Search results for: digital image watermarking
2172 The Impact of Artificial Intelligence on Autism Attitude and Skills
Authors: Sara Fayez Fawzy Mikhael
Abstract:
Inclusive education services for students with autism are still developing in Thailand. Although many more children with intellectual disabilities have been attending school since the Thai government enacted the Education for Persons with Disabilities Act in 2008, facilities for students with disabilities and their families are generally inadequate. This comprehensive study used the Attitudes and Preparedness for Teaching Students with Autism Scale (APTSAS) to examine the attitudes and preparedness of 110, elementary teachers in teaching students with autism in the general education setting. Descriptive statistical analyzes showed that the most important factor in the formation of a negative image of teachers with autism is student attitudes. Most teachers also stated that their pre-service training did not prepare them to meet the needs of children with special needs who cannot speak. The study is important and provides directions for improving non-formal teacher education in Thailand.Keywords: attitude, autism, teachers, thailandsports activates, movement skills, motor skills
Procedia PDF Downloads 642171 Algorithm for Recognizing Trees along Power Grid Using Multispectral Imagery
Authors: C. Hamamura, V. Gialluca
Abstract:
Much of the Eclectricity Distributors has about 70% of its electricity interruptions arising from cause "trees", alone or associated with wind and rain and with or without falling branch and / or trees. This contributes inexorably and significantly to outages, resulting in high costs as compensation in addition to the operation and maintenance costs. On the other hand, there is little data structure and solutions to better organize the trees pruning plan effectively, minimizing costs and environmentally friendly. This work describes the development of an algorithm to provide data of trees associated to power grid. The method is accomplished on several steps using satellite imagery and geographically vectorized grid. A sliding window like approach is performed to seek the area around the grid. The proposed method counted 764 trees on a patch of the grid, which was very close to the 738 trees counted manually. The trees data was used as a part of a larger project that implements a system to optimize tree pruning plan.Keywords: image pattern recognition, trees pruning, trees recognition, neural network
Procedia PDF Downloads 4992170 Tool for Metadata Extraction and Content Packaging as Endorsed in OAIS Framework
Authors: Payal Abichandani, Rishi Prakash, Paras Nath Barwal, B. K. Murthy
Abstract:
Information generated from various computerization processes is a potential rich source of knowledge for its designated community. To pass this information from generation to generation without modifying the meaning is a challenging activity. To preserve and archive the data for future generations it’s very essential to prove the authenticity of the data. It can be achieved by extracting the metadata from the data which can prove the authenticity and create trust on the archived data. Subsequent challenge is the technology obsolescence. Metadata extraction and standardization can be effectively used to resolve and tackle this problem. Metadata can be categorized at two levels i.e. Technical and Domain level broadly. Technical metadata will provide the information that can be used to understand and interpret the data record, but only this level of metadata isn’t sufficient to create trustworthiness. We have developed a tool which will extract and standardize the technical as well as domain level metadata. This paper is about the different features of the tool and how we have developed this.Keywords: digital preservation, metadata, OAIS, PDI, XML
Procedia PDF Downloads 3932169 Establishment of Precision System for Underground Facilities Based on 3D Absolute Positioning Technology
Authors: Yonggu Jang, Jisong Ryu, Woosik Lee
Abstract:
The study aims to address the limitations of existing underground facility exploration equipment in terms of exploration depth range, relative depth measurement, data processing time, and human-centered ground penetrating radar image interpretation. The study proposed the use of 3D absolute positioning technology to develop a precision underground facility exploration system. The aim of this study is to establish a precise exploration system for underground facilities based on 3D absolute positioning technology, which can accurately survey up to a depth of 5m and measure the 3D absolute location of precise underground facilities. The study developed software and hardware technologies to build the precision exploration system. The software technologies developed include absolute positioning technology, ground surface location synchronization technology of GPR exploration equipment, GPR exploration image AI interpretation technology, and integrated underground space map-based composite data processing technology. The hardware systems developed include a vehicle-type exploration system and a cart-type exploration system. The data was collected using the developed exploration system, which employs 3D absolute positioning technology. The GPR exploration images were analyzed using AI technology, and the three-dimensional location information of the explored precise underground facilities was compared to the integrated underground space map. The study successfully developed a precision underground facility exploration system based on 3D absolute positioning technology. The developed exploration system can accurately survey up to a depth of 5m and measure the 3D absolute location of precise underground facilities. The system comprises software technologies that build a 3D precise DEM, synchronize the GPR sensor's ground surface 3D location coordinates, automatically analyze and detect underground facility information in GPR exploration images and improve accuracy through comparative analysis of the three-dimensional location information, and hardware systems, including a vehicle-type exploration system and a cart-type exploration system. The study's findings and technological advancements are essential for underground safety management in Korea. The proposed precision exploration system significantly contributes to establishing precise location information of underground facility information, which is crucial for underground safety management and improves the accuracy and efficiency of exploration. The study addressed the limitations of existing equipment in exploring underground facilities, proposed 3D absolute positioning technology-based precision exploration system, developed software and hardware systems for the exploration system, and contributed to underground safety management by providing precise location information. The developed precision underground facility exploration system based on 3D absolute positioning technology has the potential to provide accurate and efficient exploration of underground facilities up to a depth of 5m. The system's technological advancements contribute to the establishment of precise location information of underground facility information, which is essential for underground safety management in Korea.Keywords: 3D absolute positioning, AI interpretation of GPR exploration images, complex data processing, integrated underground space maps, precision exploration system for underground facilities
Procedia PDF Downloads 622168 Quantitative Analysis of Camera Setup for Optical Motion Capture Systems
Authors: J. T. Pitale, S. Ghassab, H. Ay, N. Berme
Abstract:
Biomechanics researchers commonly use marker-based optical motion capture (MoCap) systems to extract human body kinematic data. These systems use cameras to detect passive or active markers placed on the subject. The cameras use triangulation methods to form images of the markers, which typically require each marker to be visible by at least two cameras simultaneously. Cameras in a conventional optical MoCap system are mounted at a distance from the subject, typically on walls, ceiling as well as fixed or adjustable frame structures. To accommodate for space constraints and as portable force measurement systems are getting popular, there is a need for smaller and smaller capture volumes. When the efficacy of a MoCap system is investigated, it is important to consider the tradeoff amongst the camera distance from subject, pixel density, and the field of view (FOV). If cameras are mounted relatively close to a subject, the area corresponding to each pixel reduces, thus increasing the image resolution. However, the cross section of the capture volume also decreases, causing reduction of the visible area. Due to this reduction, additional cameras may be required in such applications. On the other hand, mounting cameras relatively far from the subject increases the visible area but reduces the image quality. The goal of this study was to develop a quantitative methodology to investigate marker occlusions and optimize camera placement for a given capture volume and subject postures using three-dimension computer-aided design (CAD) tools. We modeled a 4.9m x 3.7m x 2.4m (LxWxH) MoCap volume and designed a mounting structure for cameras using SOLIDWORKS (Dassault Systems, MA, USA). The FOV was used to generate the capture volume for each camera placed on the structure. A human body model with configurable posture was placed at the center of the capture volume on CAD environment. We studied three postures; initial contact, mid-stance, and early swing. The human body CAD model was adjusted for each posture based on the range of joint angles. Markers were attached to the model to enable a full body capture. The cameras were placed around the capture volume at a maximum distance of 2.7m from the subject. We used the Camera View feature in SOLIDWORKS to generate images of the subject as seen by each camera and the number of markers visible to each camera was tabulated. The approach presented in this study provides a quantitative method to investigate the efficacy and efficiency of a MoCap camera setup. This approach enables optimization of a camera setup through adjusting the position and orientation of cameras on the CAD environment and quantifying marker visibility. It is also possible to compare different camera setup options on the same quantitative basis. The flexibility of the CAD environment enables accurate representation of the capture volume, including any objects that may cause obstructions between the subject and the cameras. With this approach, it is possible to compare different camera placement options to each other, as well as optimize a given camera setup based on quantitative results.Keywords: motion capture, cameras, biomechanics, gait analysis
Procedia PDF Downloads 3102167 Utilizing AI Green Grader Scope to Promote Environmental Responsibility Among University Students
Authors: Tarek Taha Kandil
Abstract:
In higher education, the use of automated grading systems is on the rise, automating the assessment of students' work and providing practical feedback. Sustainable Grader Scope addresses the environmental impact of these computational tasks. This system uses an AI-powered algorithm and is designed to minimize grading process emissions. It reduces carbon emissions through energy-efficient computing and carbon-conscious scheduling. Students submit their computational workloads to the system, which evaluates submissions using containers and a distributed infrastructure. A carbon-conscious scheduler manages workloads across global campuses, optimizing emissions using real-time carbon intensity data. This ensures the university stays within government-set emission limits while tracking and reducing its carbon footprint.Keywords: sustainability, green graders, digital sustainable grader scope, environmental responsibility; higher education.
Procedia PDF Downloads 22166 Design On Demand (DoD): Spiral Model of The Lifecycle of Products in The Personal 3D-Printed Products' Market
Authors: Zuk Nechemia Turbovich
Abstract:
This paper introduces DoD, a contextual spiral model that describes the lifecycle of products intended for manufacturing using Personal 3D Printers (P3DP). The study is based on a review of the desktop P3DPs market that shows that the combination of digital connectivity, coupled with the potential ownership of P3DP by home users, is radically changing the form of the product lifecycle, comparatively to familiar lifecycle paradigms. The paper presents the change in the design process, considering the characterization of product types in the P3DP market and the possibility of having a direct dialogue between end-user and product designers. The model, as an updated paradigm, provides a strategic perspective on product design and tools for success, understanding that design is subject to rapid and continuous improvement and that products are subject to repair, update, and customization. The paper will include a review of real cases.Keywords: lifecycle, mass-customization, personal 3d-printing, user involvement
Procedia PDF Downloads 1832165 An Ensemble-based Method for Vehicle Color Recognition
Authors: Saeedeh Barzegar Khalilsaraei, Manoocheher Kelarestaghi, Farshad Eshghi
Abstract:
The vehicle color, as a prominent and stable feature, helps to identify a vehicle more accurately. As a result, vehicle color recognition is of great importance in intelligent transportation systems. Unlike conventional methods which use only a single Convolutional Neural Network (CNN) for feature extraction or classification, in this paper, four CNNs, with different architectures well-performing in different classes, are trained to extract various features from the input image. To take advantage of the distinct capability of each network, the multiple outputs are combined using a stack generalization algorithm as an ensemble technique. As a result, the final model performs better than each CNN individually in vehicle color identification. The evaluation results in terms of overall average accuracy and accuracy variance show the proposed method’s outperformance compared to the state-of-the-art rivals.Keywords: Vehicle Color Recognition, Ensemble Algorithm, Stack Generalization, Convolutional Neural Network
Procedia PDF Downloads 852164 Human Posture Estimation Based on Multiple Viewpoints
Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo
Abstract:
This study aimed to address the problem of improving the confidence of key points by fusing multi-view information, thereby estimating human posture more accurately. We first obtained multi-view image information and then used the MvP algorithm to fuse this multi-view information together to obtain a set of high-confidence human key points. We used these as the input for the Spatio-Temporal Graph Convolution (ST-GCN). ST-GCN is a deep learning model used for processing spatio-temporal data, which can effectively capture spatio-temporal relationships in video sequences. By using the MvP algorithm to fuse multi-view information and inputting it into the spatio-temporal graph convolution model, this study provides an effective method to improve the accuracy of human posture estimation and provides strong support for further research and application in related fields.Keywords: multi-view, pose estimation, ST-GCN, joint fusion
Procedia PDF Downloads 702163 Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors
Authors: Ayyaz Hussain, Tariq Sadad
Abstract:
Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy.Keywords: breast cancer, DCNN, KNN, mammography
Procedia PDF Downloads 1362162 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System
Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii
Abstract:
Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression
Procedia PDF Downloads 1582161 Business Strategy, Crisis and Digitalization
Authors: Flora Xu, Marta Fernandez Olmos
Abstract:
This article is mainly about critical assessment and comprehensive understanding of the business strategy in the post COVID-19 scenario. This study aims to elucidate how companies are responding to the unique challenges posed by the pandemic and how these measures are shaping the future of the business environment. The pandemic has exposed the fragility and flexibility of the global supply chain, and procurement and production strategies should be reconsidered. It should increase the diversity of suppliers and the flexibility of the supply chain, and some companies are considering transferring their survival to the local market. This can increase local employment and reduce international transportation disruptions and customs issues. By shortening the distance between production and market, companies can respond more quickly to changes in demand and unforeseen events. The demand for remote work and online solutions will increase the adoption of digital technology and accelerate the digital transformation of many organizations. Marketing and communication strategies need to adapt to a constantly changing environment. The business resilience strategy was emphasized as a key component of the response to the COVID-19. The company is seeking to strengthen its risk management capabilities and develop a business continuity plan to cope with future unexpected disruptions. The pandemic has reconfigured human resource practices and changed the way companies manage their employees. Remote work has become the norm, and companies focus on managing workers' health and well-being, as well as flexible work policies to ensure operations and support for employees during crises. This change in human resources practice has a lasting impact on how companies apply talent and labor management in the post COVID-19 world. The pandemic has prompted a significant review of business strategies as companies adapt to constantly changing environments and seek to ensure their sustainability and profitability in times of crisis. This strategic reassessment has led to product diversification, exploring international markets and adapting to the changing market. Companies have responded to the unprecedented challenges brought by the COVID-19. The COVID-19 has promoted innovation effort in key areas and focused on the responsibility in today's business strategy for sustainability and the importance of corporate society. The important challenge of formulating and implementing business strategies in uncertain times. These challenges include making quick and agile decisions in turbulent environments, risk management, and adaptability to constantly changing market conditions. The COVID-19 highlights the importance of strategic planning and informed decision-making - making in a business environment characterized by uncertainty and complexity. In short, the pandemic has reconfigured the way companies handle business strategies and emphasized the necessity of preparing for future challenges in a business world marked by uncertainty and complexity.Keywords: business strategy, crisis, digitalization, uncertainty
Procedia PDF Downloads 182160 A New Approach for Improving Accuracy of Multi Label Stream Data
Authors: Kunal Shah, Swati Patel
Abstract:
Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. Classification is used to predict class of unseen instance as accurate as possible. Multi label classification is a variant of single label classification where set of labels associated with single instance. Multi label classification is used by modern applications, such as text classification, functional genomics, image classification, music categorization etc. This paper introduces the task of multi-label classification, methods for multi-label classification and evolution measure for multi-label classification. Also, comparative analysis of multi label classification methods on the basis of theoretical study, and then on the basis of simulation was done on various data sets.Keywords: binary relevance, concept drift, data stream mining, MLSC, multiple window with buffer
Procedia PDF Downloads 5842159 The Implication of Small Group Therapy on Sexuality in Breast Cancer Survivors
Authors: Cherng-Jye Jeng, Ming-Feng Hou, Hsing-Yuan Liu, Chuan-Feng Chang, Lih-Rong Wang, Yen-Chin Lin
Abstract:
Introduction: The incidence of breast cancer has gradually increased in Taiwan, and the characteristic of younger ages impact these women in their middle age, and may also cause challenges in terms of family, work, and illness. Breasts are symbols of femininity, as well as of sex. For women, breasts are important organs for the female identity and sexual expression. Losing breasts not only affects the female role, but would also affect sexual attraction and sexual desire. Thus, women with breast cancer who have need for mastectomies experience physical incompletion, which affects women’s self-confidence, physical image, and self-orientation. Purposes: 1. To understand the physical experience of women with breast cancer. 2. To explore the issue of sexual issues on the health effects of women with breast cancer. 3. To construct a domestic sex life issue group model for domestic women with breast cancer. 4. To explore the accompaniment experiences and sexual relationship adjustments of spouses when women have breast cancer. Method: After the research plan passes IRB review, participants will be recruited at breast surgery clinic in the affiliated hospital, to screen suitable subjects for entry into the group. Between March and May 2015, two sexual health and sex life consultation groups were conducted, which were (1) 10 in postoperative groups for women with cancer; (2) 4 married couples group for postoperative women with cancer. After sharing experiences and dialogue, women can achieve mutual support and growth. Data organization and analysis underwent descriptive analysis in qualitative research, and the group process was transcribed into transcripts for overall-content and category-content analysis. Results: Ten women with breast cancer believed that participating in group can help them exchange experiences, and elevate sexual health. The main issues include: (1) after breast cancer surgery, patients generally received chemotherapy or estrogen suppressants, causing early menopause; in particular, vaginal dryness can cause pain or bleeding in intercourse, reducing their desire for sexual activity; (2) breast cancer accentuates original spousal or family and friend relationships; some people have support and care from their family, and spouses emphasize health over the appearance of breasts; however, some people do not have acceptance and support from their family, and some even hear spousal sarcasm about loss of breasts; (3) women with breast cancer have polarized expressions of optimism and pessimism in regards to their emotions, beliefs, and body image regarding cancer; this is related to the women’s original personalities, attribution of causes of cancer, and extent of worry about relapse. Conclusion: The research results can be provided as a reference to medical institutions or breast cancer volunteer teams, to pay attention to maintaining the health of women with breast cancer.Keywords: women with breast cancer, experiences of objectifying the body, quality of sex life, sexual health
Procedia PDF Downloads 3192158 Garden City in the Age of ICT: A Case Study of Dali
Authors: Luojie Tang, Libin Ouyang, Yihang Gao
Abstract:
The natural landscape and urban-rural structure, with their attractiveness in the Dali area around Erhai Lake, exhibit striking similarities with Howard's Garden City. With the emergence of the unique phenomenon of the first large-scale gathering of digital nomads in China in Dali, an analysis of Dali's natural, economic, and cultural representations and structures reveals that the Garden City model can no longer fully explain the current overall human living environment in Dali. By interpreting the bottom-up local construction process in Dali based on landscape identity, the transformation of production and lifestyle under new technologies such as ICT(Information and Communication Technology), and the values and lifestyle reshaping embodied in the "reverse urbanization" phenomenon of the middle class in Dali, it is believed that Dali has moved towards a "contemporary garden city influenced by new technology." The article summarizes the characteristics and connotations of this Garden City and provides corresponding strategies for its continued healthy development.Keywords: dali, ICT, rural-urban relationship, garden city model
Procedia PDF Downloads 702157 An Algorithm for Removal of Noise from X-Ray Images
Authors: Sajidullah Khan, Najeeb Ullah, Wang Yin Chai, Chai Soo See
Abstract:
In this paper, we propose an approach to remove impulse and Poisson noise from X-ray images. Many filters have been used for impulse noise removal from color and gray scale images with their own strengths and weaknesses but X-ray images contain Poisson noise and unfortunately there is no intelligent filter which can detect impulse and Poisson noise from X-ray images. Our proposed filter uses the upgraded layer discrimination approach to detect both Impulse and Poisson noise corrupted pixels in X-ray images and then restores only those detected pixels with a simple efficient and reliable one line equation. Our Proposed algorithms are very effective and much more efficient than all existing filters used only for Impulse noise removal. The proposed method uses a new powerful and efficient noise detection method to determine whether the pixel under observation is corrupted or noise free. Results from computer simulations are used to demonstrate pleasing performance of our proposed method.Keywords: X-ray image de-noising, impulse noise, poisson noise, PRWF
Procedia PDF Downloads 3832156 A Tool for Rational Assessment of Dynamic Trust in Networked Organizations
Authors: Simon Samwel Msanjila
Abstract:
Networked environments which provides platforms and environments for business organizations are configured in different forms depending on many factors including life time, member characteristics, communication structure, and business objectives, among others. With continuing advances in digital technologies the distance has become a less barrier for business minded collaboration among organizations. With the need and ease to make business collaborate nowadays organizations are sometimes forced to co-work with others that are either unknown or less known to them in terms of history and performance. A promising approach for sustaining established collaboration has been establishment of trust relationship among organizations based on assessed trustworthiness for each participating organization. It has been stated in research that trust in organization is dynamic and thus assessment of trust level must address such dynamic nature. This paper assess relevant aspects of trust and applies the concepts to propose a semi-automated system for assessing the Sustainability and Evolution of trust in organizations participating in specific objective in a networked organizations environment.Keywords: trust evolution, trust sustainability, networked organizations, dynamic trust
Procedia PDF Downloads 4312155 Citizens’ Satisfaction Causal Factors in E-Government Services
Authors: Abdullah Alshehab
Abstract:
Governments worldwide are intensely focused on digitizing public transactions to establish reliable e-government services. The advent of new digital technologies and ongoing advancements in ICT have profoundly transformed business operations. Citizen engagement and participation in e-government services are crucial for the system's success. However, it is essential to measure and enhance citizen satisfaction levels to effectively evaluate and improve these systems. Citizen satisfaction is a key criterion that allows government institutions to assess the quality of their services. There is a strong connection between information quality, service quality, and system quality, all of which directly impact user satisfaction. Additionally, both system quality and information quality have indirect effects on citizen satisfaction. A causal map, which is a network diagram representing causes and effects, can illustrate these relationships. According to the literature, the main factors influencing citizen satisfaction are trust, reliability, citizen support, convenience, and transparency. This paper investigates the causal relationships among these factors and identifies any interrelatedness between them.Keywords: e-government services, e-satisfaction, citizen satisfaction, causal map.
Procedia PDF Downloads 252154 Prevention of Road Accidents by Computerized Drowsiness Detection System
Authors: Ujjal Chattaraj, P. C. Dasbebartta, S. Bhuyan
Abstract:
This paper aims to propose a method to detect the action of the driver’s eyes, using the concept of face detection. There are three major key contributing methods which can rapidly process the framework of the facial image and hence produce results which further can program the reactions of the vehicles as pre-programmed for the traffic safety. This paper compares and analyses the methods on the basis of their reaction time and their ability to deal with fluctuating images of the driver. The program used in this study is simple and efficient, built using the AdaBoost learning algorithm. Through this program, the system would be able to discard background regions and focus on the face-like regions. The results are analyzed on a common computer which makes it feasible for the end users. The application domain of this experiment is quite wide, such as detection of drowsiness or influence of alcohols in drivers or detection for the case of identification.Keywords: AdaBoost learning algorithm, face detection, framework, traffic safety
Procedia PDF Downloads 1572153 Sentence vs. Keyword Content Analysis in Intellectual Capital Disclosures Study
Authors: Martin Surya Mulyadi, Yunita Anwar, Rosinta Ria Panggabean
Abstract:
Major transformations in economic activity from an agricultural economy to knowledge economy have led to an increasing focus on intellectual capital (IC) that has been characterized by continuous innovation, the spread of digital and communication technologies, intangible and human factors. IC is defined as the possession of knowledge and experience, professional knowledge and skill, proper relationships and technological capacities, which when applied will give organizations a competitive advantage. All of IC report/disclosure could be captured from the corporate annual report as it is a communication device that allows a corporation to connect with various external and internal stakeholders. This study was conducted using sentence-content analysis of IC disclosure in the annual report. This research aims to analyze whether the keyword-content analysis is reliable research methodology for IC disclosure related research.Keywords: intellectual capital, intellectual capital disclosure, content analysis, annual report, sentence analysis, keyword analysis
Procedia PDF Downloads 3672152 Decision Making about the Environmental Management Implementation: Incentives and Expectations
Authors: Eva Štěpánková
Abstract:
Environmental management implementation is presently one of the ways of organization success and value improvement. Increasing an organization motivation to environmental measures introduction is caused primarily by the rising pressure of the society that generates various incentives to endeavor for the environmental performance improvement. The aim of the paper is to identify and characterize the key incentives and expectations leading organizations to the environmental management implementation. The author focuses on five businesses of different size and field, operating in the Czech Republic. The qualitative approach and grounded theory procedure are used in research. The results point out that the significant incentives for environmental management implementation represent primarily demands of customers, the opportunity to declare the environmental commitment and image improvement. The researched enterprises less commonly expect the economical contribution, competitive advantage increase or export rate improvement. The results show that marketing contributions are primarily expected from the environmental management implementation.Keywords: environmental management, environmental management system, ISO 14001, Czech Republic
Procedia PDF Downloads 3852151 Ultrasonographic Study of Normal Scapula in Horse
Authors: Mohamad Saeed Ahrari-Khafi, Abutorab Tabatabai-Naini, Niloofar Ajvadi
Abstract:
Scapular fracture is not common in horses, due to the proper protection of scapular muscles. However, if it happens, it can cause lameness in horses. Because of the overlapping of the scapula on the contralateral scapula and the thorax, usually radiography cannot be helpful in evaluation, except in small amount of its ventral part. Although ultrasonography is mainly used for diagnosis of soft tissue injuries, it also can be used for evaluation of bone surface abnormalities. This study was intended to document the normal ultrasonographic appearance of the equine scapula. Right forelimb of six horses was used. To facilitate the image assessment, a zoning system was developed. Ultrasonography was performed by using a 5-11 MHz linear array transducer. Ultrasonographic anatomy of scapula in different parts and planes was imaged and documented, hoping to help practitioners to diagnose fractures and injuries. Results showed that ultrasonography is capable to depict different parts of the scapula and regional muscles, and can be used for detecting fractures and other abnormalities.Keywords: horse, scapula, scapular fracture, ultrasonography
Procedia PDF Downloads 3062150 The Brain’s Attenuation Coefficient as a Potential Estimator of Temperature Elevation during Intracranial High Intensity Focused Ultrasound Procedures
Authors: Daniel Dahis, Haim Azhari
Abstract:
Noninvasive image-guided intracranial treatments using high intensity focused ultrasound (HIFU) are on the course of translation into clinical applications. They include, among others, tumor ablation, hyperthermia, and blood-brain-barrier (BBB) penetration. Since many of these procedures are associated with local temperature elevation, thermal monitoring is essential. MRI constitutes an imaging method with high spatial resolution and thermal mapping capacity. It is the currently leading modality for temperature guidance, commonly under the name MRgHIFU (magnetic-resonance guided HIFU). Nevertheless, MRI is a very expensive non-portable modality which jeopardizes its accessibility. Ultrasonic thermal monitoring, on the other hand, could provide a modular, cost-effective alternative with higher temporal resolution and accessibility. In order to assess the feasibility of ultrasonic brain thermal monitoring, this study investigated the usage of brain tissue attenuation coefficient (AC) temporal changes as potential estimators of thermal changes. Newton's law of cooling describes a temporal exponential decay behavior for the temperature of a heated object immersed in a relatively cold surrounding. Similarly, in the case of cerebral HIFU treatments, the temperature in the region of interest, i.e., focal zone, is suggested to follow the same law. Thus, it was hypothesized that the AC of the irradiated tissue may follow a temporal exponential behavior during cool down regime. Three ex-vivo bovine brain tissue specimens were inserted into plastic containers along with four thermocouple probes in each sample. The containers were placed inside a specially built ultrasonic tomograph and scanned at room temperature. The corresponding pixel-averaged AC was acquired for each specimen and used as a reference. Subsequently, the containers were placed in a beaker containing hot water and gradually heated to about 45ᵒC. They were then repeatedly rescanned during cool down using ultrasonic through-transmission raster trajectory until reaching about 30ᵒC. From the obtained images, the normalized AC and its temporal derivative as a function of temperature and time were registered. The results have demonstrated high correlation (R² > 0.92) between both the brain AC and its temporal derivative to temperature. This indicates the validity of the hypothesis and the possibility of obtaining brain tissue temperature estimation from the temporal AC thermal changes. It is important to note that each brain yielded different AC values and slopes. This implies that a calibration step is required for each specimen. Thus, for a practical acoustic monitoring of the brain, two steps are suggested. The first step consists of simply measuring the AC at normal body temperature. The second step entails measuring the AC after small temperature elevation. In face of the urging need for a more accessible thermal monitoring technique for brain treatments, the proposed methodology enables a cost-effective high temporal resolution acoustical temperature estimation during HIFU treatments.Keywords: attenuation coefficient, brain, HIFU, image-guidance, temperature
Procedia PDF Downloads 1612149 The Case for Strategic Participation: How Facilitated Engagement Can Be Shown to Reduce Resistance and Improve Outcomes Through the Use of Strategic Models
Authors: Tony Mann
Abstract:
This paper sets out the case for involving and engaging employees/workers/stakeholders/staff in any significant change that is being considered by the senior executives of the organization. It establishes the rationale, the approach, the methodology of engagement and the benefits of a participative approach. It challenges the new norm of imposing change for fear of resistance and instead suggests that involving people has better outcomes and a longer-lasting impact. Various strategic models are introduced and illustrated to explain how the process can be most effective. The paper highlights one model in particular (the Process Iceberg® Organizational Change model) that has proven to be instrumental in developing effective change. Its use is demonstrated in its various forms and explains why so much change fails to address the key elements and how we can be more productive in managing change. ‘Participation’ in change is too often seen as negative, expensive and unwieldy. The paper aims to show that another model: UIA=O+E, can offset the difficulties and, in fact, produce much more positive and effective change.Keywords: facilitation, stakeholders, buy-in, digital workshops
Procedia PDF Downloads 1082148 Effects of Animal Metaphor on Consumer Response to Product Advertising
Authors: Wen-Hsien Huang, Hsu-Ting Hsu
Abstract:
While advertisers often use animal metaphors to promote product performance, representing through the use of a product image together with an animal-like messenger to imply the undesirable health states of not using the product, the effect of such metaphors on persuasion remains unclear. The current research addresses this issue by investigating how consumers perceive and react to animal metaphor advertising in the context of product promotion. Three studies are carried out using field and experimental data. The findings demonstrate that animal metaphor ads are less persuasive than non-metaphor ads and that ads with animal-like messengers (as opposed to human messengers) activate stronger dehumanization perceptions, which in turn lead to lower product choice, product evaluation and purchase intention, regardless of whether the animal metaphors are presented visually in the picture or verbally in the headline. Furthermore, when the metaphorical pairing includes a more disliked animal, consumer reaction was less favorable. The implications of the findings for advertisers considering the use of animalized messengers are discussed.Keywords: animal metaphor, dehumanization, product evaluation, health communication
Procedia PDF Downloads 842147 Automatic LV Segmentation with K-means Clustering and Graph Searching on Cardiac MRI
Authors: Hae-Yeoun Lee
Abstract:
Quantification of cardiac function is performed by calculating blood volume and ejection fraction in routine clinical practice. However, these works have been performed by manual contouring,which requires computational costs and varies on the observer. In this paper, an automatic left ventricle segmentation algorithm on cardiac magnetic resonance images (MRI) is presented. Using knowledge on cardiac MRI, a K-mean clustering technique is applied to segment blood region on a coil-sensitivity corrected image. Then, a graph searching technique is used to correct segmentation errors from coil distortion and noises. Finally, blood volume and ejection fraction are calculated. Using cardiac MRI from 15 subjects, the presented algorithm is tested and compared with manual contouring by experts to show outstanding performance.Keywords: cardiac MRI, graph searching, left ventricle segmentation, K-means clustering
Procedia PDF Downloads 3992146 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition
Procedia PDF Downloads 2742145 Core Number Optimization Based Scheduler to Order/Mapp Simulink Application
Authors: Asma Rebaya, Imen Amari, Kaouther Gasmi, Salem Hasnaoui
Abstract:
Over these last years, the number of cores witnessed a spectacular increase in digital signal and general use processors. Concurrently, significant researches are done to get benefit from the high degree of parallelism. Indeed, these researches are focused to provide an efficient scheduling from hardware/software systems to multicores architecture. The scheduling process consists on statically choose one core to execute one task and to specify an execution order for the application tasks. In this paper, we describe an efficient scheduler that calculates the optimal number of cores required to schedule an application, gives a heuristic scheduling solution and evaluates its cost. Our proposal results are evaluated and compared with Preesm scheduler results and we prove that ours allows better scheduling in terms of latency, computation time and number of cores.Keywords: computation time, hardware/software system, latency, optimization, multi-cores platform, scheduling
Procedia PDF Downloads 2832144 Smart Airport: Application of Internet of Things for Confronting Airport Challenges
Authors: Ali Safaeianpour, Nima Shamandi
Abstract:
As air traffic expands, many airports have evolved into transit centers for people, information, and commerce, and technology implementation is an absolute part of airport development. Several challenges are in the way of implementing technology in an airport. Airport 4.0 proposes the "Smart Airport" concept, which focuses on using modern technologies such as Big Data, the Internet of Things (IoT), advanced biometric systems, blockchain, and cloud computing to alter and enhance passengers' journeys. Several common IoT concrete topics as partial keys to smart airports are discussed and introduced, ranging from automated check-in systems to exterior tracking processes, with the goal of enlightening more and more insightful ideas and proposals about smart airport solutions. IoT will dramatically alter people's lives by infusing intelligence, boosting the quality of life, and assembling it smarter. This paper reviews the approaches to transforming an airport into a smart airport and describes several enabling components of IoT and challenges that can hinder the implementation of a smart airport's function, which require to be addressed.Keywords: airport 4.0, digital airport, smart airport, IoT
Procedia PDF Downloads 1132143 Freedom with Limitations: The Nature of Free Expression in the European Case-Law
Authors: Laszlo Vari
Abstract:
In the digital age, the spread of the mobile world and the nature of the cyberspace, offers many new opportunities for the prevalence of the fundamental right to free expression, and therefore, for free speech and freedom of the press; however, these new information communication technologies carry many new challenges. Defamation, censorship, fake news, misleading information, hate speech, breach of copyright etc., are only some of the violations, all of which can be derived from the harmful exercise of freedom of expression, all which become more salient in the internet. Here raises the question: how can we eliminate these problems, and practice our fundamental freedom rightfully? To answer this question, we should understand the elements and the characteristic of the nature of freedom of expression, and the role of the actors whose duties and responsibilities are crucial in the prevalence of this fundamental freedom. To achieve this goal, this paper will explore the European practice to understand instructions found in the case-law of the European Court of Human rights for the rightful exercise of freedom of expression.Keywords: collision of rights, European case-law, freedom opinion and expression, media law, freedom of information, online expression
Procedia PDF Downloads 139