intelligence
Authors: Mehrnoosh Abouzari, Shahrokh Sahraei
Abstract:
Today, with the increase in quantity and quality and variety of crimes, the discussion of crime prevention has faced a serious challenge that human resources alone and with traditional methods will not be effective. One of the developments in the modern world is the presence of artificial intelligence in various fields, including criminal law. In fact, the use of artificial intelligence in criminal investigations and fighting crime is a necessity in today's world. The use of artificial intelligence is far beyond and even separate from other technologies in the struggle against crime. Second, its application in criminal science is different from the discussion of prevention and it comes to the prediction of crime. Crime prevention in terms of the three factors of the offender, the offender and the victim, following a change in the conditions of the three factors, based on the perception of the criminal being wise, and therefore increasing the cost and risk of crime for him in order to desist from delinquency or to make the victim aware of self-care and possibility of exposing him to danger or making it difficult to commit crimes. While the presence of artificial intelligence in the field of combating crime and social damage and dangers, like an all-seeing eye, regardless of time and place, it sees the future and predicts the occurrence of a possible crime, thus prevent the occurrence of crimes. The purpose of this article is to collect and analyze the studies conducted on the use of artificial intelligence in predicting and preventing crime. How capable is this technology in predicting crime and preventing it? The results have shown that the artificial intelligence technologies in use are capable of predicting and preventing crime and can find patterns in the data set. find large ones in a much more efficient way than humans. In crime prediction and prevention, the term artificial intelligence can be used to refer to the increasing use of technologies that apply algorithms to large sets of data to assist or replace police. The use of artificial intelligence in our debate is in predicting and preventing crime, including predicting the time and place of future criminal activities, effective identification of patterns and accurate prediction of future behavior through data mining, machine learning and deep learning, and data analysis, and also the use of neural networks. Because the knowledge of criminologists can provide insight into risk factors for criminal behavior, among other issues, computer scientists can match this knowledge with the datasets that artificial intelligence uses to inform them.Keywords: artificial intelligence, criminology, crime, prevention, prediction
Procedia PDF Downloads 76319 Quantification of the Erosion Effect on Small Caliber Guns: Experimental and Numerical Analysis
Authors: Dhouibi Mohamed, Stirbu Bogdan, Chabotier André, Pirlot Marc
Abstract:
Effects of erosion and wear on the performance of small caliber guns have been analyzed throughout numerical and experimental studies. Mainly, qualitative observations were performed. Correlations between the volume change of the chamber and the maximum pressure are limited. This paper focuses on the development of a numerical model to predict the maximum pressure evolution when the interior shape of the chamber changes in the different weapon’s life phases. To fulfill this goal, an experimental campaign, followed by a numerical simulation study, is carried out. Two test barrels, « 5.56x45mm NATO » and « 7.62x51mm NATO,» are considered. First, a Coordinate Measuring Machine (CMM) with a contact scanning probe is used to measure the interior profile of the barrels after each 300-shots cycle until their worn out. Simultaneously, the EPVAT (Electronic Pressure Velocity and Action Time) method with a special WEIBEL radar are used to measure: (i) the chamber pressure, (ii) the action time, (iii) and the bullet velocity in each barrel. Second, a numerical simulation study is carried out. Thus, a coupled interior ballistic model is developed using the dynamic finite element program LS-DYNA. In this work, two different models are elaborated: (i) coupled Eularien Lagrangian method using fluid-structure interaction (FSI) techniques and a coupled thermo-mechanical finite element using a lumped parameter model (LPM) as a subroutine. Those numerical models are validated and checked through three experimental results, such as (i) the muzzle velocity, (ii) the chamber pressure, and (iii) the surface morphology of fired projectiles. Results show a good agreement between experiments and numerical simulations. Next, a comparison between the two models is conducted. The projectile motions, the dynamic engraving resistances and the maximum pressures are compared and analyzed. Finally, using this obtained database, a statistical correlation between the muzzle velocity, the maximum pressure and the chamber volume is established.Keywords: engraving process, finite element analysis, gun barrel erosion, interior ballistics, statistical correlation
Procedia PDF Downloads 216318 Modelling Tyre Rubber Materials for High Frequency FE Analysis
Authors: Bharath Anantharamaiah, Tomas Bouda, Elke Deckers, Stijn Jonckheere, Wim Desmet, Juan J. Garcia
Abstract:
Automotive tyres are gaining importance recently in terms of their noise emission, not only with respect to reduction in noise, but also their perception and detection. Tyres exhibit a mechanical noise generation mechanism up to 1 kHz. However, owing to the fact that tyre is a composite of several materials, it has been difficult to model it using finite elements to predict noise at high frequencies. The currently available FE models have a reliability of about 500 Hz, the limit which, however, is not enough to perceive the roughness or sharpness of noise from tyre. These noise components are important in order to alert pedestrians on the street about passing by slow, especially electric vehicles. In order to model tyre noise behaviour up to 1 kHz, its dynamic behaviour must be accurately developed up to a 1 kHz limit using finite elements. Materials play a vital role in modelling the dynamic tyre behaviour precisely. Since tyre is a composition of several components, their precise definition in finite element simulations is necessary. However, during the tyre manufacturing process, these components are subjected to various pressures and temperatures, due to which these properties could change. Hence, material definitions are better described based on the tyre responses. In this work, the hyperelasticity of tyre component rubbers is calibrated, using the design of experiments technique from the tyre characteristic responses that are measured on a stiffness measurement machine. The viscoelasticity of rubbers are defined by the Prony series for rubbers, which are determined from the loss factor relationship between the loss and storage moduli, assuming that the rubbers are excited within the linear viscoelasticity ranges. These values of loss factor are measured and theoretically expressed as a function of rubber shore hardness or hyperelasticities. From the results of the work, there exists a good correlation between test and simulation vibrational transfer function up to 1 kHz. The model also allows flexibility, i.e., the frequency limit can also be extended, if required, by calibrating the Prony parameters of rubbers corresponding to the frequency of interest. As future work, these tyre models are used for noise generation at high frequencies and thus for tyre noise perception.Keywords: tyre dynamics, rubber materials, prony series, hyperelasticity
Procedia PDF Downloads 194317 Advancements in Mathematical Modeling and Optimization for Control, Signal Processing, and Energy Systems
Authors: Zahid Ullah, Atlas Khan
Abstract:
This abstract focuses on the advancements in mathematical modeling and optimization techniques that play a crucial role in enhancing the efficiency, reliability, and performance of these systems. In this era of rapidly evolving technology, mathematical modeling and optimization offer powerful tools to tackle the complex challenges faced by control, signal processing, and energy systems. This abstract presents the latest research and developments in mathematical methodologies, encompassing areas such as control theory, system identification, signal processing algorithms, and energy optimization. The abstract highlights the interdisciplinary nature of mathematical modeling and optimization, showcasing their applications in a wide range of domains, including power systems, communication networks, industrial automation, and renewable energy. It explores key mathematical techniques, such as linear and nonlinear programming, convex optimization, stochastic modeling, and numerical algorithms, that enable the design, analysis, and optimization of complex control and signal processing systems. Furthermore, the abstract emphasizes the importance of addressing real-world challenges in control, signal processing, and energy systems through innovative mathematical approaches. It discusses the integration of mathematical models with data-driven approaches, machine learning, and artificial intelligence to enhance system performance, adaptability, and decision-making capabilities. The abstract also underscores the significance of bridging the gap between theoretical advancements and practical applications. It recognizes the need for practical implementation of mathematical models and optimization algorithms in real-world systems, considering factors such as scalability, computational efficiency, and robustness. In summary, this abstract showcases the advancements in mathematical modeling and optimization techniques for control, signal processing, and energy systems. It highlights the interdisciplinary nature of these techniques, their applications across various domains, and their potential to address real-world challenges. The abstract emphasizes the importance of practical implementation and integration with emerging technologies to drive innovation and improve the performance of control, signal processing, and energy.Keywords: mathematical modeling, optimization, control systems, signal processing, energy systems, interdisciplinary applications, system identification, numerical algorithms
Procedia PDF Downloads 112316 Suitability of Wood Sawdust Waste Reinforced Polymer Composite for Fireproof Doors
Authors: Timine Suoware, Sylvester Edelugo, Charles Amgbari
Abstract:
The susceptibility of natural fibre polymer composites to flame has necessitated research to improve and develop flame retardant (FR) to delay the escape of combustible volatiles. Previous approaches relied mostly on FR such as aluminium tri-hydroxide (ATH) and ammonium polyphosphate (APP) to improve fire performances of wood sawdust polymer composites (WSPC) with emphasis on non-structural building applications. In this paper, APP was modified with gum Arabic powder (GAP) and then hybridized with ATH at 0, 12 and 18% loading ratio to form new FR species; WSPC12%APP-GAP and WSPC18%ATH/APP-GAP. The FR species were incorporated in wood sawdust waste reinforced in polyester resin to form panels for fireproof doors. The panels were produced using hand lay compression moulding technique and cured at room temperature. Specimen cut from panels were then tested for tensile strength (TS), flexural strength (FS) and impact strength (IS) using universal testing machine and impact tester; thermal stability using (TGA/DSC 1: Metler Toledo); time-to-ignition (Tig), heat release rates (HRR); peak HRR (HRRp), average HRR (HRRavg), total HRR (THR), peak mass loss rate (MLRp), average smoke production rate (SPRavg) and carbon monoxide production (COP ) were obtained using the cone calorimeter apparatus. From the mechanical properties obtained, improvements of IS for the panels were not noticeable whereas TS and FS for WSPC12%APP-GAP respectively stood at 12.44 MPa and 85.58 MPa more than those without FR (WSPC0%). For WSC18%ATH/APP-GAP TS and FS respectively stood at 16.45 MPa and 50.49 MPa more compared to (WSPC0%). From the thermal analysis, the panels did not exhibit any significant change as early degradation was observed. At 900 OC, the char residues improved by 15% for WSPC12%APP-GAP and 19% for WSPC18%ATH/APP-GAP more than (WSC0%) at 5%, confirming the APP-GAP to be a good FR. At 50 kW/m2 heat flux (HF), WSPC12%APP-GAP improved better the fire behaviour of the panels when compared to WSC0% as follows; Tig = 46 s, HRRp = 56.1 kW/2, HRRavg = 32.8 kW/m2, THR = 66.6 MJ/m2, MLRp = 0.103 g/s, TSR = 0.04 m2/s and COP = 0.051 kg/kg. These were respectively more than WSC0%. It can be concluded that the new concept of modifying FR with GAP in WSC could meet the requirement of a fireproof door for building applications.Keywords: composite, flame retardant, wood sawdust, fireproof doors
Procedia PDF Downloads 107315 Load-Deflecting Characteristics of a Fabricated Orthodontic Wire with 50.6Ni 49.4Ti Alloy Composition
Authors: Aphinan Phukaoluan, Surachai Dechkunakorn, Niwat Anuwongnukroh, Anak Khantachawana, Pongpan Kaewtathip, Julathep Kajornchaiyakul, Peerapong Tua-Ngam
Abstract:
Aims: The objectives of this study was to determine the load-deflecting characteristics of a fabricated orthodontic wire with alloy composition of 50.6% (atomic weight) Ni and 49.4% (atomic weight) Ti and to compare the results with Ormco, a commercially available pre-formed NiTi orthodontic archwire. Materials and Methods: The ingots alloys with atomic weight ratio 50.6 Ni: 49.4 Ti alloy were used in this study. Three specimens were cut to have wire dimensions of 0.016 inch x0.022 inch. For comparison, a commercially available pre-formed NiTi archwire, Ormco, with dimensions of 0.016 inch x 0.022 inch was used. Three-point bending tests were performed at the temperature 36+1 °C using a Universal Testing Machine on the newly fabricated and commercial archwires to assess the characteristics of the load-deflection curve with loading and unloading forces. The loading and unloading features at the deflection points 0.25, 0.50, 0.75. 1.0, 1.25, and 1.5 mm were compared. Descriptive statistics was used to evaluate each variables, and independent t-test at p < 0.05 was used to analyze the mean differences between the two groups. Results: The load-deflection curve of the 50.6Ni: 49.4Ti wires exhibited the characteristic features of superelasticity. The curves at the loading and unloading slope of Ormco NiTi archwire were more parallel than the newly fabricated NiTi wires. The average deflection force of the 50.6Ni: 49.4Ti wire was 304.98 g and 208.08 g for loading and unloading, respectively. Similarly, the values were 358.02 g loading and 253.98 g for unloading of Ormco NiTi archwire. The interval difference forces between each deflection points were in the range 20.40-121.38 g and 36.72-92.82 g for the loading and unloading curve of 50.6Ni: 49.4Ti wire, respectively, and 4.08-157.08 g and 14.28-90.78 g for the loading and unloading curve of commercial wire, respectively. The average deflection force of the 50.6Ni: 49.4Ti wire was less than that of Ormco NiTi archwire, which could have been due to variations in the wire dimensions. Although a greater force was required for each deflection point of loading and unloading for the 50.6Ni: 49.4Ti wire as compared to Ormco NiTi archwire, the values were still within the acceptable limits to be clinically used in orthodontic treatment. Conclusion: The 50.6Ni: 49.4Ti wires presented the characteristics of a superelastic orthodontic wire. The loading and unloading force were also suitable for orthodontic tooth movement. These results serve as a suitable foundation for further studies in the development of new orthodontic NiTi archwires.Keywords: 50.6 ni 49.4 Ti alloy wire, load deflection curve, loading and unloading force, orthodontic
Procedia PDF Downloads 303314 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling
Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha
Abstract:
The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat
Procedia PDF Downloads 55313 Novel Uses of Discarded Work Rolls of Cold Rolling Mills in Hot Strip Mill of Tata Steel India
Authors: Uday Shanker Goel, Vinay Vasant Mahashabde, Biswajit Ghosh, Arvind Jha, Amit Kumar, Sanjay Kumar Patel, Uma Shanker Pattanaik, Vinit Kumar Shah, Chaitanya Bhanu
Abstract:
Pinch rolls of the Hot Mills must possess resistance to wear, thermal stability, high thermal conductivity and through hardness. Conventionally, pinch rolls have been procured either as new ones or refurbished ones. Discarded Work Rolls from the Cold Mill were taken and machined inhouse at Tata Steel to be used subsequently as the bottom pinch rolls of the Hot Mill. The hardness of the scrapped work rolls from CRM is close to 55HRC and the typical composition is ( C - 0.8% , Mn - 0.40 % , Si - 0.40% , Cr - 3.5% , Mo - 0.5% & V - 0.1% ).The Innovation was the use of a roll which would otherwise have been otherwise discarded as scrap. Also, the innovation helped in using the scrapped roll which had better wear and heat resistance. In a conventional Pinch roil (Hardness 50 HRC and typical chemistry - C - 10% , Mo+Co+V+Nb ~ 5 % ) , Pick-up is a condition whereby foreign material becomes adhered to the surface of the pinch roll during service. The foreign material is usually adhered metal from the actual product being rolled. The main attributes of the weld overlay rolls are wear resistance and crack resistance. However, the weld overlay roll has a strong tendency for strip pick-up particularly in the area of bead overlap. However, the greatest disadvantage is the depth of weld deposit, which is less than half of the usable shell thickness in most mills. Because of this, the stainless rolls require re-welding on a routine basis. By providing a significantly cheaper in house and more robust alternative of the existing bottom pinch rolls , this innovation results in significant lower worries for the roll shop. Pinch rolls now don't have to be sent outside Jamshedpur for refurbishment or for procuring new ones. Scrapped rolls from adjacent Cold Mill are procured and sent for machining to our Machine Shop inside Tata Steel works in Jamshedpur. This is far more convenient than the older methodology. The idea is also being deployed to the other hot mills of Tata Steel. Multiple campaigns have been tried out at both down coilers of Hot Strip with significantly lower wear.Keywords: hot rolling flat, cold mill work roll, hot strip pinch roll, strip surface
Procedia PDF Downloads 128312 A Comprehensive Framework for Fraud Prevention and Customer Feedback Classification in E-Commerce
Authors: Samhita Mummadi, Sree Divya Nagalli, Harshini Vemuri, Saketh Charan Nakka, Sumesh K. J.
Abstract:
One of the most significant challenges faced by people in today’s digital era is an alarming increase in fraudulent activities on online platforms. The fascination with online shopping to avoid long queues in shopping malls, the availability of a variety of products, and home delivery of goods have paved the way for a rapid increase in vast online shopping platforms. This has had a major impact on increasing fraudulent activities as well. This loop of online shopping and transactions has paved the way for fraudulent users to commit fraud. For instance, consider a store that orders thousands of products all at once, but what’s fishy about this is the massive number of items purchased and their transactions turning out to be fraud, leading to a huge loss for the seller. Considering scenarios like these underscores the urgent need to introduce machine learning approaches to combat fraud in online shopping. By leveraging robust algorithms, namely KNN, Decision Trees, and Random Forest, which are highly effective in generating accurate results, this research endeavors to discern patterns indicative of fraudulent behavior within transactional data. Introducing a comprehensive solution to this problem in order to empower e-commerce administrators in timely fraud detection and prevention is the primary motive and the main focus. In addition to that, sentiment analysis is harnessed in the model so that the e-commerce admin can tailor to the customer’s and consumer’s concerns, feedback, and comments, allowing the admin to improve the user’s experience. The ultimate objective of this study is to ramp up online shopping platforms against fraud and ensure a safer shopping experience. This paper underscores a model accuracy of 84%. All the findings and observations that were noted during our work lay the groundwork for future advancements in the development of more resilient and adaptive fraud detection systems, which will become crucial as technologies continue to evolve.Keywords: behavior analysis, feature selection, Fraudulent pattern recognition, imbalanced classification, transactional anomalies
Procedia PDF Downloads 29311 Effects of Test Environment on the Sliding Wear Behaviour of Cast Iron, Zinc-Aluminium Alloy and Its Composite
Authors: Mohammad M. Khan, Gajendra Dixit
Abstract:
Partially lubricated sliding wear behaviour of a zinc-based alloy reinforced with 10wt% SiC particles has been studied as a function of applied load and solid lubricant particle size and has been compared with that of matrix alloy and conventionally used grey cast iron. The wear tests were conducted at the sliding velocities of 2.1m/sec in various partial lubricated conditions using pin on disc machine as per ASTM G-99-05. Base oil (SAE 20W-40) or mixture of the base oil with 5wt% graphite of particle sizes (7-10 µm) and (100 µm) were used for creating lubricated conditions. The matrix alloy revealed primary dendrites of a and eutectoid a + h and Î phases in the Inter dendritic regions. Similar microstructure has been depicted by the composite with an additional presence of the dispersoid SiC particles. In the case of cast iron, flakes of graphite were observed in the matrix; the latter comprised of (majority of) pearlite and (limited quantity of) ferrite. Results show a large improvement in wear resistance of the zinc-based alloy after reinforcement with SiC particles. The cast iron shows intermediate response between the matrix alloy and composite. The solid lubrication improved the wear resistance and friction behaviour of both the reinforced and base alloy. Moreover, minimum wear rate is obtained in oil+ 5wt % graphite (7-10 µm) lubricated environment for the matrix alloy and composite while for cast iron addition of solid lubricant increases the wear rate and minimum wear rate is obtained in case of oil lubricated environment. The cast iron experienced higher frictional heating than the matrix alloy and composite in all the cases especially at higher load condition. As far as friction coefficient is concerned, a mixed trend of behaviour was noted. The wear rate and frictional heating increased with load while friction coefficient was affected in an opposite manner. Test duration influenced the frictional heating and friction coefficient of the samples in a mixed manner.Keywords: solid lubricant, sliding wear, grey cast iron, zinc based metal matrix composites
Procedia PDF Downloads 317310 Experimental Study and Numerical Modelling of Failure of Rocks Typical for Kuzbass Coal Basin
Authors: Mikhail O. Eremin
Abstract:
Present work is devoted to experimental study and numerical modelling of failure of rocks typical for Kuzbass coal basin (Russia). The main goal was to define strength and deformation characteristics of rocks on the base of uniaxial compression and three-point bending loadings and then to build a mathematical model of failure process for both types of loading. Depending on particular physical-mechanical characteristics typical rocks of Kuzbass coal basin (sandstones, siltstones, mudstones, etc. of different series – Kolchuginsk, Tarbagansk, Balohonsk) manifest brittle and quasi-brittle character of failure. The strength characteristics for both tension and compression are found. Other characteristics are also found from the experiment or taken from literature reviews. On the base of obtained characteristics and structure (obtained from microscopy) the mathematical and structural models are built and numerical modelling of failure under different types of loading is carried out. Effective characteristics obtained from modelling and character of failure correspond to experiment and thus, the mathematical model was verified. An Instron 1185 machine was used to carry out the experiments. Mathematical model includes fundamental conservation laws of solid mechanics – mass, impulse, energy. Each rock has a sufficiently anisotropic structure, however, each crystallite might be considered as isotropic and then a whole rock model has a quasi-isotropic structure. This idea gives an opportunity to use the Hooke’s law inside of each crystallite and thus explicitly accounting for the anisotropy of rocks and the stress-strain state at loading. Inelastic behavior is described in frameworks of two different models: von Mises yield criterion and modified Drucker-Prager yield criterion. The damage accumulation theory is also implemented in order to describe a failure process. Obtained effective characteristics of rocks are used then for modelling of rock mass evolution when mining is carried out both by an open-pit or underground opening.Keywords: damage accumulation, Drucker-Prager yield criterion, failure, mathematical modelling, three-point bending, uniaxial compression
Procedia PDF Downloads 175309 Data and Model-based Metamodels for Prediction of Performance of Extended Hollo-Bolt Connections
Authors: M. Cabrera, W. Tizani, J. Ninic, F. Wang
Abstract:
Open section beam to concrete-filled tubular column structures has been increasingly utilized in construction over the past few decades due to their enhanced structural performance, as well as economic and architectural advantages. However, the use of this configuration in construction is limited due to the difficulties in connecting the structural members as there is no access to the inner part of the tube to install standard bolts. Blind-bolted systems are a relatively new approach to overcome this limitation as they only require access to one side of the tubular section to tighten the bolt. The performance of these connections in concrete-filled steel tubular sections remains uncharacterized due to the complex interactions between concrete, bolt, and steel section. Over the last years, research in structural performance has moved to a more sophisticated and efficient approach consisting of machine learning algorithms to generate metamodels. This method reduces the need for developing complex, and computationally expensive finite element models, optimizing the search for desirable design variables. Metamodels generated by a data fusion approach use numerical and experimental results by combining multiple models to capture the dependency between the simulation design variables and connection performance, learning the relations between different design parameters and predicting a given output. Fully characterizing this connection will transform high-rise and multistorey construction by means of the introduction of design guidance for moment-resisting blind-bolted connections, which is currently unavailable. This paper presents a review of the steps taken to develop metamodels generated by means of artificial neural network algorithms which predict the connection stress and stiffness based on the design parameters when using Extended Hollo-Bolt blind bolts. It also provides consideration of the failure modes and mechanisms that contribute to the deformability as well as the feasibility of achieving blind-bolted rigid connections when using the blind fastener.Keywords: blind-bolted connections, concrete-filled tubular structures, finite element analysis, metamodeling
Procedia PDF Downloads 158308 Improve Divers Tracking and Classification in Sonar Images Using Robust Diver Wake Detection Algorithm
Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy
Abstract:
Harbor protection systems are so important. The need for automatic protection systems has increased over the last years. Diver detection active sonar has great significance. It used to detect underwater threats such as divers and autonomous underwater vehicle. To automatically detect such threats the sonar image is processed by algorithms. These algorithms used to detect, track and classify of underwater objects. In this work, divers tracking and classification algorithm is improved be proposing a robust wake detection method. To detect objects the sonar images is normalized then segmented based on fixed threshold. Next, the centroids of the segments are found and clustered based on distance metric. Then to track the objects linear Kalman filter is applied. To reduce effect of noise and creation of false tracks, the Kalman tracker is fine tuned. The tuning is done based on our active sonar specifications. After the tracks are initialed and updated they are subjected to a filtering stage to eliminate the noisy and unstable tracks. Also to eliminate object with a speed out of the diver speed range such as buoys and fast boats. Afterwards the result tracks are subjected to a classification stage to deiced the type of the object been tracked. Here the classification stage is to deice wither if the tracked object is an open circuit diver or a close circuit diver. At the classification stage, a small area around the object is extracted and a novel wake detection method is applied. The morphological features of the object with his wake is extracted. We used support vector machine to find the best classifier. The sonar training images and the test images are collected by ARMELSAN Defense Technologies Company using the portable diver detection sonar ARAS-2023. After applying the algorithm to the test sonar data, we get fine and stable tracks of the divers. The total classification accuracy achieved with the diver type is 97%.Keywords: harbor protection, diver detection, active sonar, wake detection, diver classification
Procedia PDF Downloads 238307 “Everything, Everywhere, All at Once” Hollywoodization and Lack of Authenticity in Today’s Mainstream Cinema
Authors: Haniyeh Parhizkar
Abstract:
When Sarris came up with the "auteur theory" in 1962, he emphasized that the utmost premise of auteur theory is the inner meanings and concepts of a film and that a film is purely an art form. Today's mainstream movies are conceptually closer to what the Frankfurt School scholars regarded as "reproduced" and "mass culture" years ago. Hollywood goes on to be a huge movie-making machine that leads the dominant paradigms of films throughout the world and cinema is far from art. Although there are still movies, directors, and audiences who favor art cinema over Hollywood and mainstream movies, it's an almost undeniable fact that, for the most part, people's perception of movies is widely influenced by their American depiction and Hollywood's legacy of mass culture. With the uprising of Hollywood studios as the forerunners of the movie industry and cinema being largely dependent on economics rather than artistic values, this distinctive role of cinema has diminished and is replaced with a global standard. The Blockbuster 2022 film, 'Everything, Everywhere, All at Once' is now the most-awarded movie of all time, winning seven Oscars at the 95th Academy Awards. Despite its main cast being Asian, the movie is produced by American incorporation and is heavily influenced by Hollywood's dominant themes of superheroes, fantasy, action, and adventure. The New Yorker film critic, Richard Brody, called the movie "a pitch for a Marvel" and critiqued the film for being "universalized" and "empty of history and culture". Other critics of Variety pinpointed the movie's similarities to Marvel, particularly in their storylines of multi-universe which manifest traces of American legacy. As argued by these critics, 'Everything, Everywhere, All at Once' might appear as a unique and authentic film at first glance, but it can be argued that it is yet another version of a Marvel movie. While the movie's universal acclaim was regarded as recognition and an acknowledgment of its Asian cast, the issue that arises here is when the Hollywood influences and American themes are so robust in the film, is the movie industry honoring another culture or is it yet another celebration of Hollywood's dominant paradigm. This essay will employ a critical approach to Hollywood's dominance and mass-produced culture, which has deprived authenticity of non-American movies and is constantly reproducing the same formula of success.Keywords: hollywoodization, universalization, blockbuster, dominant paradigm, marvel, authenticity, diversity
Procedia PDF Downloads 88306 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana
Authors: Ayesha Sanjana Kawser Parsha
Abstract:
S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score
Procedia PDF Downloads 77305 Measuring Elemental Sulfur in Late Manually-Treated Grape Juice in Relation to Polyfunctional Mercaptan Formation in Sauvignon Blanc Wines
Authors: Bahareh Sarmadi, Paul A. Kilmartin, Leandro D. Araújo, Brandt P. Bastow
Abstract:
Aim: Sauvignon blanc is the most substantial variety cultivated in almost 62% of all producing vineyards of New Zealand. The popularity of New Zealand Sauvignon blanc is due to its unique taste. It is the most famous wine characterized by its aroma profile derived from mercaptans. 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA) are two of the most important volatile mercaptans found in Sauvignon blanc wines. “Viticultural” and “Enological” factors such as machine-harvesting, the most common harvesting practice used in New Zealand, can be among the reasons for this distinct flavor. Elemental sulfur is commonly sprayed in the fields to protect berries against powdery mildew. Although it is not the only source of sulfur, this practice creates a source of elemental sulfur that can be transferred into the must and eventually into wines. Despite the clear effects of residual elemental sulfur present in the must on the quality and aroma of the final wines, its measurement before harvest or fermentation is not a regular practice in the wineries. This can be due to the lack of accessible and applicable methods for the equipment at most commercial wineries. This study aims to establish a relationship between the number and frequency of elemental sulfur applications and the concentration of polyfunctional mercaptans in the final wines. Methods: An apparatus was designed to reduce elemental sulfur to sulfide, then an ion-selective electrode to measure sulfide concentration. During harvest 2022, we explored a wider range of residual elemental sulfur levels than what typically applies in the vineyards. This has been done through later manual elemental sulfur applications in the vineyard. Additional sulfur applications were made 20, 10 and 5 days prior to harvesting the treated grapes, covering long and short pre-harvest intervals (PHI). The grapes were processed into juice and fermented into wine; then, they were analyzed to find the correlation between polyfunctional mercaptans concentrations in the wines and residual elemental sulfur in the juice samples. Results: The research showed that higher 3MH/3MHA was formed when elemental sulfur was applied more frequent in the vineyards and supported the proposed pathway in which elemental sulfur is a source of 3MH formation in wines.Keywords: sauvignon blanc, elemental sulfur, polyfunctional mercaptans, varietal thiols
Procedia PDF Downloads 104304 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning
Authors: Madhawa Basnayaka, Jouni Paltakari
Abstract:
Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.Keywords: artificial intelligence, chipless RFID, deep learning, machine learning
Procedia PDF Downloads 50303 Improved Technology Portfolio Management via Sustainability Analysis
Authors: Ali Al-Shehri, Abdulaziz Al-Qasim, Abdulkarim Sofi, Ali Yousef
Abstract:
The oil and gas industry has played a major role in improving the prosperity of mankind and driving the world economy. According to the International Energy Agency (IEA) and Integrated Environmental Assessment (EIA) estimates, the world will continue to rely heavily on hydrocarbons for decades to come. This growing energy demand mandates taking sustainability measures to prolong the availability of reliable and affordable energy sources, and ensure lowering its environmental impact. Unlike any other industry, the oil and gas upstream operations are energy-intensive and scattered over large zonal areas. These challenging conditions require unique sustainability solutions. In recent years there has been a concerted effort by the oil and gas industry to develop and deploy innovative technologies to: maximize efficiency, reduce carbon footprint, reduce CO2 emissions, and optimize resources and material consumption. In the past, the main driver for research and development (R&D) in the exploration and production sector was primarily driven by maximizing profit through higher hydrocarbon recovery and new discoveries. Environmental-friendly and sustainable technologies are increasingly being deployed to balance sustainability and profitability. Analyzing technology and its sustainability impact is increasingly being used in corporate decision-making for improved portfolio management and allocating valuable resources toward technology R&D.This paper articulates and discusses a novel workflow to identify strategic sustainable technologies for improved portfolio management by addressing existing and future upstream challenges. It uses a systematic approach that relies on sustainability key performance indicators (KPI’s) including energy efficiency quotient, carbon footprint, and CO2 emissions. The paper provides examples of various technologies including CCS, reducing water cuts, automation, using renewables, energy efficiency, etc. The use of 4IR technologies such as Artificial Intelligence, Machine Learning, and Data Analytics are also discussed. Overlapping technologies, areas of collaboration and synergistic relationships are identified. The unique sustainability analyses provide improved decision-making on technology portfolio management.Keywords: sustainability, oil& gas, technology portfolio, key performance indicator
Procedia PDF Downloads 183302 Potential of High Performance Ring Spinning Based on Superconducting Magnetic Bearing
Authors: M. Hossain, A. Abdkader, C. Cherif, A. Berger, M. Sparing, R. Hühne, L. Schultz, K. Nielsch
Abstract:
Due to the best quality of yarn and the flexibility of the machine, the ring spinning process is the most widely used spinning method for short staple yarn production. However, the productivity of these machines is still much lower in comparison to other spinning systems such as rotor or air-jet spinning process. The main reason for this limitation lies on the twisting mechanism of the ring spinning process. In the ring/traveler twisting system, each rotation of the traveler along with the ring inserts twist in the yarn. The rotation of the traveler at higher speed includes strong frictional forces, which in turn generates heat. Different ring/traveler systems concerning with its geometries, material combinations and coatings have already been implemented to solve the frictional problem. However, such developments can neither completely solve the frictional problem nor increase the productivity. The friction free superconducting magnetic bearing (SMB) system can be a right alternative replacing the existing ring/traveler system. The unique concept of SMB bearings is that they possess a self-stabilizing behavior, i.e. they remain fully passive without any necessity for expensive position sensing and control. Within the framework of a research project funded by German research foundation (DFG), suitable concepts of the SMB-system have been designed, developed, and integrated as a twisting device of ring spinning replacing the existing ring/traveler system. With the help of the developed mathematical model and experimental investigation, the physical limitations of this innovative twisting device in the spinning process have been determined. The interaction among the parameters of the spinning process and the superconducting twisting element has been further evaluated, which derives the concrete information regarding the new spinning process. Moreover, the influence of the implemented SMB twisting system on the yarn quality has been analyzed with respect to different process parameters. The presented work reveals the enormous potential of the innovative twisting mechanism, so that the productivity of the ring spinning process especially in case of thermoplastic materials can be at least doubled for the first time in a hundred years. The SMB ring spinning tester has also been presented in the international fair “International Textile Machinery Association (ITMA) 2015”.Keywords: ring spinning, superconducting magnetic bearing, yarn properties, productivity
Procedia PDF Downloads 237301 DEEPMOTILE: Motility Analysis of Human Spermatozoa Using Deep Learning in Sri Lankan Population
Authors: Chamika Chiran Perera, Dananjaya Perera, Chirath Dasanayake, Banuka Athuraliya
Abstract:
Male infertility is a major problem in the world, and it is a neglected and sensitive health issue in Sri Lanka. It can be determined by analyzing human semen samples. Sperm motility is one of many factors that can evaluate male’s fertility potential. In Sri Lanka, this analysis is performed manually. Manual methods are time consuming and depend on the person, but they are reliable and it can depend on the expert. Machine learning and deep learning technologies are currently being investigated to automate the spermatozoa motility analysis, and these methods are unreliable. These automatic methods tend to produce false positive results and false detection. Current automatic methods support different techniques, and some of them are very expensive. Due to the geographical variance in spermatozoa characteristics, current automatic methods are not reliable for motility analysis in Sri Lanka. The suggested system, DeepMotile, is to explore a method to analyze motility of human spermatozoa automatically and present it to the andrology laboratories to overcome current issues. DeepMotile is a novel deep learning method for analyzing spermatozoa motility parameters in the Sri Lankan population. To implement the current approach, Sri Lanka patient data were collected anonymously as a dataset, and glass slides were used as a low-cost technique to analyze semen samples. Current problem was identified as microscopic object detection and tackling the problem. YOLOv5 was customized and used as the object detector, and it achieved 94 % mAP (mean average precision), 86% Precision, and 90% Recall with the gathered dataset. StrongSORT was used as the object tracker, and it was validated with andrology experts due to the unavailability of annotated ground truth data. Furthermore, this research has identified many potential ways for further investigation, and andrology experts can use this system to analyze motility parameters with realistic accuracy.Keywords: computer vision, deep learning, convolutional neural networks, multi-target tracking, microscopic object detection and tracking, male infertility detection, motility analysis of human spermatozoa
Procedia PDF Downloads 106300 Insight into Enhancement of CO2 Capture by Clay Minerals
Authors: Mardin Abdalqadir, Paul Adzakro, Tannaz Pak, Sina Rezaei Gomari
Abstract:
Climate change and global warming recently became significant concerns due to the massive emissions of greenhouse gases into the atmosphere, predominantly CO2 gases. Therefore, it is necessary to find sustainable and inexpensive methods to capture the greenhouse gasses and protect the environment for live species. The application of naturally available and cheap adsorbents of carbon such as clay minerals became a great interest. However, the minerals prone to low storage capacity despite their high affinity to adsorb carbon. This paper aims to explore ways to improve the pore volume and surface area of two selected clay minerals, ‘montmorillonite and kaolinite’ by acid treatment to overcome their low storage capacity. Montmorillonite and kaolinite samples were treated with different sulfuric acid concentrations (0.5, 1.2 and 2.5 M) at 40 °C for 8 hours to achieve the above aim. The grain size distribution and morphology of clay minerals before and after acid treatment were explored with Scanning Electron Microscope to evaluate surface area improvement. The ImageJ software was used to find the porosity and pore volume of treated and untreated clay samples. The structure of the clay minerals was also analyzed using an X-ray Diffraction machine. The results showed that the pore volume and surface area were increased substantially through acid treatment, which speeded up the rate of carbon dioxide adsorption. XRD pattern of kaolinite did not change after sulfuric acid treatment, which indicates that acid treatment would not affect the structure of kaolinite. It was also discovered that kaolinite had a higher pore volume and porosity than montmorillonite before and after acid treatment. For example, the pore volume of untreated kaolinite was equal to 30.498 um3 with a porosity of 23.49%. Raising the concentration of acid from 0.5 M to 2.5 M in 8 hours’ time reaction led to increased pore volume from 30.498 um3 to 34.73 um3. The pore volume of raw montmorillonite was equal to 15.610 um3 with a porosity of 12.7%. When the acid concentration was raised from 0.5 M to 2.5 M for the same reaction time, pore volume also increased from 15.610 um3 to 20.538 um3. However, montmorillonite had a higher specific surface area than kaolinite. This study concludes that clay minerals are inexpensive and available material sources to model the realistic conditions and apply the results of carbon capture to prevent global warming, which is one of the most critical and urgent problems in the world.Keywords: acid treatment, kaolinite, montmorillonite, pore volume, porosity, surface area
Procedia PDF Downloads 169299 Navigating Disruption: Key Principles and Innovations in Modern Management for Organizational Success
Authors: Ahmad Haidar
Abstract:
This research paper investigates the concept of modern management, concentrating on the development of managerial practices and the adoption of innovative strategies in response to the fast-changing business landscape caused by Artificial Intelligence (AI). The study begins by examining the historical context of management theories, tracing the progression from classical to contemporary models, and identifying key drivers of change. Through a comprehensive review of existing literature and case studies, this paper provides valuable insights into the principles and practices of modern management, offering a roadmap for organizations aiming to navigate the complexities of the contemporary business world. The paper examines the growing role of digital technology in modern management, focusing on incorporating AI, machine learning, and data analytics to streamline operations and facilitate informed decision-making. Moreover, the research highlights the emergence of new principles, such as adaptability, flexibility, public participation, trust, transparency, and digital mindset, as crucial components of modern management. Also, the role of business leaders is investigated by studying contemporary leadership styles, such as transformational, situational, and servant leadership, emphasizing the significance of emotional intelligence, empathy, and collaboration in fostering a healthy organizational culture. Furthermore, the research delves into the crucial role of environmental sustainability, corporate social responsibility (CSR), and corporate digital responsibility (CDR). Organizations strive to balance economic growth with ethical considerations and long-term viability. The primary research question for this study is: "What are the key principles, practices, and innovations that define modern management, and how can organizations effectively implement these strategies to thrive in the rapidly changing business landscape?." The research contributes to a comprehensive understanding of modern management by examining its historical context, the impact of digital technologies, the importance of contemporary leadership styles, and the role of CSR and CDR in today's business landscape.Keywords: modern management, digital technology, leadership styles, adaptability, innovation, corporate social responsibility, organizational success, corporate digital responsibility
Procedia PDF Downloads 68298 Thermoelectric Blanket for Aiding the Treatment of Cerebral Hypoxia and Other Related Conditions
Authors: Sarayu Vanga, Jorge Galeano-Cabral, Kaya Wei
Abstract:
Cerebral hypoxia refers to a condition in which there is a decrease in oxygen supply to the brain. Patients suffering from this condition experience a decrease in their body temperature. While there isn't any cure to treat cerebral hypoxia as of date, certain procedures are utilized to help aid in the treatment of the condition. Regulating the body temperature is an example of one of those procedures. Hypoxia is well known to reduce the body temperature of mammals, although the neural origins of this response remain uncertain. In order to speed recovery from this condition, it is necessary to maintain a stable body temperature. In this study, we present an approach to regulating body temperature for patients who suffer from cerebral hypoxia or other similar conditions. After a thorough literature study, we propose the use of thermoelectric blankets, which are temperature-controlled thermal blankets based on thermoelectric devices. These blankets are capable of heating up and cooling down the patient to stabilize body temperature. This feature is possible through the reversible effect that thermoelectric devices offer while behaving as a thermal sensor, and it is an effective way to stabilize temperature. Thermoelectricity is the direct conversion of thermal to electrical energy and vice versa. This effect is now known as the Seebeck effect, and it is characterized by the Seebeck coefficient. In such a configuration, the device has cooling and heating sides with temperatures that can be interchanged by simply switching the direction of the current input in the system. This design integrates various aspects, including a humidifier, ventilation machine, IV-administered medication, air conditioning, circulation device, and a body temperature regulation system. The proposed design includes thermocouples that will trigger the blanket to increase or decrease a set temperature through a medical temperature sensor. Additionally, the proposed design allows an efficient way to control fluctuations in body temperature while being cost-friendly, with an expected cost of 150 dollars. We are currently working on developing a prototype of the design to collect thermal and electrical data under different conditions and also intend to perform an optimization analysis to improve the design even further. While this proposal was developed for treating cerebral hypoxia, it can also aid in the treatment of other related conditions, as fluctuations in body temperature appear to be a common symptom that patients have for many illnesses.Keywords: body temperature regulation, cerebral hypoxia, thermoelectric, blanket design
Procedia PDF Downloads 161297 Comparative Analysis of Fused Deposition Modeling and Binding-Jet 3D Printing Technologies
Authors: Mohd Javaid, Shahbaz Khan, Abid Haleem
Abstract:
Purpose: Large numbers of 3D printing technologies are now available for sophisticated applications in different fields. Additive manufacturing has established its dominance in design, development, and customisation of the product. In the era of developing technologies, there is a need to identify the appropriate technology for different application. In order to fulfil this need, two widely used printing technologies such as Fused Deposition Modeling (FDM), and Binding-Jet 3D Printing are compared for effective utilisation in the current scenario for different applications. Methodology: Systematic literature review conducted for both technologies with applications and associated factors enabling for the same. Appropriate MCDM tool is used to compare critical factors for both the technologies. Findings: Both technologies have their potential and capabilities to provide better direction to the industry. Additionally, this paper is helpful to develop a decision support system for the proper selection of technologies according to their continuum of applications and associated research and development capability. The vital issue is raw materials, and research-based material development is key to the sustainability of the developed technologies. FDM is a low-cost technology which provides high strength product as compared to binding jet technology. Researcher and companies can take benefits of this study to achieve the required applications in lesser resources. Limitations: Study has undertaken the comparison with the opinion of experts, which may not always be free from bias, and some own limitations of each technology. Originality: Comparison between these technologies will help to identify best-suited technology as per the customer requirements. It also provides development in this different field as per their extensive capability where these technologies can be successfully adopted. Conclusion: FDM and binding jet technology play an active role in industrial development. These help to assist the customisation and production of personalised parts cost-effectively. So, there is a need to understand how these technologies can provide these developments rapidly. These technologies help in easy changes or in making revised versions of the product, which is not easily possible in the conventional manufacturing system. High machine cost, the requirement of skilled human resources, low surface finish, and mechanical strength of product and material changing option is the main limitation of this technology. However, these limitations vary from technology to technology. In the future, these technologies are to be commercially viable for efficient usage in direct manufacturing of varied parts.Keywords: 3D printing, comparison, fused deposition modeling, FDM, binding jet technology
Procedia PDF Downloads 105