Search results for: cost prediction
5132 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network
Authors: Sajjad Baghernezhad
Abstract:
Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm
Procedia PDF Downloads 725131 Recovering Copper From Tailing and E-Waste to Create Copper Nanoparticles with Antimicrobial Properties
Authors: Erico R. Carmona, Lucas Hernandez-Saravia, Aliro Villacorta, Felipe Carevic
Abstract:
Tailings and electronic waste (e-waste) are an important source of global contamination. Chile is one of Organisation for Economic Co-operation and Development (OECD) member countries that least recycled this kind of industrial waste, reaching only 3% of the total. Tailings and e-waste recycling offers a valuable tool to minimize the increasing accumulation of waste, supplement the scarcity of some raw materials and to obtain economic benefits through the commercialization of these. It should be noted that this type of industrial waste is an important source of valuable metals, such as copper, which allow generating new business and added value through its transformation into new materials with advanced physical and biological properties. In this sense, the development of nanotechnology has led to the creation of nanomaterials with multiple applications given their unique physicochemical properties. Among others, copper nanoparticles (CuNPs) have gained great interest due to their optical, catalytic, conductive properties, and particularly because of their broad-spectrum antimicrobial activity. There are different synthesis methods of copper nanoparticles; however, green synthesis is one of the most promising methodologies, since it is simple, low-cost, ecological, and generates stable nanoparticles, which makes it a promising methodology for scaling up. Currently, there are few initiatives that involve the development of methods for the recovery and transformation of copper from waste to produce nanoparticles with new properties and better technological benefits. Thus, the objective of this work is to show preliminary data about the develop a sustainable transformation process of tailings and e-waste that allows obtaining a copper-based nanotechnological product with potential antimicrobial applications. For this, samples of tailings and e-waste collected from Tarapacá and Antofagasta region of northern Chile were used to recover copper through efficient, ecological, and low-cost alkaline hydrometallurgical treatments, which to allow obtaining copper with a high degree of purity. On the other hand, the transformation process from recycled copper to a nanomaterial was carried out through a green synthesis approach by using vegetal organic residue extracts that allows obtaining CuNPs following methodologies previously reported by authors. Initial physical characterization with UV-Vis, FTIR, AFM, and TEM methodologies will be reported for CuNPs synthesized.Keywords: nanomaterials, industrial waste, chile, recycling
Procedia PDF Downloads 985130 Development of a Rice Fortification Technique Using Vacuum Assisted Rapid Diffusion for Low Cost Encapsulation of Fe and Zn
Authors: R. A. C. H. Seneviratne, M. Gunawardana, R. P. N. P. Rajapakse
Abstract:
To address the micronutrient deficiencies in the Asian region, the World Food Program in its current mandate highlights the requirement of employing efficient fortification of micronutrients in rice, under the program 'Scaling-up Rice Fortification in Asia'. The current industrial methods of rice fortification with micronutrients are not promising due to poor permeation or retention of fortificants. This study was carried out to develop a method to improve fortification of micronutrients in rice by removing the air barriers for diffusing micronutrients through the husk. For the purpose, soaking stage of paddy was coupled with vacuum (- 0.6 bar) for different time periods. Both long and short grain varieties of paddy (BG 352 and BG 358, respectively) initially tested for water uptake during hot soaking (70 °C) under vacuum (28.5 and 26.15%, respectively) were significantly (P < 0.05) higher than that of non-vacuum conditions (25.24 and 25.45% respectively), exhibiting the effectiveness of water diffusion into the rice grains through the cleared pores under negative pressure. To fortify the selected micronutrients (iron and zinc), paddy was vacuum-soaked in Fe2+ or Zn2+ solutions (500 ppm) separately for one hour, and continued soaking for another 3.5 h without vacuum. Significantly (P<0.05) higher amounts of Fe2+ and Zn2+ were observed throughout the soaking period, in both short and long grain varieties of rice compared to rice treated without vacuum. To achieve the recommended limits of World Food Program standards for fortified iron (40-48 mg/kg) and zinc (60-72 mg/kg) in rice, soaking was done with different concentrations of Fe2+ or Zn2+ for varying time periods. For both iron and zinc fortifications, hot soaking (70 °C) in 400 ppm solutions under vacuum (- 0.6 bar) during the first hour followed by 2.5 h under atmospheric pressure exhibited the optimum fortification (Fe2+: 46.59±0.37 ppm and Zn2+: 67.24±1.36 ppm) with a greater significance (P < 0.05) compared to the controls (Fe2+: 38.84±0.62 ppm and Zn2+: 52.55±0.55 ppm). This finding was further confirmed by the XRF images, clearly showing a greater fixation of Fe2+ and Zn2+ in the rice grains under vacuum treatment. Moreover, there were no significant (P>0.05) differences among both Fe2+ and Zn2+ contents in fortified rice even after polishing and washing, confirming their greater retention. A seven point hedonic scale showed that the overall acceptability for both iron and zinc fortified rice were significantly (P < 0.05) higher than the parboiled rice without fortificants. With all the drawbacks eliminated, per kilogram cost will be less than US$ 1 for both iron and zinc fortified rice. The new method of rice fortification studied and developed in this research, can be claimed as the best method in comparison to other rice fortification methods currently deployed.Keywords: fortification, vacuum assisted diffusion, micronutrients, parboiling
Procedia PDF Downloads 2585129 Resolving Problems Experienced by Involving Patients in the Development of Pharmaceutical Products at Post-Launch Stage of Pharmaceutical Product Development
Authors: Clara T. Fatoye, April Betts, Abayomi Odeyemi, Francis A. Fatoye, Isaac O. Odeyemi
Abstract:
Background: The post-launch stage is the last stage in the development of a pharmaceutical product. It is important to involve patients in the development of pharmaceutical products at the post-launch stage, as patients are the end-users of pharmaceutical products. It is expected that involving them might ensure an effective working relationship among the various stakeholders. However, involving patients in the development of pharmaceutical products comes with its problems. Hence, this study examined how to resolve problems experienced by involving patients in the developments of pharmaceutical products’ at post-launch consisting of Positioning of pharmaceutical products (POPP), detailing of pharmaceutical products (DOPP) and reimbursement and Formulary Submission (R&FS). Methods: A questionnaire was used for the present study. It was administered at the ISPOR Glasgow 2017 to 104 participants, all of which were professionals from Market access (MA) and health economics and outcomes research (HEOR) backgrounds. They were asked how the issues experienced by patients can be resolved. Participants responded under six domains as follows: communication, cost, effectiveness, external factors, Quality of life (QoL) and safety. Thematic analysis was carried out to identify strategies to resolve issues experienced by patients at the post-launch stage. Results: Three (3) factors cut across at POPP, DOPP, and R&FS that is (external factors, communication and QoL). The first resolution method was an external factor that is, the relationship with stakeholders and policymakers. Communication was also identified as a resolution method that can help to resolve problems experienced by patients at the post-launch stage. The third method was QoL as perceived by the patients based on professionals’ opinions. Other strategies that could be used to resolve problems experienced were the effectiveness of pharmaceutical products at the DOPP level and cost at R&FS. Conclusion: The study showed that focusing on external factors, communication, and patients’ QoL are methods for resolving issues experienced by involving patients at the post-launch stage of pharmaceutical product development. Hence, effective working relationships between patients, policymakers and stakeholders may help to resolve problems experienced at the post-launch stage. Healthcare policymakers are to be aware of these findings as they may help them to put appropriate strategies in place to enhance the involvement of patients in pharmaceutical product development at the post-launch stage, thereby improving the health outcomes of the patients.Keywords: patients, pharmaceutical products, post-launch stage, quality of life, QoL
Procedia PDF Downloads 1385128 Green Procedure for Energy and Emission Balancing of Alternative Scenario Improvements for Cogeneration System: A Case of Hardwood Lumber Manufacturing Process
Authors: Aldona Kluczek
Abstract:
Energy efficient process have become a pressing research field in manufacturing. The arguments for having an effective industrial energy efficiency processes are interacted with factors: economic and environmental impact, and energy security. Improvements in energy efficiency are most often achieved by implementation of more efficient technology or manufacturing process. Current processes of electricity production represents the biggest consumption of energy and the greatest amount of emissions to the environment. The goal of this study is to improve the potential energy-savings and reduce greenhouse emissions related to improvement scenarios for the treatment of hardwood lumber produced by an industrial plant operating in the U.S. through the application of green balancing procedure, in order to find the preferable efficient technology. The green procedure for energy is based on analysis of energy efficiency data. Three alternative scenarios of the cogeneration systems plant (CHP) construction are considered: generation of fresh steam, the purchase of a new boiler with the operating pressure 300 pounds per square inch gauge (PSIG), an installation of a new boiler with a 600 PSIG pressure. In this paper, the application of a bottom-down modelling for energy flow to devise a streamlined Energy and Emission Flow Analyze method for the technology of producing electricity is illustrated. It will identify efficiency or technology of a given process to be reached, through the effective use of energy, or energy management. Results have shown that the third scenario seem to be the efficient alternative scenario considered from the environmental and economic concerns for treating hardwood lumber. The energy conservation evaluation options could save an estimated 6,215.78 MMBtu/yr in each year, which represents 9.5% of the total annual energy usage. The total annual potential cost savings from all recommendations is $143,523/yr, which represents 30.1% of the total annual energy costs. Estimation have presented that energy cost savings are possible up to 43% (US$ 143,337.85), representing 18.6% of the total annual energy costs.Keywords: alternative scenario improvements, cogeneration system, energy and emission flow analyze, energy balancing, green procedure, hardwood lumber manufacturing process
Procedia PDF Downloads 2135127 Autonomous Landing of UAV on Moving Platform: A Mathematical Approach
Authors: Mortez Alijani, Anas Osman
Abstract:
Recently, the popularity of Unmanned aerial vehicles (UAVs) has skyrocketed amidst the unprecedented events and the global pandemic, as they play a key role in both the security and health sectors, through surveillance, taking test samples, transportation of crucial goods and spreading awareness among civilians. However, the process of designing and producing such aerial robots is suppressed by the internal and external constraints that pose serious challenges. Landing is one of the key operations during flight, especially, the autonomous landing of UAVs on a moving platform is a scientifically complex engineering problem. Typically having a successful automatic landing of UAV on a moving platform requires accurate localization of landing, fast trajectory planning, and robust control planning. To achieve these goals, the information about the autonomous landing process such as the intersection point, the position of platform/UAV and inclination angle are more necessary. In this study, the mathematical approach to this problem in the X-Y axis based on the inclination angle and position of UAV in the landing process have been presented. The experimental results depict the accurate position of the UAV, intersection between UAV and moving platform and inclination angle in the landing process, allowing prediction of the intersection point.Keywords: autonomous landing, inclination angle, unmanned aerial vehicles, moving platform, X-Y axis, intersection point
Procedia PDF Downloads 1685126 Biomedical Waste Management an Unsung Hero
Authors: Preeti Madan, Shalini Malhotra, Nirmaljit Kaur, Charoo Hans, VK Sabarwal
Abstract:
Hospital is one of the most diverse and complex institutions frequented by people from every walk of life without any distinction between age, sex, gender, religion or intellect. This is over and above the normal inhabitant of hospital i.e. doctors, patients, and paramedical staff. The hospital waste generated 85% is non hazardous, 10% infectious and around 5% are non-infectious but hazardous waste. The management of biomedical waste is still in its infancy. There is a lot of confusion with the problems among the generators, operators, decision makers, and general community about the safe management of biomedical waste prompt action initiated to seek new scientific, safe, and cost-effective management of waste.Keywords: biomedical waste, nosocomial infection, waste management, hospitals
Procedia PDF Downloads 4515125 Structural Characterization and Application of Tio2 Nano-Partical
Authors: Maru Chetan, Desai Abhilash
Abstract:
The structural characteristics & application of TiO2 powder with different phases are study by various techniques in this paper. TTIP, EG and citric acid use as Ti source and catalyst respectively synthesis for sol gel synthesis of TiO2 powder. To replace sol gel method we develop the new method of making nano particle of TiO2 powder. It is two route method one is physical and second one is chemical route. Specific aim to this process is to minimize the production cost and the large scale production of nano particle The synthesis product work characterize by EDAX, SEM, XRD tests.Keywords: mortal and pestle, nano particle , TiO2, TTIP
Procedia PDF Downloads 3285124 On the Homology Modeling, Structural Function Relationship and Binding Site Prediction of Human Alsin Protein
Authors: Y. Ruchi, A. Prerna, S. Deepshikha
Abstract:
Amyotrophic lateral sclerosis (ALS), also known as “Lou Gehrig’s disease”. It is a neurodegenerative disease associated with degeneration of motor neurons in the cerebral cortex, brain stem, and spinal cord characterized by distal muscle weakness, atrophy, normal sensation, pyramidal signs and progressive muscular paralysis reflecting. ALS2 is a juvenile autosomal recessive disorder, slowly progressive, that maps to chromosome 2q33 and is associated with mutations in the alsin gene, a putative GTPase regulator. In this paper we have done homology modeling of alsin2 protein using multiple templates (3KCI_A, 4LIM_A, 402W_A, 4D9S_A, and 4DNV_A) designed using the Prime program in Schrödinger software. Further modeled structure is used to identify effective binding sites on the basis of structural and physical properties using sitemap program in Schrödinger software, structural and function analysis is done by using Prosite and ExPASy server that gives insight into conserved domains and motifs that can be used for protein classification. This paper summarizes the structural, functional and binding site property of alsin2 protein. These binding sites can be potential drug target sites and can be used for docking studies.Keywords: ALS, binding site, homology modeling, neuronal degeneration
Procedia PDF Downloads 3915123 An Integrative Computational Pipeline for Detection of Tumor Epitopes in Cancer Patients
Authors: Tanushree Jaitly, Shailendra Gupta, Leila Taher, Gerold Schuler, Julio Vera
Abstract:
Genomics-based personalized medicine is a promising approach to fight aggressive tumors based on patient's specific tumor mutation and expression profiles. A remarkable case is, dendritic cell-based immunotherapy, in which tumor epitopes targeting patient's specific mutations are used to design a vaccine that helps in stimulating cytotoxic T cell mediated anticancer immunity. Here we present a computational pipeline for epitope-based personalized cancer vaccines using patient-specific haplotype and cancer mutation profiles. In the workflow proposed, we analyze Whole Exome Sequencing and RNA Sequencing patient data to detect patient-specific mutations and their expression level. Epitopes including the tumor mutations are computationally predicted using patient's haplotype and filtered based on their expression level, binding affinity, and immunogenicity. We calculate binding energy for each filtered major histocompatibility complex (MHC)-peptide complex using docking studies, and use this feature to select good epitope candidates further.Keywords: cancer immunotherapy, epitope prediction, NGS data, personalized medicine
Procedia PDF Downloads 2595122 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network
Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao
Abstract:
The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations
Procedia PDF Downloads 1615121 Data-Driven Approach to Predict Inpatient's Estimated Discharge Date
Authors: Ayliana Dharmawan, Heng Yong Sheng, Zhang Xiaojin, Tan Thai Lian
Abstract:
To facilitate discharge planning, doctors are presently required to assign an Estimated Discharge Date (EDD) for each patient admitted to the hospital. This assignment of the EDD is largely based on the doctor’s judgment. This can be difficult for cases which are complex or relatively new to the doctor. It is hypothesized that a data-driven approach would be able to facilitate the doctors to make accurate estimations of the discharge date. Making use of routinely collected data on inpatient discharges between January 2013 and May 2016, a predictive model was developed using machine learning techniques to predict the Length of Stay (and hence the EDD) of inpatients, at the point of admission. The predictive performance of the model was compared to that of the clinicians using accuracy measures. Overall, the best performing model was found to be able to predict EDD with an accuracy improvement in Average Squared Error (ASE) by -38% as compared to the first EDD determined by the present method. It was found that important predictors of the EDD include the provisional diagnosis code, patient’s age, attending doctor at admission, medical specialty at admission, accommodation type, and the mean length of stay of the patient in the past year. The predictive model can be used as a tool to accurately predict the EDD.Keywords: inpatient, estimated discharge date, EDD, prediction, data-driven
Procedia PDF Downloads 1765120 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 825119 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller
Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni
Abstract:
With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning
Procedia PDF Downloads 2345118 A Comparison Between the Internal Combustion Engine and Electric Motor in the Automobile
Authors: Jack Mason, Ahmad Pourmovhed
Abstract:
This paper will discuss the advantages and disadvantages of the internal combustion engine when compared to different types of electric vehicles. The Internal Combustion Engine (ICE)'s overall cost, environmental impact, and usability will all be compared to different types of Electric Vehicles (EVs) including Battery Electric Vehicles (BEVs) and Hydrogen Fuel Cell Electric Vehicles (FCEVs). Also, the ways to solve the issues of the problems each vehicle presents will be discussed.Keywords: interal combustion engine, battery electric vehicle, fuel cell electric vehicle, emissions
Procedia PDF Downloads 1825117 Response Surface Methodology to Obtain Disopyramide Phosphate Loaded Controlled Release Ethyl Cellulose Microspheres
Authors: Krutika K. Sawant, Anil Solanki
Abstract:
The present study deals with the preparation and optimization of ethyl cellulose-containing disopyramide phosphate loaded microspheres using solvent evaporation technique. A central composite design consisting of a two-level full factorial design superimposed on a star design was employed for optimizing the preparation microspheres. The drug:polymer ratio (X1) and speed of the stirrer (X2) were chosen as the independent variables. The cumulative release of the drug at a different time (2, 6, 10, 14, and 18 hr) was selected as the dependent variable. An optimum polynomial equation was generated for the prediction of the response variable at time 10 hr. Based on the results of multiple linear regression analysis and F statistics, it was concluded that sustained action can be obtained when X1 and X2 are kept at high levels. The X1X2 interaction was found to be statistically significant. The drug release pattern fitted the Higuchi model well. The data of a selected batch were subjected to an optimization study using Box-Behnken design, and an optimal formulation was fabricated. Good agreement was observed between the predicted and the observed dissolution profiles of the optimal formulation.Keywords: disopyramide phosphate, ethyl cellulose, microspheres, controlled release, Box-Behnken design, factorial design
Procedia PDF Downloads 4605116 Optimization and Coordination of Organic Product Supply Chains under Competition: An Analytical Modeling Perspective
Authors: Mohammadreza Nematollahi, Bahareh Mosadegh Sedghy, Alireza Tajbakhsh
Abstract:
The last two decades have witnessed substantial attention to organic and sustainable agricultural supply chains. Motivated by real-world practices, this paper aims to address two main challenges observed in organic product supply chains: decentralized decision-making process between farmers and their retailers, and competition between organic products and their conventional counterparts. To this aim, an agricultural supply chain consisting of two farmers, a conventional farmer and an organic farmer who offers an organic version of the same product, is considered. Both farmers distribute their products through a single retailer, where there exists competition between the organic and the conventional product. The retailer, as the market leader, sets the wholesale price, and afterward, the farmers set their production quantity decisions. This paper first models the demand functions of the conventional and organic products by incorporating the effect of asymmetric brand equity, which captures the fact that consumers usually pay a premium for organic due to positive perceptions regarding their health and environmental benefits. Then, profit functions with consideration of some characteristics of organic farming, including crop yield gap and organic cost factor, are modeled. Our research also considers both economies and diseconomies of scale in farming production as well as the effects of organic subsidy paid by the government to support organic farming. This paper explores the investigated supply chain in three scenarios: decentralized, centralized, and coordinated decision-making structures. In the decentralized scenario, the conventional and organic farmers and the retailer maximize their own profits individually. In this case, the interaction between the farmers is modeled under the Bertrand competition, while analyzing the interaction between the retailer and farmers under the Stackelberg game structure. In the centralized model, the optimal production strategies are obtained from the entire supply chain perspective. Analytical models are developed to derive closed-form optimal solutions. Moreover, analytical sensitivity analyses are conducted to explore the effects of main parameters like the crop yield gap, organic cost factor, organic subsidy, and percent price premium of the organic product on the farmers’ and retailer’s optimal strategies. Afterward, a coordination scenario is proposed to convince the three supply chain members to shift from the decentralized to centralized decision-making structure. The results indicate that the proposed coordination scenario provides a win-win-win situation for all three members compared to the decentralized model. Moreover, our paper demonstrates that the coordinated model respectively increases and decreases the production and price of organic produce, which in turn motivates the consumption of organic products in the market. Moreover, the proposed coordination model helps the organic farmer better handle the challenges of organic farming, including the additional cost and crop yield gap. Last but not least, our results highlight the active role of the organic subsidy paid by the government as a means of promoting sustainable organic product supply chains. Our paper shows that although the amount of organic subsidy plays a significant role in the production and sales price of organic products, the allocation method of subsidy between the organic farmer and retailer is not of that importance.Keywords: analytical game-theoretic model, product competition, supply chain coordination, sustainable organic supply chain
Procedia PDF Downloads 1165115 Potential Hydrocarbon Degraders Present in Oil from WWII Wrecks in the Pacific
Authors: Awei Bainivalu, Joachim Larsen, Logesh Panneerselvan, Toby Mills, Brett Neilan, Megharaj Mallavarapu
Abstract:
World War II (WWII) shipwrecks harbour up to 20 million tonnes of oil. More than 3000 wrecks are in the Pacific Ocean; 300 are oil tankers. Compared to other oil removal methods, bioremediation is environmentally friendly and cost-effective. Oil's microbial community and hydrocarbon properties from the Pacific WWII wrecks were identified. Dominant phyla are Proteobacteria, Actinobacteria, and Firmicutes. Native marine bacteria oil-degraders were isolated for bioremediation. Petroleum degradation data from the bacterial consortium will be analyzed over the next three months.Keywords: oil bioremediation, marine bacteria, WWII shipwrecks, pacific
Procedia PDF Downloads 1345114 Demand-Side Financing for Thai Higher Education: A Reform Towards Sustainable Development
Authors: Daral Maesincee, Jompol Thongpaen
Abstract:
Thus far, most of the decisions made within the walls of Thai higher education (HE) institutions have primarily been supply-oriented. With the current supply-driven, itemized HE financing systems, the nation is struggling to systemically produce high-quality manpower that serves the market’s needs, often resulting in education mismatches and unemployment – particularly in science, technology, and innovation (STI)-related fields. With the COVID-19 pandemic challenges widening the education inequality (accessibility and quality) gap, HE becomes even more unobtainable for underprivileged students, permanently leaving some out of the system. Therefore, Thai HE needs a new financing system that produces the “right people” for the “right occupations” through the “right ways,” regardless of their socioeconomic backgrounds, and encourages the creation of non-degree courses to tackle these ongoing challenges. The “Demand-Side Financing for Thai Higher Education” policy aims to do so by offering a new paradigm of HE resource allocation via two main mechanisms: i) standardized formula-based unit-cost subsidizations that is specific to each study field and ii) student loan programs that respond to the “demand signals” from the labor market and the students, that are in line with the country’s priorities. Through in-dept reviews, extensive studies, and consultations with various experts, education committees, and related agencies, i) the method of demand signal analysis is identified, ii) the unit-cost of each student in the sample study fields is approximated, iii) the method of budget analysis is formulated, iv) the interagency workflows are established, and v) a supporting information database is created to suggest the number of graduates each HE institution can potentially produce, the study fields and skillsets that are needed by the labor market, the employers’ satisfaction with the graduates, and each study field’s employment rates. By responding to the needs of all stakeholders, this policy is expected to steer Thai HE toward producing more STI-related manpower in order to uplift Thai people’s quality of life and enhance the nation’s global competitiveness. This policy is currently in the process of being considered by the National Education Transformation Committee and the Higher Education Commission.Keywords: demand-side financing, higher education resource, human capital, higher education
Procedia PDF Downloads 2055113 Structural Strength Potentials of Nigerian Groundnut Husk Ash as Partial Cement Replacement in Mortar
Authors: F. A. Olutoge, O.R. Olulope, M. O. Odelola
Abstract:
This study investigates the strength potentials of groundnut husk ash as partial cement replacement in mortar and also develops a predictive model using Artificial Neural Network. Groundnut husks sourced from Ogbomoso, Nigeria, was sun dried, calcined to ash in a furnace at a controlled temperature of 600⁰ C for a period of 6 hours, and sieved through the 75 microns. The ash was subjected to chemical analysis and setting time test. Fine aggregate (sand) for the mortar was sourced from Ado Ekiti, Nigeria. The cement: GHA constituents were blended in ratios 100:0, 95:5, 90:10, 85:15 and 80:20 %. The sum of SiO₂, Al₂O₃, and Fe₂O₃ content in GHA is 26.98%. The compressive strength for mortars PC, GHA5, GHA10, GHA15, and GHA20 ranged from 6.3-10.2 N/mm² at 7days, 7.5-12.3 N/mm² at 14 days, 9.31-13.7 N/mm² at 28 days, 10.4-16.7 N/mm² at 56days and 13.35- 22.3 N/mm² at 90 days respectively, PC, GHA5 and GHA10 had competitive values up to 28 days, but GHA10 gave the highest values at 56 and 90 days while GHA20 had the lowest values at all ages due to dilution effect. Flexural strengths values at 28 days ranged from 1.08 to 1.87 N/mm² and increased to a range of 1.53-4.10 N/mm² at 90 days. The ANN model gave good prediction for compressive strength of the mortars. This study has shown that groundnut husk ash as partial cement replacement improves the strength properties of mortar.Keywords: compressive strength, groundnut husk ash, mortar, pozzolanic index
Procedia PDF Downloads 1615112 Synthesis of Size-Tunable and Stable Iron Nanoparticles for Cancer Treatment
Authors: Ambika Selvaraj
Abstract:
Magnetic iron oxide nanoparticles (IO) of < 20nm (superparamagnetic) become promising tool in cancer therapy, and integrated nanodevices for cancer detection and screening. The obstacles include particle heterogeneity and cost. It can be overcome by developing monodispersed nanoparticles in economical approach. We have successfully synthesized < 7 nm IO by low temperature controlled technique, in which Fe0 is sandwiched between stabilizer and Fe2+. Size analysis showed the excellent size control from 31 nm at 33°C to 6.8 nm at 10°C. Resultant monodispersed IO were found to be stable for > 50 reuses, proved its applicability in biomedical applications.Keywords: low temperature synthesis, hybrid iron nanoparticles, cancer therapy, biomedical applications
Procedia PDF Downloads 3475111 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations
Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha
Abstract:
This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation
Procedia PDF Downloads 1535110 Optimizing Heavy-Duty Green Hydrogen Refueling Stations: A Techno-Economic Analysis of Turbo-Expander Integration
Authors: Christelle Rabbat, Carole Vouebou, Sary Awad, Alan Jean-Marie
Abstract:
Hydrogen has been proven to be a viable alternative to standard fuels as it is easy to produce and only generates water vapour and zero carbon emissions. However, despite the hydrogen benefits, the widespread adoption of hydrogen fuel cell vehicles and internal combustion engine vehicles is impeded by several challenges. The lack of refueling infrastructures remains one of the main hindering factors due to the high costs associated with their design, construction, and operation. Besides, the lack of hydrogen vehicles on the road diminishes the economic viability of investing in refueling infrastructure. Simultaneously, the absence of accessible refueling stations discourages consumers from adopting hydrogen vehicles, perpetuating a cycle of limited market uptake. To address these challenges, the implementation of adequate policies incentivizing the use of hydrogen vehicles and the reduction of the investment and operation costs of hydrogen refueling stations (HRS) are essential to put both investors and customers at ease. Even though the transition to hydrogen cars has been rather slow, public transportation companies have shown a keen interest in this highly promising fuel. Besides, their hydrogen demand is easier to predict and regulate than personal vehicles. Due to the reduced complexity of designing a suitable hydrogen supply chain for public vehicles, this sub-sector could be a great starting point to facilitate the adoption of hydrogen vehicles. Consequently, this study will focus on designing a chain of on-site green HRS for the public transportation network in Nantes Metropole leveraging the latest relevant technological advances aiming to reduce the costs while ensuring reliability, safety, and ease of access. To reduce the cost of HRS and encourage their widespread adoption, a network of 7 H35-T40 HRS has been designed, replacing the conventional J-T valves with turbo-expanders. Each station in the network has a daily capacity of 1,920 kg. Thus, the HRS network can produce up to 12.5 tH2 per day. The detailed cost analysis has revealed a CAPEX per station of 16.6 M euros leading to a network CAPEX of 116.2 M euros. The proposed station siting prioritized Nantes metropole’s 5 bus depots and included 2 city-centre locations. Thanks to the turbo-expander technology, the cooling capacity of the proposed HRS is 19% lower than that of a conventional station equipped with J-T valves, resulting in significant CAPEX savings estimated at 708,560 € per station, thus nearly 5 million euros for the whole HRS network. Besides, the turbo-expander power generation ranges from 7.7 to 112 kW. Thus, the power produced can be used within the station or sold as electricity to the main grid, which would, in turn, maximize the station’s profit. Despite the substantial initial investment required, the environmental benefits, cost savings, and energy efficiencies realized through the transition to hydrogen fuel cell buses and the deployment of HRS equipped with turbo-expanders offer considerable advantages for both TAN and Nantes Metropole. These initiatives underscore their enduring commitment to fostering green mobility and combatting climate change in the long term.Keywords: green hydrogen, refueling stations, turbo-expander, heavy-duty vehicles
Procedia PDF Downloads 645109 Impacts of Environmental Science in Biodiversity Conservation
Authors: S. O. Ekpo
Abstract:
Environmental science deals with everyday challenges such as a cell for call for good and safe quality air, water, food and healthy leaving condition which include destruction of biodiversity and how to conserve these natural resources for sustainable development. Biodiversity or species richness is the sum of all the different species of animals, plants, fungi and microorganisms leaving on earth and variety of habitats in which they leave. Human beings leave on plants and animals on daily basis for food, clothing, medicine, housing, research and trade or commerce; besides this, biodiversity serves to purify the air, water and land of contaminant, and recycle useful materials for continual use of man. However, man continual incessant exploitation and exploration has affected biodiversity negatively in many ways such habitant fragmentation and destruction, introduction of invasive species, pollution, overharvesting, prediction and pest control amongst others. Measures such as recycling material, establishing natural parks, sperm bank, limiting the exploitation of renewable resources to sustainable yield and urban and industrial development as well as prohibiting hunting endangered species and release of non native live forms into an area will go a long way towards conserving biodiversity for continues profitable yield.Keywords: biodiversity, conservation, exploitation and exploration sustainable yield, recycling of materials
Procedia PDF Downloads 2265108 Exploration of Abuse of Position for Sexual Gain by UK Police
Authors: Terri Cole, Fay Sweeting
Abstract:
Abuse of position for sexual gain by police is defined as behavior involving individuals taking advantage of their role to pursue a sexual or improper relationship. Previous research has considered whether it involves ‘bad apples’ - individuals with poor moral ethos or ‘bad barrels’ – broader organizational flaws which may unconsciously allow, minimize, or do not effectively deal with such behavior. Low level sexual misconduct (e.g., consensual sex on duty) is more common than more serious offences (e.g., rape), yet the impact of such behavior can have severe implications not only for those involved but can also negatively undermine public confidence in the police. This ongoing, collaborative research project has identified variables from 514 historic case files from 35 UK police forces in order to identify potential risk indicators which may lead to such behavior. Quantitative analysis using logistic regression and the Cox proportion hazard model has resulted in the identification of specific risk factors of significance in prediction. Factors relating to both perpetrator background such as a history of intimate partner violence, debt, and substance misuse coupled with in work behavior such as misusing police systems increase the risk. Findings are able to provide pragmatic recommendations for those tasked with identifying potential or investigating suspected perpetrators of misconduct.Keywords: abuse of position, forensic psychology, misconduct, sexual abuse
Procedia PDF Downloads 1995107 Development of Sustainable Wind Speed Forecasting Framework for Wind Energy Farms
Authors: Mohammed Bou-Rabee
Abstract:
The significance of wind energy is rising as the global world shifts toward clean and renewable energy sources. Wind energy generates electricity without releasing greenhouse gases, making it a feasible substitute for fossil fuels. This contributes to the reduction of carbon emissions, mitigates climate change, and enhances air quality. Wind energy, unlike fossil fuels, is a renewable resource. Investing in wind energy allows nations to reduce their reliance on imported fossil fuels, improving their energy security. This technique ensures stable energy costs while safeguarding economies from the volatility of oil and gas markets. Recent technological advancements have markedly decreased the cost of wind energy over the past few decades, establishing it as one of the most cost-effective sources of new electricity in many regions globally. These advancements have significantly enhanced turbine efficiency, augmented energy output, and reduced costs. The fluctuating characteristics of wind energy present an ongoing research challenge that has captivated the whole scientific community. Accurate forecasting of wind energy is essential for effective wind farm operation and management, smart grid stabilization, optimizing energy storage, investment and financial planning, and improved participation in energy markets. The extraction of wind energy depends on several factors, with wind speed being the most critical, as it directly affects the power output of a wind turbine. A wind turbine generates energy exponentially with wind velocity, exhibiting a cubic relationship. In addressing these research challenges, we have developed an efficient wind speed forecasting system employing advanced machine learning (ML) and statistical techniques. We created a hybrid time series forecasting model using an ensemble learning approach that integrates a Light Gradient Boosting Machine (LGBoost), Extreme Gradient Boosting (XGBoost), and Bayesian Linear Regression (BLR). We then utilized the Random Forest (RF) technique for feature selection. The model can predict wind speed with a minimum mean square error (MSE) of 0.096 and a maximum R² score of 0.924.Keywords: wind energy, renewable resource, turbine efficiency, affects power
Procedia PDF Downloads 75106 Floodplain Modeling of River Jhelum Using HEC-RAS: A Case Study
Authors: Kashif Hassan, M.A. Ahanger
Abstract:
Floods have become more frequent and severe due to effects of global climate change and human alterations of the natural environment. Flood prediction/ forecasting and control is one of the greatest challenges facing the world today. The forecast of floods is achieved by the use of hydraulic models such as HEC-RAS, which are designed to simulate flow processes of the surface water. Extreme flood events in river Jhelum , lasting from a day to few are a major disaster in the State of Jammu and Kashmir, India. In the present study HEC-RAS model was applied to two different reaches of river Jhelum in order to estimate the flood levels corresponding to 25, 50 and 100 year return period flood events at important locations and to deduce flood vulnerability of important areas and structures. The flow rates for the two reaches were derived from flood-frequency analysis of 50 years of historic peak flow data. Manning's roughness coefficient n was selected using detailed analysis. Rating Curves were also generated to serve as base for determining the boundary conditions. Calibration and Validation procedures were applied in order to ensure the reliability of the model. Sensitivity analysis was also performed in order to ensure the accuracy of Manning's n in generating water surface profiles.Keywords: flood plain, HEC-RAS, Jhelum, return period
Procedia PDF Downloads 4295105 Correlation between Funding and Publications: A Pre-Step towards Future Research Prediction
Authors: Ning Kang, Marius Doornenbal
Abstract:
Funding is a very important – if not crucial – resource for research projects. Usually, funding organizations will publish a description of the funded research to describe the scope of the funding award. Logically, we would expect research outcomes to align with this funding award. For that reason, we might be able to predict future research topics based on present funding award data. That said, it remains to be shown if and how future research topics can be predicted by using the funding information. In this paper, we extract funding project information and their generated paper abstracts from the Gateway to Research database as a group, and use the papers from the same domains and publication years in the Scopus database as a baseline comparison group. We annotate both the project awards and the papers resulting from the funded projects with linguistic features (noun phrases), and then calculate tf-idf and cosine similarity between these two set of features. We show that the cosine similarity between the project-generated papers group is bigger than the project-baseline group, and also that these two groups of similarities are significantly different. Based on this result, we conclude that the funding information actually correlates with the content of future research output for the funded project on the topical level. How funding really changes the course of science or of scientific careers remains an elusive question.Keywords: natural language processing, noun phrase, tf-idf, cosine similarity
Procedia PDF Downloads 2485104 Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets
Abstract:
The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 600. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modelling mass transfer by multiple plunging jets.Keywords: mass transfer, multiple plunging jets, multi-linear regression, earth sciences
Procedia PDF Downloads 4675103 Analytical Authentication of Butter Using Fourier Transform Infrared Spectroscopy Coupled with Chemometrics
Authors: M. Bodner, M. Scampicchio
Abstract:
Fourier Transform Infrared (FT-IR) spectroscopy coupled with chemometrics was used to distinguish between butter samples and non-butter samples. Further, quantification of the content of margarine in adulterated butter samples was investigated. Fingerprinting region (1400-800 cm–1) was used to develop unsupervised pattern recognition (Principal Component Analysis, PCA), supervised modeling (Soft Independent Modelling by Class Analogy, SIMCA), classification (Partial Least Squares Discriminant Analysis, PLS-DA) and regression (Partial Least Squares Regression, PLS-R) models. PCA of the fingerprinting region shows a clustering of the two sample types. All samples were classified in their rightful class by SIMCA approach; however, nine adulterated samples (between 1% and 30% w/w of margarine) were classified as belonging both at the butter class and at the non-butter one. In the two-class PLS-DA model’s (R2 = 0.73, RMSEP, Root Mean Square Error of Prediction = 0.26% w/w) sensitivity was 71.4% and Positive Predictive Value (PPV) 100%. Its threshold was calculated at 7% w/w of margarine in adulterated butter samples. Finally, PLS-R model (R2 = 0.84, RMSEP = 16.54%) was developed. PLS-DA was a suitable classification tool and PLS-R a proper quantification approach. Results demonstrate that FT-IR spectroscopy combined with PLS-R can be used as a rapid, simple and safe method to identify pure butter samples from adulterated ones and to determine the grade of adulteration of margarine in butter samples.Keywords: adulterated butter, margarine, PCA, PLS-DA, PLS-R, SIMCA
Procedia PDF Downloads 154