Search results for: comprehensive CFD model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19172

Search results for: comprehensive CFD model

16142 Water Management of Erdenet Mining Company

Authors: K. H. Oyuntungalag, Scott Kenner, O. Erdenetuya

Abstract:

The life cycle phases of mining projects are described in this guidance document, and includes initial phases (exploration, feasibility and planning), mine development (construction and operations), closure and reclamation. Initial phases relate to field programs and desktop studies intended to build the data and knowledge base, including the design of water management infrastructure and development during these initial phases. Such a model is essential to demonstrate that the water management plan (WMP) will provide adequate water for the mine operations and sufficient capacity for anticipated flows and volumes, and minimize environmental impacts on the receiving environment. The water and mass balance model must cover the whole mine life cycle, from the start of mine development to a date sufficiently far in the future where the reclaimed landscape is considered self- sustaining following complete closure of the mine (i.e., post- closure). The model simulates the movement of water within the components of the water management infrastructure and project operating areas, and calculates chemical loadings to each mine component. At Erdenet Mining company an initial water balance model reflecting the tailings dam, groundwater seepage and mine process water was developed in collaboration with Dr. Scott Kenner (visiting Fulbright scholar). From this preliminary study the following recommendations were made: 1. Develop a detailed groundwater model to simulate seepage from the tailings dam, 2. Establish an evaporation pan for improving evapotranspiration estimates, and 3. Measure changes in storage of water within the tailings dam and other water storage components within the mine processing.

Keywords: evapotranspiration , monitoring program, Erdenet mining, tailings dam

Procedia PDF Downloads 478
16141 Load Forecasting in Short-Term Including Meteorological Variables for Balearic Islands Paper

Authors: Carolina Senabre, Sergio Valero, Miguel Lopez, Antonio Gabaldon

Abstract:

This paper presents a comprehensive survey of the short-term load forecasting (STLF). Since the behavior of consumers and producers continue changing as new technologies, it is an ongoing process, and moreover, new policies become available. The results of a research study for the Spanish Transport System Operator (REE) is presented in this paper. It is presented the improvement of the forecasting accuracy in the Balearic Islands considering the introduction of meteorological variables, such as temperature to reduce forecasting error. Variables analyzed for the forecasting in terms of overall accuracy are cloudiness, solar radiation, and wind velocity. It has also been analyzed the type of days to be considered in the research.

Keywords: short-term load forecasting, power demand, neural networks, load forecasting

Procedia PDF Downloads 191
16140 A Method to Determine Cutting Force Coefficients in Turning Using Mechanistic Approach

Authors: T. C. Bera, A. Bansal, D. Nema

Abstract:

During performing turning operation, cutting force plays a significant role in metal cutting process affecting tool-work piece deflection, vibration and eventually part quality. The present research work aims to develop a mechanistic cutting force model and to study the mechanistic constants used in the force model in case of turning operation. The proposed model can be used for the reliable and accurate estimation of the cutting forces establishing relationship of various force components (cutting force and feed force) with uncut chip thickness. The accurate estimation of cutting force is required to improve thin-walled part accuracy by controlling the tool-work piece deflection induced surface errors and tool-work piece vibration.

Keywords: turning, cutting forces, cutting constants, uncut chip thickness

Procedia PDF Downloads 523
16139 Performance Study of Cascade Refrigeration System Using Alternative Refrigerants

Authors: Gulshan Sachdeva, Vaibhav Jain, S. S. Kachhwaha

Abstract:

Cascade refrigeration systems employ series of single stage vapor compression units which are thermally coupled with evaporator/condenser cascades. Different refrigerants are used in each of the circuit depending on the optimum characteristics shown by the refrigerant for a particular application. In the present research study, a steady state thermodynamic model is developed which simulates the working of an actual cascade system. The model provides COP and all other system parameters like total compressor work, temperature, pressure, enthalpy and entropy at different state points. The working fluid in Low Temperature Circuit (LTC) is CO2 (R744) while ammonia (R717), propane (R290), propylene (R1270), R404A and R12 are the refrigerants in High Temperature Circuit (HTC). The performance curves of ammonia, propane, propylene, and R404A are compared with R12 to find its nearest substitute. Results show that ammonia is the best substitute of R12.

Keywords: cascade system, refrigerants, thermodynamic model, production engineering

Procedia PDF Downloads 362
16138 Higher Education for Sustainable Development and Proposed Performance-based Funding Model for Universities in Ontario: Tensions and Coherence Between Provincial and Federal Policies

Authors: Atiqa Marium

Abstract:

In 2015, all 193 UN Member countries adopted the 2030 Agenda for Sustainable Development, which is an ambitious 15- year plan to address some of the most pressing issues the world faces. Goal 4 is about Quality Education which highlights the importance of inclusive and quality education for sustainable development. Sustainable Development Goal 10 focuses on reducing inequalities within and among countries. In June 2019, Federal Government in Canada released “Towards Canada’s 2030 Agenda National Strategy”, which was an important step to move the 2030 Agenda forward. In April 2019, the Ontario government announced the performance-based funding model for publically assisted colleges and universities in Ontario, which is now part of the universities’ budget 2024-2025. The literature review has shown that the funding model has been implemented by different governments to achieve objectives. However, this model has also resulted in conflicting consequences like reducing university autonomy, education quality/ academic standards, and increased equity concerns. The primary focus of this paper will be to analyze the tensions and coherence between the proposed funding model for education for sustainable development goals and targets set by Canada’s 2030 Agenda National Strategy. Considering that the literature review has provided evidence that the performance-based funding model has resulted in reducing quality of education and increased equity issues in other countries, it will be interesting to see how this proposed funding will align with the SDGs of “Quality Education” and “Reduced Inequalities”. This paper will be well-suited for Volume 4, with the theme of re-visioning institutional impact and sustainability. This paper will underscore the importance of policy coherence between federal and provincial policies for higher education institutions in Ontario for better institutional impact and helping universities in the attainment of goals set in 2030 Agenda towards education for sustainable development.

Keywords: performance-based funding model, education for sustainable development, policy coherence, sustainable development gaols

Procedia PDF Downloads 117
16137 A Quantitative Plan for Drawing Down Emissions to Attenuate Climate Change

Authors: Terry Lucas

Abstract:

Calculations are performed to quantify the potential contribution of each greenhouse gas emission reduction strategy. This approach facilitates the visualisation of the relative benefits of each, and it provides a potential baseline for the development of a plan of action that is rooted in quantitative evaluation. Emissions reductions are converted to potential de-escalation of global average temperature. A comprehensive plan is then presented which shows the potential benefits all the way out to year 2100. A target temperature de-escalation of 2oC was selected, but the plan shows a benefit of only 1.225oC. This latter disappointing result is in spite of new and powerful technologies introduced into the equation. These include nuclear fusion and alternative nuclear fission processes. Current technologies such as wind, solar and electric vehicles show surprisingly small constributions to the whole.

Keywords: climate change, emissions, drawdown, energy

Procedia PDF Downloads 132
16136 Scheduling in a Single-Stage, Multi-Item Compatible Process Using Multiple Arc Network Model

Authors: Bokkasam Sasidhar, Ibrahim Aljasser

Abstract:

The problem of finding optimal schedules for each equipment in a production process is considered, which consists of a single stage of manufacturing and which can handle different types of products, where changeover for handling one type of product to the other type incurs certain costs. The machine capacity is determined by the upper limit for the quantity that can be processed for each of the products in a set up. The changeover costs increase with the number of set ups and hence to minimize the costs associated with the product changeover, the planning should be such that similar types of products should be processed successively so that the total number of changeovers and in turn the associated set up costs are minimized. The problem of cost minimization is equivalent to the problem of minimizing the number of set ups or equivalently maximizing the capacity utilization in between every set up or maximizing the total capacity utilization. Further, the production is usually planned against customers’ orders, and generally different customers’ orders are assigned one of the two priorities – “normal” or “priority” order. The problem of production planning in such a situation can be formulated into a Multiple Arc Network (MAN) model and can be solved sequentially using the algorithm for maximizing flow along a MAN and the algorithm for maximizing flow along a MAN with priority arcs. The model aims to provide optimal production schedule with an objective of maximizing capacity utilization, so that the customer-wise delivery schedules are fulfilled, keeping in view the customer priorities. Algorithms have been presented for solving the MAN formulation of the production planning with customer priorities. The application of the model is demonstrated through numerical examples.

Keywords: scheduling, maximal flow problem, multiple arc network model, optimization

Procedia PDF Downloads 403
16135 Advancing Trustworthy Human-robot Collaboration: Challenges and Opportunities in Diverse European Industrial Settings

Authors: Margarida Porfírio Tomás, Paula Pereira, José Manuel Palma Oliveira

Abstract:

The decline in employment rates across sectors like industry and construction is exacerbated by an aging workforce. This has far-reaching implications for the economy, including skills gaps, labour shortages, productivity challenges due to physical limitations, and workplace safety concerns. To sustain the workforce and pension systems, technology plays a pivotal role. Robots provide valuable support to human workers, and effective human-robot interaction is essential. FORTIS, a Horizon project, aims to address these challenges by creating a comprehensive Human-Robot Interaction (HRI) solution. This solution focuses on multi-modal communication and multi-aspect interaction, with a primary goal of maintaining a human-centric approach. By meeting the needs of both human workers and robots, FORTIS aims to facilitate efficient and safe collaboration. The project encompasses three key activities: 1) A Human-Centric Approach involving data collection, annotation, understanding human behavioural cognition, and contextual human-robot information exchange. 2) A Robotic-Centric Focus addressing the unique requirements of robots during the perception and evaluation of human behaviour. 3) Ensuring Human-Robot Trustworthiness through measures such as human-robot digital twins, safety protocols, and resource allocation. Factor Social, a project partner, will analyse psycho-physiological signals that influence human factors, particularly in hazardous working conditions. The analysis will be conducted using a combination of case studies, structured interviews, questionnaires, and a comprehensive literature review. However, the adoption of novel technologies, particularly those involving human-robot interaction, often faces hurdles related to acceptance. To address this challenge, FORTIS will draw upon insights from Social Sciences and Humanities (SSH), including risk perception and technology acceptance models. Throughout its lifecycle, FORTIS will uphold a human-centric approach, leveraging SSH methodologies to inform the design and development of solutions. This project received funding from European Union’s Horizon 2020/Horizon Europe research and innovation program under grant agreement No 101135707 (FORTIS).

Keywords: skills gaps, productivity challenges, workplace safety, human-robot interaction, human-centric approach, social sciences and humanities, risk perception

Procedia PDF Downloads 53
16134 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision

Procedia PDF Downloads 127
16133 Statistical Investigation Projects: A Way for Pre-Service Mathematics Teachers to Actively Solve a Campus Problem

Authors: Muhammet Şahal, Oğuz Köklü

Abstract:

As statistical thinking and problem-solving processes have become increasingly important, teachers need to be more rigorously prepared with statistical knowledge to teach their students effectively. This study examined preservice mathematics teachers' development of statistical investigation projects using data and exploratory data analysis tools, following a design-based research perspective and statistical investigation cycle. A total of 26 pre-service senior mathematics teachers from a public university in Turkiye participated in the study. They formed groups of 3-4 members voluntarily and worked on their statistical investigation projects for six weeks. The data sources were audio recordings of pre-service teachers' group discussions while working on their projects in class, whole-class video recordings, and each group’s weekly and final reports. As part of the study, we reviewed weekly reports, provided timely feedback specific to each group, and revised the following week's class work based on the groups’ needs and development in their project. We used content analysis to analyze groups’ audio and classroom video recordings. The participants encountered several difficulties, which included formulating a meaningful statistical question in the early phase of the investigation, securing the most suitable data collection strategy, and deciding on the data analysis method appropriate for their statistical questions. The data collection and organization processes were challenging for some groups and revealed the importance of comprehensive planning. Overall, preservice senior mathematics teachers were able to work on a statistical project that contained the formulation of a statistical question, planning, data collection, analysis, and reaching a conclusion holistically, even though they faced challenges because of their lack of experience. The study suggests that preservice senior mathematics teachers have the potential to apply statistical knowledge and techniques in a real-world context, and they could proceed with the project with the support of the researchers. We provided implications for the statistical education of teachers and future research.

Keywords: design-based study, pre-service mathematics teachers, statistical investigation projects, statistical model

Procedia PDF Downloads 88
16132 A Study on Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation and Artificial Neural Network

Authors: Min-Woo Kim, Ok-Kyun Na, Jun-Ho Byun, Jong-Hwan Park, Seung-Hwa Yang, Joon-Hong Park, Young-Chul Park

Abstract:

This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the Anti-Splash Device located under the P/V Valve and new concept design models using the CFD analysis and Artificial Neural Network. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-Splash Device is fitted to improve and prevent this problem in the shipbuilding industry. But the oil outflow accidents are still reported by ship owners. Thus, four types of new design model are presented by study. Then, comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the Anti-Splash Device. Therefore, the flow and velocity are grasped by transient analysis. And then it decided optimum model and design parameters to develop model. Later, it needs to develop an Anti-Splash Device by Flow Test to get certification and verification using experiment equipment.

Keywords: anti-splash device, P/V valve, sloshing, artificial neural network

Procedia PDF Downloads 591
16131 Automation of Embodied Energy Calculations for Buildings through Building Information Modelling

Authors: Ahmad Odeh

Abstract:

Researchers are currently more concerned about the calculations of energy at the operational stage, mainly due to its larger environmental impact, but the fact remains, embodied energies represent a substantial contributor unaccounted for in the overall energy computation method. The calculation of materials’ embodied energy during the construction stage is complicated. This is due to the various factors involved. The equipment used, fuel needed, and electricity required for each type of materials varies with location and thus the embodied energy will differ for each project. Moreover, the method used in manufacturing, transporting and putting in place will have significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at calculating embodied energies based on such variabilities. It presents a systematic approach that uses an efficient method of calculation to provide a new insight for the selection of construction materials. The model is developed in a BIM environment. The quantification of materials’ energy is determined over the three main stages of their lifecycle: manufacturing, transporting and placing. The model uses three major databases each of which contains set of the construction materials that are most commonly used in building projects. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by machinery to place the materials in their intended locations. Through geospatial data analysis, the model automatically calculates the distances between the suppliers and construction sites and then uses dataset information for energy computations. The computational sum of all the energies is automatically calculated and then the model provides designers with a list of usable equipment along with the associated embodied energies.

Keywords: BIM, lifecycle energy assessment, building automation, energy conservation

Procedia PDF Downloads 192
16130 Impact of Out-Of-Pocket Payments on Health Care Finance and Access to Health Care Services: The Case of Health Transformation Program in Turkey

Authors: Bengi Demirci

Abstract:

Out-of-pocket payments have become one of the common models adopted by health care reforms all over the world, and they have serious implications for not only the financial set-up of the health care systems in question but also for the people involved in terms of their access to the health care services provided. On the one hand, out-of-pocket payments are used in raising resources for the finance of the health care system and in decreasing non-essential health care expenses by having a deterrent role on the patients. On the other hand, out-of-pocket payment model causes regressive distribution effect by putting more burdens on the lower income groups and making them refrain from using health care services. Being a relatively incipient country having adopted the out-of-pocket payment model within the context of its Health Transformation Program which has been ongoing since the early 2000s, Turkey provides a good case for re-evaluating the pros and cons of this model in order not to sacrifice equality in access to health care for raising revenue for health care finance and vice versa. Therefore this study aims at analyzing the impact of out-of-pocket payments on the health finance system itself and on the patients’ access to healthcare services in Turkey where out-of-pocket payment model has been in use for a while. In so doing, data showing the revenue obtained from out-of-pocket payments and their share in health care finance are analyzed. In addition to this, data showing the change in the amount of expenditure made by patients on health care services after the adoption of out-of-pocket payments and the change in the use of various health care services in the meanwhile are examined. It is important for the incipient countries like Turkey to be careful in striking the right balance between the objective of cost efficiency and that of equality in accessing health care services while adopting the out-of-pocket payment model.

Keywords: health care access, health care finance, health reform, out-of-pocket payments

Procedia PDF Downloads 375
16129 Group Sequential Covariate-Adjusted Response Adaptive Designs for Survival Outcomes

Authors: Yaxian Chen, Yeonhee Park

Abstract:

Driven by evolving FDA recommendations, modern clinical trials demand innovative designs that strike a balance between statistical rigor and ethical considerations. Covariate-adjusted response-adaptive (CARA) designs bridge this gap by utilizing patient attributes and responses to skew treatment allocation in favor of the treatment that is best for an individual patient’s profile. However, existing CARA designs for survival outcomes often hinge on specific parametric models, constraining their applicability in clinical practice. In this article, we address this limitation by introducing a CARA design for survival outcomes (CARAS) based on the Cox model and a variance estimator. This method addresses issues of model misspecification and enhances the flexibility of the design. We also propose a group sequential overlapweighted log-rank test to preserve type I error rate in the context of group sequential trials using extensive simulation studies to demonstrate the clinical benefit, statistical efficiency, and robustness to model misspecification of the proposed method compared to traditional randomized controlled trial designs and response-adaptive randomization designs.

Keywords: cox model, log-rank test, optimal allocation ratio, overlap weight, survival outcome

Procedia PDF Downloads 65
16128 The Effort of Nutrition Status Improvement through Partnership with Early Age Education Institution on Urban Region, City of Semarang, Indonesia

Authors: Oktia Woro Kasmini Handayani, Sri Ratna Rahayu, Efa Nugroho, Bertakalswa Hermawati

Abstract:

In Indonesia, from 2007 until 2013, the prevalence of overnutrition in children under five years and school age tends to increase. Clean and Health Life Behavior of school children supporting nutrition status still below the determined target. On the other side, school institution is an ideal place to educate and form health behavior, that should be initiated as early as possible (Early Age Education/PAUD level). The objective of this research was to find out the effectivity of education model through partnership with school institution in urban region, city of Semarang, Central Java Province, Indonesia. The research used quantitative approach supported with qualitative data. The population consist of all mother having school children of ages 3-5 years within the research region; sampling technique was purposive sampling, as many as 237 mothers. Research instrument was Clean and Health Life Behavior evaluation questionaire, and video as education media. The research used experimental design. Data analysis used effectivity criteria from Sugiyono and 2 paired sampel t test. Education model optimalization in the effort to improve nutrition status indicates t test result with signification < 0.05 (there was significant effect before and after model intervention), with effectivity test result of 79% (effective), but still below expected target which is 80%. Education model need to be utilized and optimallized the implementation so that expected target reached.

Keywords: nutrition status, early age education, clean dan health life behavior, education model

Procedia PDF Downloads 388
16127 Effect of Infill’s in Influencing the Dynamic Responses of Multistoried Structures

Authors: Rahmathulla Noufal E.

Abstract:

Investigating the dynamic responses of high rise structures under the effect of siesmic ground motion is extremely important for the proper analysis and design of multitoried structures. Since the presence of infilled walls strongly influences the behaviour of frame systems in multistoried buildings, there is an increased need for developing guidelines for the analysis and design of infilled frames under the effect of dynamic loads for safe and proper design of buildings. In this manuscript, we evaluate the natural frequencies and natural periods of single bay single storey frames considering the effect of infill walls by using the Eigen value analysis and validating with SAP 2000 (free vibration analysis). Various parameters obtained from the diagonal strut model followed for the free vibration analysis is then compared with the Finite Element model, where infill is modeled as shell elements (four noded). We also evaluated the effect of various parameters on the natural periods of vibration obtained by free vibration analysis in SAP 2000 comparing them with those obtained by the empirical expressions presented in I.S. 1893(Part I)-2002.

Keywords: infilled frame, eigen value analysis, free vibration analysis, diagonal strut model, finite element model, SAP 2000, natural period

Procedia PDF Downloads 332
16126 Thermal Expansion Coefficient and Young’s Modulus of Silica-Reinforced Epoxy Composite

Authors: Hyu Sang Jo, Gyo Woo Lee

Abstract:

In this study, the evaluation of thermal stability of the micrometer-sized silica particle reinforced epoxy composite was carried out through the measurement of thermal expansion coefficient and Young’s modulus of the specimens. For all the specimens in this study from the baseline to those containing 50 wt% silica filler, the thermal expansion coefficients and the Young’s moduli were gradually decreased down to 20% and increased up to 41%, respectively. The experimental results were compared with filler-volume-based simple empirical relations. The experimental results of thermal expansion coefficients correspond with those of Thomas’s model which is modified from the rule of mixture. However, the measured result for Young’s modulus tends to be increased slightly. The differences in increments of the moduli between experimental and numerical model data are quite large.

Keywords: thermal stability, silica-reinforced, epoxy composite, coefficient of thermal expansion, empirical model

Procedia PDF Downloads 299
16125 Optimal Tamping for Railway Tracks, Reducing Railway Maintenance Expenditures by the Use of Integer Programming

Authors: Rui Li, Min Wen, Kim Bang Salling

Abstract:

For the modern railways, maintenance is critical for ensuring safety, train punctuality and overall capacity utilization. The cost of railway maintenance in Europe is high, on average between 30,000 – 100,000 Euros per kilometer per year. In order to reduce such maintenance expenditures, this paper presents a mixed 0-1 linear mathematical model designed to optimize the predictive railway tamping activities for ballast track in the planning horizon of three to four years. The objective function is to minimize the tamping machine actual costs. The approach of the research is using the simple dynamic model for modelling condition-based tamping process and the solution method for finding optimal condition-based tamping schedule. Seven technical and practical aspects are taken into account to schedule tamping: (1) track degradation of the standard deviation of the longitudinal level over time; (2) track geometrical alignment; (3) track quality thresholds based on the train speed limits; (4) the dependency of the track quality recovery on the track quality after tamping operation; (5) Tamping machine operation practices (6) tamping budgets and (7) differentiating the open track from the station sections. A Danish railway track between Odense and Fredericia with 42.6 km of length is applied for a time period of three and four years in the proposed maintenance model. The generated tamping schedule is reasonable and robust. Based on the result from the Danish railway corridor, the total costs can be reduced significantly (50%) than the previous model which is based on optimizing the number of tamping. The different maintenance strategies have been discussed in the paper. The analysis from the results obtained from the model also shows a longer period of predictive tamping planning has more optimal scheduling of maintenance actions than continuous short term preventive maintenance, namely yearly condition-based planning.

Keywords: integer programming, railway tamping, predictive maintenance model, preventive condition-based maintenance

Procedia PDF Downloads 447
16124 Kinetics of Hydrogen Sulfide Removal from Biogas Using Biofilm on Packed Bed of Salak Fruit Seeds

Authors: Retno A. S. Lestari, Wahyudi B. Sediawan, Siti Syamsiah, Sarto

Abstract:

Sulfur-oxidizing bacteria were isolated and then grown on salak fruit seeds forming a biofilm on the surface. Their performances in sulfide removal were experimentally observed. In doing so, the salak fruit seeds containing biofilm were then used as packing material in a cylinder. Biogas obtained from biological treatment, which contains 27.95 ppm of hydrogen sulfide was flown through the packed bed. The hydrogen sulfide from the biogas was absorbed in the biofilm and then degraded by the microbes in the biofilm. The hydrogen sulfide concentrations at a various axial position and various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. Since the biofilm is very thin, the sulfide concentration in the Biofilm at a certain axial position is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The values of the parameters were also obtained by curve-fitting. The accuracy of the model proposed was tested by comparing the calculation results using the model with the experimental data obtained. It turned out that the model proposed can describe the removal of sulfide liquid using bio-filter in the packed bed. The biofilter could remove 89,83 % of the hydrogen sulfide in the feed at 2.5 hr of operation and biogas flow rate of 30 L/hr.

Keywords: sulfur-oxidizing bacteria, salak fruit seeds, biofilm, packing material, biogas

Procedia PDF Downloads 223
16123 3D CFD Model of Hydrodynamics in Lowland Dam Reservoir in Poland

Authors: Aleksandra Zieminska-Stolarska, Ireneusz Zbicinski

Abstract:

Introduction: The objective of the present work was to develop and validate a 3D CFD numerical model for simulating flow through 17 kilometers long dam reservoir of a complex bathymetry. In contrast to flowing waters, dam reservoirs were not emphasized in the early years of water quality modeling, as this issue has never been the major focus of urban development. Starting in the 1970s, however, it was recognized that natural and man-made lakes are equal, if not more important than estuaries and rivers from a recreational standpoint. The Sulejow Reservoir (Central Poland) was selected as the study area as representative of many lowland dam reservoirs and due availability of a large database of the ecological, hydrological and morphological parameters of the lake. Method: 3D, 2-phase and 1-phase CFD models were analysed to determine hydrodynamics in the Sulejow Reservoir. Development of 3D, 2-phase CFD model of flow requires a construction of mesh with millions of elements and overcome serious convergence problems. As 1-phase CFD model of flow in relation to 2-phase CFD model excludes from the simulations the dynamics of waves only, which should not change significantly water flow pattern for the case of lowland, dam reservoirs. In 1-phase CFD model, the phases (water-air) are separated by a plate which allows calculations of one phase (water) flow only. As the wind affects velocity of flow, to take into account the effect of the wind on hydrodynamics in 1-phase CFD model, the plate must move with speed and direction equal to the speed and direction of the upper water layer. To determine the velocity at which the plate will move on the water surface and interacts with the underlying layers of water and apply this value in 1-phase CFD model, the 2D, 2-phase model was elaborated. Result: Model was verified on the basis of the extensive flow measurements (StreamPro ADCP, USA). Excellent agreement (an average error less than 10%) between computed and measured velocity profiles was found. As a result of work, the following main conclusions can be presented: •The results indicate that the flow field in the Sulejow Reservoir is transient in nature, with swirl flows in the lower part of the lake. Recirculating zones, with the size of even half kilometer, may increase water retention time in this region •The results of simulations confirm the pronounced effect of the wind on the development of the water circulation zones in the reservoir which might affect the accumulation of nutrients in the epilimnion layer and result e.g. in the algae bloom. Conclusion: The resulting model is accurate and the methodology develop in the frame of this work can be applied to all types of storage reservoir configurations, characteristics, and hydrodynamics conditions. Large recirculating zones in the lake which increase water retention time and might affect the accumulation of nutrients were detected. Accurate CFD model of hydrodynamics in large water body could help in the development of forecast of water quality, especially in terms of eutrophication and water management of the big water bodies.

Keywords: CFD, mathematical modelling, dam reservoirs, hydrodynamics

Procedia PDF Downloads 401
16122 Optimizing Microgrid Operations: A Framework of Adaptive Model Predictive Control

Authors: Ruben Lopez-Rodriguez

Abstract:

In a microgrid, diverse energy sources (both renewable and non-renewable) are combined with energy storage units to form a localized power system. Microgrids function as independent entities, capable of meeting the energy needs of specific areas or communities. This paper introduces a Model Predictive Control (MPC) approach tailored for grid-connected microgrids, aiming to optimize their operation. The formulation employs Mixed-Integer Programming (MIP) to find optimal trajectories. This entails the fulfillment of continuous and binary constraints, all while accounting for commutations between various operating conditions such as storage unit charge/discharge, import/export from/towards the main grid, as well as asset connection/disconnection. To validate the proposed approach, a microgrid case study is conducted, and the simulation results are compared with those obtained using a rule-based strategy.

Keywords: microgrids, mixed logical dynamical systems, mixed-integer optimization, model predictive control

Procedia PDF Downloads 58
16121 The Role of Academic Leaders at Jerash University in Crises Management 'Virus Corona as a Model'

Authors: Khaled M. Hama, Mohammed Al Magableh, Zaid Al Kuri, Ahmad Qayam

Abstract:

The study aimed to identify the role of academic leaders at Jerash University in crisis management from the faculty members' point of view, ‘the emerging Corona pandemic as a model’, as well as to identify the differences in the role of academic leaders at Jerash University in crisis management at the significance level (0.05 ≤ α) according to the study variables Gender Academic rank, years of experience, and identifying proposals that contribute to developing the performance of academic leaders at Jerash University in crisis management, ‘the Corona pandemic as a model’. The study was applied to a randomly selected sample of (72) faculty members at Jerash University, The researcher designed a tool for the study, which is the questionnaire, and it included two parts: the first part related to the personal data of the study sample members, and the second part was divided into five areas and (34) paragraphs to reveal the role of academic leaders at Jerash University in crisis management - the Corona pandemic as a model, it was confirmed From the validity and reliability of the tool, the study used the descriptive analytical method The study reached the following results: that the role of academic leaders at Jerash University in crisis management from the point of view of faculty members, ‘the emerging corona pandemic as a model’, came to a high degree, and there were no statistically significant differences at the level of statistical significance (α = 0.05) between the computational circles for the estimates of individuals The study sample for the role of academic leaders at Jerash University in crisis management is attributed to the study variables (gender, academic rank, and years of experience)

Keywords: academic leaders, crisis management, corona pandemic, Jerash University

Procedia PDF Downloads 57
16120 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 170
16119 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 160
16118 The Attitudes of Pre-Service Teachers towards Analytical Thinking Skill Development Based on Miller’s Model

Authors: Thassanant Unnanantn, Suttipong Boonphadung

Abstract:

This research study aimed to survey and analyze the attitudes of pre-service teachers’ the analytical thinking development based on Miller’s Model. The informants of this study were 22 third year teacher students majoring in Thai. The course where the instruction was conducted was English for Academic Purposes in Thai Language 2. The instrument of this research was an open-ended questionnaire with two dimensions of questions: academic and satisfaction dimensions. The investigation revealed the positive attitudes. In the academic dimension, the majority of 12 (54.54%), the highest percentage, reflected that the method of teaching analytical thinking and language simultaneously was their new knowledge and the similar percentage also belonged to text cohesion in writing. For the satisfaction, the highest frequency count was from 17 of them (77.27%) and this majority favored the openness or friendliness of the teacher.

Keywords: analytical thinking development, Miller’s Model, attitudes, pre-service teachers

Procedia PDF Downloads 310
16117 Effect of Assumptions of Normal Shock Location on the Design of Supersonic Ejectors for Refrigeration

Authors: Payam Haghparast, Mikhail V. Sorin, Hakim Nesreddine

Abstract:

The complex oblique shock phenomenon can be simply assumed as a normal shock at the constant area section to simulate a sharp pressure increase and velocity decrease in 1-D thermodynamic models. The assumed normal shock location is one of the greatest sources of error in ejector thermodynamic models. Most researchers consider an arbitrary location without justifying it. Our study compares the effect of normal shock place on ejector dimensions in 1-D models. To this aim, two different ejector experimental test benches, a constant area-mixing ejector (CAM) and a constant pressure-mixing (CPM) are considered, with different known geometries, operating conditions and working fluids (R245fa, R141b). In the first step, in order to evaluate the real value of the efficiencies in the different ejector parts and critical back pressure, a CFD model was built and validated by experimental data for two types of ejectors. These reference data are then used as input to the 1D model to calculate the lengths and the diameters of the ejectors. Afterwards, the design output geometry calculated by the 1D model is compared directly with the corresponding experimental geometry. It was found that there is a good agreement between the ejector dimensions obtained by the 1D model, for both CAM and CPM, with experimental ejector data. Furthermore, it is shown that normal shock place affects only the constant area length as it is proven that the inlet normal shock assumption results in more accurate length. Taking into account previous 1D models, the results suggest the use of the assumed normal shock location at the inlet of the constant area duct to design the supersonic ejectors.

Keywords: 1D model, constant area-mixing, constant pressure-mixing, normal shock location, ejector dimensions

Procedia PDF Downloads 195
16116 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Partitioned Solution Approach and an Exponential Model

Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino

Abstract:

The solution of the nonlinear dynamic equilibrium equations of base-isolated structures adopting a conventional monolithic solution approach, i.e. an implicit single-step time integration method employed with an iteration procedure, and the use of existing nonlinear analytical models, such as differential equation models, to simulate the dynamic behavior of seismic isolators can require a significant computational effort. In order to reduce numerical computations, a partitioned solution method and a one dimensional nonlinear analytical model are presented in this paper. A partitioned solution approach can be easily applied to base-isolated structures in which the base isolation system is much more flexible than the superstructure. Thus, in this work, the explicit conditionally stable central difference method is used to evaluate the base isolation system nonlinear response and the implicit unconditionally stable Newmark’s constant average acceleration method is adopted to predict the superstructure linear response with the benefit in avoiding iterations in each time step of a nonlinear dynamic analysis. The proposed mathematical model is able to simulate the dynamic behavior of seismic isolators without requiring the solution of a nonlinear differential equation, as in the case of widely used differential equation model. The proposed mixed explicit-implicit time integration method and nonlinear exponential model are adopted to analyze a three dimensional seismically isolated structure with a lead rubber bearing system subjected to earthquake excitation. The numerical results show the good accuracy and the significant computational efficiency of the proposed solution approach and analytical model compared to the conventional solution method and mathematical model adopted in this work. Furthermore, the low stiffness value of the base isolation system with lead rubber bearings allows to have a critical time step considerably larger than the imposed ground acceleration time step, thus avoiding stability problems in the proposed mixed method.

Keywords: base-isolated structures, earthquake engineering, mixed time integration, nonlinear exponential model

Procedia PDF Downloads 281
16115 Agile Software Effort Estimation Using Regression Techniques

Authors: Mikiyas Adugna

Abstract:

Effort estimation is among the activities carried out in software development processes. An accurate model of estimation leads to project success. The method of agile effort estimation is a complex task because of the dynamic nature of software development. Researchers are still conducting studies on agile effort estimation to enhance prediction accuracy. Due to these reasons, we investigated and proposed a model on LASSO and Elastic Net regression to enhance estimation accuracy. The proposed model has major components: preprocessing, train-test split, training with default parameters, and cross-validation. During the preprocessing phase, the entire dataset is normalized. After normalization, a train-test split is performed on the dataset, setting training at 80% and testing set to 20%. We chose two different phases for training the two algorithms (Elastic Net and LASSO) regression following the train-test-split. In the first phase, the two algorithms are trained using their default parameters and evaluated on the testing data. In the second phase, the grid search technique (the grid is used to search for tuning and select optimum parameters) and 5-fold cross-validation to get the final trained model. Finally, the final trained model is evaluated using the testing set. The experimental work is applied to the agile story point dataset of 21 software projects collected from six firms. The results show that both Elastic Net and LASSO regression outperformed the compared ones. Compared to the proposed algorithms, LASSO regression achieved better predictive performance and has acquired PRED (8%) and PRED (25%) results of 100.0, MMRE of 0.0491, MMER of 0.0551, MdMRE of 0.0593, MdMER of 0.063, and MSE of 0.0007. The result implies LASSO regression algorithm trained model is the most acceptable, and higher estimation performance exists in the literature.

Keywords: agile software development, effort estimation, elastic net regression, LASSO

Procedia PDF Downloads 73
16114 Impact of Primary Care on Sexual and Reproductive Health for Migrant Women in Medellín Colombia

Authors: Alexis Piedrahita, Ludi Valencia, Aura Gutierrez

Abstract:

The migration crisis that is currently being experienced in the world is a continuous phenomenon that has had solutions in form but not in substance, violating the international humanitarian law of people who are in transit through countries foreign to their roots, especially women of age reproductive, this has caused different governments and organizations worldwide to meet around this problem to define concise actions to protect the rights of migrant women in the world. This research compiles the stories of migrant women who arrive in Colombia seeking better opportunities, such as accessibility to comprehensive and quality health services, including primary health care. This is the gateway to the offer of health promotion and disease prevention services.

Keywords: accessibility, primary health care, sexual and reproductive health, sustainable development goals, women migrant

Procedia PDF Downloads 80
16113 Angiogenesis and Blood Flow: The Role of Blood Flow in Proliferation and Migration of Endothelial Cells

Authors: Hossein Bazmara, Kaamran Raahemifar, Mostafa Sefidgar, Madjid Soltani

Abstract:

Angiogenesis is formation of new blood vessels from existing vessels. Due to flow of blood in vessels, during angiogenesis, blood flow plays an important role in regulating the angiogenesis process. Multiple mathematical models of angiogenesis have been proposed to simulate the formation of the complicated network of capillaries around a tumor. In this work, a multi-scale model of angiogenesis is developed to show the effect of blood flow on capillaries and network formation. This model spans multiple temporal and spatial scales, i.e. intracellular (molecular), cellular, and extracellular (tissue) scales. In intracellular or molecular scale, the signaling cascade of endothelial cells is obtained. Two main stages in development of a vessel are considered. In the first stage, single sprouts are extended toward the tumor. In this stage, the main regulator of endothelial cells behavior is the signals from extracellular matrix. After anastomosis and formation of closed loops, blood flow starts in the capillaries. In this stage, blood flow induced signals regulate endothelial cells behaviors. In cellular scale, growth and migration of endothelial cells is modeled with a discrete lattice Monte Carlo method called cellular Pott's model (CPM). In extracellular (tissue) scale, diffusion of tumor angiogenic factors in the extracellular matrix, formation of closed loops (anastomosis), and shear stress induced by blood flow is considered. The model is able to simulate the formation of a closed loop and its extension. The results are validated against experimental data. The results show that, without blood flow, the capillaries are not able to maintain their integrity.

Keywords: angiogenesis, endothelial cells, multi-scale model, cellular Pott's model, signaling cascade

Procedia PDF Downloads 427