Search results for: virtual case-based learning
5154 Child-Friendly Digital Storytelling to Promote Young Learners' Critical Thinking in English Learning
Authors: Setyarini Sri, Nursalim Agus
Abstract:
Integrating critical thinking and digital based learning is one of demands in teaching English in 21st century. Child-friendly digital storytelling (CFDS) is an innovative learning model to promote young learners’ critical thinking. Therefore, this study aims to (1) investigate how child-friendly digital storytelling is implemented to promote young learners’ critical thinking in speaking English; (2) find out the benefits gained by the students in their learning based on CFDS. Classroom Action Research (CAR) took place in two cycles in which each of the cycle covered four phases namely: Planning, Acting, Observing, and Evaluating. Three classes of seventh graders were selected as the subjects of this study. Data were collected through observation, interview with some selected students as respondents, and document analysis in the form individual recorded storytelling. Sentences, phrases, words found in the transcribed data were identified and categorized based on Bloom taxonomy. The findings from the first cycle showed that the students seemed to speak critically that can be seen from the way they understood the story and related the story to their real life. Meanwhile, the result investigated from the second cycle likely indicated their higher level of critical thinking since the students spoke in English critically through comparing, questioning, analyzing, and evaluating the story by giving arguments, opinions, and comments. Such higher levels of critical thinking were also found in the students’ final project of individual recorded digital story. It is elaborated from the students’ statements in the interview who claimed CFDS offered opportunity to the students to promote their critical thinking because they comprehended the story deeply as they experienced in their real life. This learning model created good learning atmosphere and engaged the students directly so that they looked confident to retell the story in various perspectives. In term of the benefits of child-friendly digital storytelling, the students found it beneficial for some enjoyable classroom activities through watching beautiful and colorful pictures, listening to clear and good sounds, appealing moving motion and emotionally they were involved in that story. In the interview, the students also stated that child-friendly digital storytelling eased them to understand the meaning of the story as they were motivated and enthusiastic to speak in English critically.Keywords: critical thinking, child-friendly digital storytelling, English speaking, promoting, young learners
Procedia PDF Downloads 2835153 The Impact of Low-Systematization Level in Physical Education in Primary School
Authors: Wu Hong, Pan Cuilian, Wu Panzifan
Abstract:
The student’s attention during the class is one of the most important indicators for the learning evaluation; the level of attention is directly related to the results of primary education. In recent years, extensive research has been conducted across China on improving primary school students’ attention during class. During the specific teaching activities in primary school, students have the characteristics of short concentration periods, high probability of distraction, and difficulty in long-term immersive learning. In physical education teaching, where there are mostly outdoor activities, this characteristic is particularly prominent due to the large changes in the environment and the strong sense of freshness among students. It is imperative to overcome this characteristic in a targeted manner, improve the student’s experience in the course, and raise the degree of systematization. There are many ways to improve the systematization of teaching and learning, but most of them lack quantitative indicators, which makes it difficult to evaluate the improvements before and after changing the teaching methods. Based on the situation above, we use the case analysis method, combined with a literature review, to study the negative impact of low systematization levels in primary school physical education teaching, put forward targeted improvement suggestions, and make a quantitative evaluation of the method change.Keywords: attention, adolescent, evaluation, systematism, training-method
Procedia PDF Downloads 485152 Machine Learning-Based Techniques for Detecting and Mitigating Cyber-attacks on Automatic Generation Control in Smart Grids
Authors: Sami M. Alshareef
Abstract:
The rapid growth of smart grid technology has brought significant advancements to the power industry. However, with the increasing interconnectivity and reliance on information and communication technologies, smart grids have become vulnerable to cyber-attacks, posing significant threats to the reliable operation of power systems. Among the critical components of smart grids, the Automatic Generation Control (AGC) system plays a vital role in maintaining the balance between generation and load demand. Therefore, protecting the AGC system from cyber threats is of paramount importance to maintain grid stability and prevent disruptions. Traditional security measures often fall short in addressing sophisticated and evolving cyber threats, necessitating the exploration of innovative approaches. Machine learning, with its ability to analyze vast amounts of data and learn patterns, has emerged as a promising solution to enhance AGC system security. Therefore, this research proposal aims to address the challenges associated with detecting and mitigating cyber-attacks on AGC in smart grids by leveraging machine learning techniques on automatic generation control of two-area power systems. By utilizing historical data, the proposed system will learn the normal behavior patterns of AGC and identify deviations caused by cyber-attacks. Once an attack is detected, appropriate mitigation strategies will be employed to safeguard the AGC system. The outcomes of this research will provide power system operators and administrators with valuable insights into the vulnerabilities of AGC systems in smart grids and offer practical solutions to enhance their cyber resilience.Keywords: machine learning, cyber-attacks, automatic generation control, smart grid
Procedia PDF Downloads 865151 Bridging the Gap between Teaching and Learning: A 3-S (Strength, Stamina, Speed) Model for Medical Education
Authors: Mangala. Sadasivan, Mary Hughes, Bryan Kelly
Abstract:
Medical Education must focus on bridging the gap between teaching and learning when training pre-clinical year students in skills needed to keep up with medical knowledge and to meet the demands of health care in the future. The authors were interested in showing that a 3-S Model (building strength, developing stamina, and increasing speed) using a bridged curriculum design helps connect teaching and learning and improves students’ retention of basic science and clinical knowledge. The authors designed three learning modules using the 3-S Model within a systems course in a pre-clerkship medical curriculum. Each module focused on a bridge (concept map) designed by the instructor for specific content delivered to students in the course. This with-in-subjects design study included 304 registered MSU osteopathic medical students (3 campuses) ranked by quintile based on previous coursework. The instructors used the bridge to create self-directed learning exercises (building strength) to help students master basic science content. Students were video coached on how to complete assignments, and given pre-tests and post-tests designed to give them control to assess and identify gaps in learning and strengthen connections. The instructor who designed the modules also used video lectures to help students master clinical concepts and link them (building stamina) to previously learned material connected to the bridge. Boardstyle practice questions relevant to the modules were used to help students improve access (increasing speed) to stored content. Unit Examinations covering the content within modules and materials covered by other instructors teaching within the units served as outcome measures in this study. This data was then compared to each student’s performance on a final comprehensive exam and their COMLEX medical board examinations taken some time after the course. The authors used mean comparisons to evaluate students’ performances on module items (using 3-S Model) to non-module items on unit exams, final course exam and COMLEX medical board examination. The data shows that on average, students performed significantly better on module items compared to non-module items on exams 1 and 2. The module 3 exam was canceled due to a university shut down. The difference in mean scores (module verses non-module) items disappeared on the final comprehensive exam which was rescheduled once the university resumed session. Based on Quintile designation, the mean scores were higher for module items than non-module items and the difference in scores between items for Quintiles 1 and 2 were significantly better on exam 1 and the gap widened for all Quintile groups on exam 2 and disappeared in exam 3. Based on COMLEX performance, all students on average as a group, whether they Passed or Failed, performed better on Module items than non-module items in all three exams. The gap between scores of module items for students who passed COMLEX to those who failed was greater on Exam 1 (14.3) than on Exam 2 (7.5) and Exam 3 (10.2). Data shows the 3-S Model using a bridge effectively connects teaching and learningKeywords: bridging gap, medical education, teaching and learning, model of learning
Procedia PDF Downloads 635150 Decision-Making, Student Empathy, and Cold War Historical Events: A Case Study of Abstract Thinking through Content-Centered Learning
Authors: Jeffrey M. Byford
Abstract:
The conceptualized theory of decision making on historical events often does not conform to uniform beliefs among students. When presented the opportunity, many students have differing opinions and rationales associated with historical events and outcomes. The intent of this paper was to provide students with the economic, social and political dilemmas associated with the autonomy of East Berlin. Students ranked seven possible actions from the most to least acceptable. In addition, students were required to provide both positive and negative factors for each decision and relative ranking. Results from this activity suggested that while most students chose a financial action towards West Berlin, some students had trouble justifying their actions.Keywords: content-centered learning, cold war, Berlin, decision-making
Procedia PDF Downloads 4565149 Preliminary Results on a Maximum Mean Discrepancy Approach for Seizure Detection
Authors: Boumediene Hamzi, Turky N. AlOtaiby, Saleh AlShebeili, Arwa AlAnqary
Abstract:
We introduce a data-driven method for seizure detection drawing on recent progress in Machine Learning. The method is based on embedding probability measures in a high (or infinite) dimensional reproducing kernel Hilbert space (RKHS) where the Maximum Mean Discrepancy (MMD) is computed. The MMD is metric between probability measures that are computed as the difference between the means of probability measures after being embedded in an RKHS. Working in RKHS provides a convenient, general functional-analytical framework for theoretical understanding of data. We apply this approach to the problem of seizure detection.Keywords: kernel methods, maximum mean discrepancy, seizure detection, machine learning
Procedia PDF Downloads 2385148 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.Keywords: computer vision, human motion analysis, random forest, machine learning
Procedia PDF Downloads 465147 A Service-Learning Experience in the Subject of Adult Nursing
Authors: Eva de Mingo-Fernández, Lourdes Rubio Rico, Carmen Ortega-Segura, Montserrat Querol-García, Raúl González-Jauregui
Abstract:
Today, one of the great challenges that the university faces is to get closer to society and transfer knowledge. The competency-based training approach favours a continuous interaction between practice and theory, which is why it is essential to establish real experiences with reflection and debate and to contrast them with personal and professional knowledge. Service-learning (SL) consists of an integration of academic learning with service in the community, which enables teachers to transfer knowledge with social value and students to be trained on the basis of experience of real needs and problems with the aim of solving them. SLE combines research, teaching, and social value knowledge transfer with the real social needs and problems of a community. Goal: The objective of this study was to design, implement, and evaluate a service-learning program in the subject of adult nursing for second-year nursing students. Methodology: After establishing collaboration with eight associations of people with different pathologies, the students were divided into eight groups, and each group was assigned an association. The groups were made up of 10-12 students. The associations willing to participate were for the following conditions: diabetes, multiple sclerosis, cancer, inflammatory bowel disease, fibromyalgia, heart, lung, and kidney diseases. The methodological design consisting of 5 activities was then applied. Three activities address personal and individual reflections, where the student initially describes what they think it is like to live with a certain disease. They then express their reflections resulting from an interview conducted by peers, in person or online, with a person living with this particular condition, and after sharing the results of their reflections with the rest of the group, they make an oral presentation in which they present their findings to the other students. This is followed by a service task in which the students collaborate in different activities of the association, and finally, a third individual reflection is carried out in which the students express their experience of collaboration. The evaluation of this activity is carried out by means of a rubric for both the reflections and the presentation. It should be noted that the oral presentation is evaluated both by the rest of the classmates and by the teachers. Results: The evaluation of the activity, given by the students, is 7.80/10, commenting that the experience is positive and brings them closer to the reality of the people and the area.Keywords: academic learning integration, knowledge transfer, service-learning, teaching methodology
Procedia PDF Downloads 745146 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children
Authors: Budhvin T. Withana, Sulochana Rupasinghe
Abstract:
The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science
Procedia PDF Downloads 1205145 Managing Cognitive Load in Accounting: An Analysis of Three Instructional Designs in Financial Accounting
Authors: Seedwell Sithole
Abstract:
One of the persistent problems in accounting education is how to effectively support students’ learning. A promising technique to this issue is to investigate the extent that learning is determined by the design of instructional material. This study examines the academic performance of students using three instructional designs in financial accounting. Student’s performance scores and reported mental effort ratings were used to determine the instructional effectiveness. The findings of this study show that accounting students prefer graph and text designs that are integrated. The results suggest that spatially separated graph and text presentations in accounting should be reorganized to align with the requirements of human cognitive architecture.Keywords: accounting, cognitive load, education, instructional preferences, students
Procedia PDF Downloads 1545144 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 1355143 Exploring Problem-Based Learning and University-Industry Collaborations for Fostering Students’ Entrepreneurial Skills: A Qualitative Study in a German Urban Setting
Authors: Eylem Tas
Abstract:
This empirical study aims to explore the development of students' entrepreneurial skills through problem-based learning within the context of university-industry collaborations (UICs) in curriculum co-design and co-delivery (CDD). The research question guiding this study is: "How do problem-based learning and university-industry collaborations influence the development of students' entrepreneurial skills in the context of curriculum co-design and co-delivery?” To address this question, the study was conducted in a big city in Germany and involved interviews with stakeholders from various industries, including the private sector, government agencies (govt), and non-governmental organizations (NGOs). These stakeholders had established collaborative partnerships with the targeted university for projects encompassing entrepreneurial development aspects in CDD. The study sought to gain insights into the intricacies and subtleties of UIC dynamics and their impact on fostering entrepreneurial skills. Qualitative content analysis, based on Mayring's guidelines, was employed to analyze the interview transcriptions. Through an iterative process of manual coding, 442 codes were generated, resulting in two main sections: "the role of problem-based learning and UIC in fostering entrepreneurship" and "challenges and requirements of problem-based learning within UIC for systematical entrepreneurship development.” The chosen experimental approach of semi-structured interviews was justified by its capacity to provide in-depth perspectives and rich data from stakeholders with firsthand experience in UICs in CDD. By enlisting participants with diverse backgrounds, industries, and company sizes, the study ensured a comprehensive and heterogeneous sample, enhancing the credibility of the findings. The first section of the analysis delved into problem-based learning and entrepreneurial self-confidence to gain a deeper understanding of UIC dynamics from an industry standpoint. It explored factors influencing problem-based learning, alignment of students' learning styles and preferences with the experiential learning approach, specific activities and strategies, and the role of mentorship from industry professionals in fostering entrepreneurial self-confidence. The second section focused on various interactions within UICs, including communication, knowledge exchange, and collaboration. It identified key elements, patterns, and dynamics of interaction, highlighting challenges and limitations. Additionally, the section emphasized success stories and notable outcomes related to UICs' positive impact on students' entrepreneurial journeys. Overall, this research contributes valuable insights into the dynamics of UICs and their role in fostering students' entrepreneurial skills. UICs face challenges in communication and establishing a common language. Transparency, adaptability, and regular communication are vital for successful collaboration. Realistic expectation management and clearly defined frameworks are crucial. Responsible data handling requires data assurance and confidentiality agreements, emphasizing the importance of trust-based relationships when dealing with data sharing and handling issues. The identified key factors and challenges provide a foundation for universities and industrial partners to develop more effective UIC strategies for enhancing students' entrepreneurial capabilities and preparing them for success in today's digital age labor market. The study underscores the significance of collaborative learning and transparent communication in UICs for entrepreneurial development in CDD.Keywords: collaborative learning, curriculum co-design and co-delivery, entrepreneurial skills, problem-based learning, university-industry collaborations
Procedia PDF Downloads 635142 Using Indigenous Games to Demystify Probability Theorem in Ghanaian Classrooms: Mathematical Analysis of Ampe
Authors: Peter Akayuure, Michael Johnson Nabie
Abstract:
Similar to many colonized nations in the world, one indelible mark left by colonial masters after Ghana’s independence in 1957 has been the fact that many contexts used to teach statistics and probability concepts are often alien and do not resonate with the social domain of our indigenous Ghanaian child. This has seriously limited the understanding, discoveries, and applications of mathematics for national developments. With the recent curriculum demands of making the Ghanaian child mathematically literate, this qualitative study involved video recordings and mathematical analysis of play sessions of an indigenous girl game called Ampe with the aim to demystify the concepts in probability theorem, which is applied in mathematics related fields of study. The mathematical analysis shows that the game of Ampe, which is widely played by school girls in Ghana, is suitable for learning concepts of the probability theorems. It was also revealed that as a girl game, the use of Ampe provides good lessons to educators, textbook writers, and teachers to rethink about the selection of mathematics tasks and learning contexts that are sensitive to gender. As we undertake to transform teacher education and student learning, the use of indigenous games should be critically revisited.Keywords: Ampe, mathematical analysis, probability theorem, Ghanaian girl game
Procedia PDF Downloads 3745141 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods
Authors: Bandar Alahmadi, Lethia Jackson
Abstract:
Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.Keywords: adversarial examples, attack, computer vision, image processing
Procedia PDF Downloads 3425140 Computational Model of Human Cardiopulmonary System
Authors: Julian Thrash, Douglas Folk, Michael Ciracy, Audrey C. Tseng, Kristen M. Stromsodt, Amber Younggren, Christopher Maciolek
Abstract:
The cardiopulmonary system is comprised of the heart, lungs, and many dynamic feedback mechanisms that control its function based on a multitude of variables. The next generation of cardiopulmonary medical devices will involve adaptive control and smart pacing techniques. However, testing these smart devices on living systems may be unethical and exceedingly expensive. As a solution, a comprehensive computational model of the cardiopulmonary system was implemented in Simulink. The model contains over 240 state variables and over 100 equations previously described in a series of published articles. Simulink was chosen because of its ease of introducing machine learning elements. Initial results indicate that physiologically correct waveforms of pressures and volumes were obtained in the simulation. With the development of a comprehensive computational model, we hope to pioneer the future of predictive medicine by applying our research towards the initial stages of smart devices. After validation, we will introduce and train reinforcement learning agents using the cardiopulmonary model to assist in adaptive control system design. With our cardiopulmonary model, we will accelerate the design and testing of smart and adaptive medical devices to better serve those with cardiovascular disease.Keywords: adaptive control, cardiopulmonary, computational model, machine learning, predictive medicine
Procedia PDF Downloads 1835139 An Android Geofencing App for Autonomous Remote Switch Control
Authors: Jamie Wong, Daisy Sang, Chang-Shyh Peng
Abstract:
Geofence is a virtual fence defined by a preset physical radius around a target location. Geofencing App provides location-based services which define the actionable operations upon the crossing of a geofence. Geofencing requires continual location tracking, which can consume noticeable amount of battery power. Additionally, location updates need to be frequent and accurate or order so that actions can be triggered within an expected time window after the mobile user navigate through the geofence. In this paper, we build an Android mobile geofencing Application to remotely and autonomously control a power switch.Keywords: location based service, geofence, autonomous, remote switch
Procedia PDF Downloads 3175138 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling
Authors: Amin Nezarat, Naeime Seifadini
Abstract:
Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.Keywords: predicting, deep learning, neural network, urban trip
Procedia PDF Downloads 1395137 Reinforcement-Learning Based Handover Optimization for Cellular Unmanned Aerial Vehicles Connectivity
Authors: Mahmoud Almasri, Xavier Marjou, Fanny Parzysz
Abstract:
The demand for services provided by Unmanned Aerial Vehicles (UAVs) is increasing pervasively across several sectors including potential public safety, economic, and delivery services. As the number of applications using UAVs grows rapidly, more and more powerful, quality of service, and power efficient computing units are necessary. Recently, cellular technology draws more attention to connectivity that can ensure reliable and flexible communications services for UAVs. In cellular technology, flying with a high speed and altitude is subject to several key challenges, such as frequent handovers (HOs), high interference levels, connectivity coverage holes, etc. Additional HOs may lead to “ping-pong” between the UAVs and the serving cells resulting in a decrease of the quality of service and energy consumption. In order to optimize the number of HOs, we develop in this paper a Q-learning-based algorithm. While existing works focus on adjusting the number of HOs in a static network topology, we take into account the impact of cells deployment for three different simulation scenarios (Rural, Semi-rural and Urban areas). We also consider the impact of the decision distance, where the drone has the choice to make a switching decision on the number of HOs. Our results show that a Q-learning-based algorithm allows to significantly reduce the average number of HOs compared to a baseline case where the drone always selects the cell with the highest received signal. Moreover, we also propose which hyper-parameters have the largest impact on the number of HOs in the three tested environments, i.e. Rural, Semi-rural, or Urban.Keywords: drones connectivity, reinforcement learning, handovers optimization, decision distance
Procedia PDF Downloads 1105136 Effectively Improving Cognition, Behavior, and Attitude of Diabetes Inpatients through Nutritional Education
Authors: Han Chih Feng, Yi-Cheng Hou, Jing-Huei Wu
Abstract:
Diabetes is a chronic disease. Nutrition knowledge and skills enable individuals with type 2 diabetes to optimize metabolic self-management and quality of life. This research studies the effect of nutritional education on diabetes inpatients in terms of their cognition, behavior, and attitude. The participants are inpatients diagnosed with diabetes at Taipei Tzu Chi Hospital. A total of 103 participants, 58 male, and 45 females, enrolled in the research between January 2018 and July 2018. The research evaluates cognition, behavior, and attitude level before and after nutritional education conducted by dietitians. The result shows significant improvement in actual consumption (2.5 ± 1.4 vs 3.8 ± 0.7; p<.001), diet control motivation (2.7 ± 0.8 vs 3.4 ± 0.6; p<.001), correct nutrition concept (1.2± 0.4 vs 2.4 ± 0.5; p<.001), learning willingness (2.7± 0.9 vs 3.4 ± 0.6; p<.001), cognitive behaviors (1.4 ± 0.5 vs 2.9 ± 0.7; p<.001). AC sugar (278.5 ± 321.5 vs 152.2 ± 49.1; p<.001) and HbA1C (10.3 ± 2.6 vs 8.6 ± 1.9; p<.001) are significant improvement after nutritional education. After nutritional education, participants oral hypoglycemic agents increased from 16 (9.2%) to 33 (19.0%), insulin decreased from 75 (43.1%) to 68 (39.1%), and hypoglycemic drugs combined with insulin decreased from 83 (47.7%) to 73 (42.0%).Further analysis shows that female inpatients have significant improvement in diet control motivation (3.91 ± 0.85 vs 4.44 ± 0.59; p<0.000), correct nutrition concept (3.24± 0.48 vs 4.47± 0.51; p<0.000), learning willingness (3.89 ± 0.86 vs 4.44 ± 0.59; p<0.000) and cognitive behaviors (2.42 ± 0.58 vs 4.02 ± 0.69; p<0.000); male inpatients have significant improvement in actual food intake (4.41± 0.92 vs 3.97 ± 0.42; p<0.000), diet control motivation (3.62 ± 0.86 vs 4.29 ± 0.62; p<0.000), correct nutrition concept (3.26 ± 0.44 vs 4.36 ± 0.49; p<0.000), learning willingness (3.72± 0.93 vs 4.33± 0.63; p<0.000) and cognitive behaviors (2.45± 0.54 vs 4.03± 0.77; p<0.000). In conclusion, nutritional education proves effective, regardless of gender, in improving an inpatient’s cognition, behavior, and attitude toward diabetes self-management.Keywords: diabetes, nutrition education, actual consumption, diet control motivation, nutrition concept, learning willingness, cognitive behaviors
Procedia PDF Downloads 875135 The Next Generation’s Learning Ability, Memory, as Well as Cognitive Skills Is under the Influence of Paternal Physical Activity (An Intergenerational and Trans-Generational Effect): A Systematic Review and Meta-Analysis
Authors: Parvin Goli, Amirhosein Kefayat, Rezvan Goli
Abstract:
Background: It is well established that parents can influence their offspring's neurodevelopment. It is shown that paternal environment and lifestyle is beneficial for the progeny's fitness and might affect their metabolic mechanisms; however, the effects of paternal exercise on the brain in the offspring have not been explored in detail. Objective: This study aims to review the impact of paternal physical exercise on memory and learning, neuroplasticity, as well as DNA methylation levels in the off-spring's hippocampus. Study design: In this systematic review and meta-analysis, an electronic literature search was conducted in databases including PubMed, Scopus, and Web of Science. Eligible studies were those with an experimental design, including an exercise intervention arm, with the assessment of any type of memory function, learning ability, or any type of brain plasticity as the outcome measures. Standardized mean difference (SMD) and 95% confidence intervals (CI) were computed as effect size. Results: The systematic review revealed the important role of environmental enrichment in the behavioral development of the next generation. Also, offspring of exercised fathers displayed higher levels of memory ability and lower level of brain-derived neurotrophic factor. A significant effect of paternal exercise on the hippocampal volume was also reported in the few available studies. Conclusion: These results suggest an intergenerational effect of paternal physical activity on cognitive benefit, which may be associated with hippocampal epigenetic programming in offspring. However, the biological mechanisms of this modulation remain to be determined.Keywords: hippocampal plasticity, learning ability, memory, parental exercise
Procedia PDF Downloads 2125134 Cardiokey: A Binary and Multi-Class Machine Learning Approach to Identify Individuals Using Electrocardiographic Signals on Wearable Devices
Authors: S. Chami, J. Chauvin, T. Demarest, Stan Ng, M. Straus, W. Jahner
Abstract:
Biometrics tools such as fingerprint and iris are widely used in industry to protect critical assets. However, their vulnerability and lack of robustness raise several worries about the protection of highly critical assets. Biometrics based on Electrocardiographic (ECG) signals is a robust identification tool. However, most of the state-of-the-art techniques have worked on clinical signals, which are of high quality and less noisy, extracted from wearable devices like a smartwatch. In this paper, we are presenting a complete machine learning pipeline that identifies people using ECG extracted from an off-person device. An off-person device is a wearable device that is not used in a medical context such as a smartwatch. In addition, one of the main challenges of ECG biometrics is the variability of the ECG of different persons and different situations. To solve this issue, we proposed two different approaches: per person classifier, and one-for-all classifier. The first approach suggests making binary classifier to distinguish one person from others. The second approach suggests a multi-classifier that distinguishes the selected set of individuals from non-selected individuals (others). The preliminary results, the binary classifier obtained a performance 90% in terms of accuracy within a balanced data. The second approach has reported a log loss of 0.05 as a multi-class score.Keywords: biometrics, electrocardiographic, machine learning, signals processing
Procedia PDF Downloads 1445133 Collaborative Team Work in Higher Education: A Case Study
Authors: Swapna Bhargavi Gantasala
Abstract:
If teamwork is the key to organizational learning, productivity, and growth, then, why do some teams succeed in achieving these, while others falter at different stages? Building teams in higher education institutions has been a challenge and an open-ended constructivist approach was considered on an experimental basis for this study to address this challenge. For this research, teams of students from the MBA program were chosen to study the effect of teamwork in learning, the motivation levels among student team members, and the effect of collaboration in achieving team goals. The teams were built on shared vision and goals, cohesion was ensured, positive induction in the form of faculty mentoring was provided for each participating team and the results have been presented with conclusions and suggestions.Keywords: teamwork, leadership, motivation and reinforcement, collaboration
Procedia PDF Downloads 3785132 End-to-End Spanish-English Sequence Learning Translation Model
Authors: Vidhu Mitha Goutham, Ruma Mukherjee
Abstract:
The low availability of well-trained, unlimited, dynamic-access models for specific languages makes it hard for corporate users to adopt quick translation techniques and incorporate them into product solutions. As translation tasks increasingly require a dynamic sequence learning curve; stable, cost-free opensource models are scarce. We survey and compare current translation techniques and propose a modified sequence to sequence model repurposed with attention techniques. Sequence learning using an encoder-decoder model is now paving the path for higher precision levels in translation. Using a Convolutional Neural Network (CNN) encoder and a Recurrent Neural Network (RNN) decoder background, we use Fairseq tools to produce an end-to-end bilingually trained Spanish-English machine translation model including source language detection. We acquire competitive results using a duo-lingo-corpus trained model to provide for prospective, ready-made plug-in use for compound sentences and document translations. Our model serves a decent system for large, organizational data translation needs. While acknowledging its shortcomings and future scope, it also identifies itself as a well-optimized deep neural network model and solution.Keywords: attention, encoder-decoder, Fairseq, Seq2Seq, Spanish, translation
Procedia PDF Downloads 1765131 Learning Academic Skills through Movement: A Case Study in Evaluation
Authors: Y. Salfati, D. Sharef Bussel, J. Zamir
Abstract:
In this paper, we present an Evaluation Case Study implementing the eight principles of Collaborative Approaches to Evaluation (CAE) as designed by Brad Cousins in the past decade. The focus of this paper is sharing a rich experience in which we achieved two main goals. The first was the development of a valuable and meaningful new teacher training program, and the second was a successful implementation of the CAE principles. The innovative teacher training program is based on the idea of including physical movement during the process of teaching and learning academic themes. The program is called Learning through Movement. This program is a response to a call from the Ministry of Education, claiming that today children sit in front of screens and do not exercise any physical activity. In order to contribute to children’s health, physical, and cognitive development, the Ministry of Education promotes learning through physical activities. Research supports the idea that sports and physical exercise improve academic achievements. The Learning through Movement program is operated by Kaye Academic College. Students in the Elementary School Training Program, together with students in the Physical Education Training Program, implement the program in collaboration with two mentors from the College. The program combines academic learning with physical activity. The evaluation began at the beginning of the program. During the evaluation process, data was collected by means of qualitative tools, including interviews with mentors, observations during the students’ collaborative planning, class observations at school and focus groups with students, as well as the collection of documentation related to the teamwork and to the program itself. The data was analyzed using content analysis and triangulation. The preliminary results show outcomes relating to the Teacher Training Programs, the student teachers, the pupils in class, the role of Physical Education teachers, and the evaluation. The Teacher Training Programs developed a collaborative approach to lesson planning. The students' teachers demonstrated a change in their basic attitudes towards the idea of integrating physical activities during the lessons. The pupils indicated higher motivation through full participation in classes. These three outcomes are indicators of the success of the program. An additional significant outcome of the program relates to the status and role of the physical education teachers, changing their role from marginal to central in the school. Concerning evaluation, a deep sense of trust and confidence was achieved, between the evaluator and the whole team. The paper includes the perspectives and challenges of the heads and mentors of the two programs as well as the evaluator’s conclusions. The evaluation unveils challenges in conducting a CAE evaluation in such a complex setting.Keywords: collaborative evaluation, training teachers, learning through movement
Procedia PDF Downloads 1495130 On the Inequality between Queue Length and Virtual Waiting Time in Open Queueing Networks under Conditions of Heavy Traffic
Authors: Saulius Minkevicius, Edvinas Greicius
Abstract:
The paper is devoted to the analysis of queueing systems in the context of the network and communications theory. We investigate the inequality in an open queueing network and its applications to the theorems in heavy traffic conditions (fluid approximation, functional limit theorem, and law of the iterated logarithm) for a queue of customers in an open queueing network.Keywords: fluid approximation, heavy traffic, models of information systems, open queueing network, queue length of customers, queueing theory
Procedia PDF Downloads 2885129 CyberSteer: Cyber-Human Approach for Safely Shaping Autonomous Robotic Behavior to Comply with Human Intention
Authors: Vinicius G. Goecks, Gregory M. Gremillion, William D. Nothwang
Abstract:
Modern approaches to train intelligent agents rely on prolonged training sessions, high amounts of input data, and multiple interactions with the environment. This restricts the application of these learning algorithms in robotics and real-world applications, in which there is low tolerance to inadequate actions, interactions are expensive, and real-time processing and action are required. This paper addresses this issue introducing CyberSteer, a novel approach to efficiently design intrinsic reward functions based on human intention to guide deep reinforcement learning agents with no environment-dependent rewards. CyberSteer uses non-expert human operators for initial demonstration of a given task or desired behavior. The trajectories collected are used to train a behavior cloning deep neural network that asynchronously runs in the background and suggests actions to the deep reinforcement learning module. An intrinsic reward is computed based on the similarity between actions suggested and taken by the deep reinforcement learning algorithm commanding the agent. This intrinsic reward can also be reshaped through additional human demonstration or critique. This approach removes the need for environment-dependent or hand-engineered rewards while still being able to safely shape the behavior of autonomous robotic agents, in this case, based on human intention. CyberSteer is tested in a high-fidelity unmanned aerial vehicle simulation environment, the Microsoft AirSim. The simulated aerial robot performs collision avoidance through a clustered forest environment using forward-looking depth sensing and roll, pitch, and yaw references angle commands to the flight controller. This approach shows that the behavior of robotic systems can be shaped in a reduced amount of time when guided by a non-expert human, who is only aware of the high-level goals of the task. Decreasing the amount of training time required and increasing safety during training maneuvers will allow for faster deployment of intelligent robotic agents in dynamic real-world applications.Keywords: human-robot interaction, intelligent robots, robot learning, semisupervised learning, unmanned aerial vehicles
Procedia PDF Downloads 2605128 Improving Mathematics and Engineering Interest through Programming
Authors: Geoffrey A. Wright
Abstract:
In an attempt to address shortcomings revealed in international assessments and lamented in legislation, many schools are reducing or eliminating elective courses, applying the rationale that replacing "non-essential" subjects with core subjects, such as mathematics and language arts, will better position students in the global market. However, there is evidence that systematically pairing a core subject with another complementary subject may lead to greater overall learning in both subjects. In this paper, we outline the methods and preliminary findings from a study we conducted analyzing the influence learning programming has on student mathematical comprehension and ability. The purpose of this research is to demonstrate in what ways two subjects might complement each other, and to better understand the principles and conditions that encourage what we call lateral transfer, the synergistic effect that occurs when a learner studies two complementary subjects.Keywords: programming, engineering, technology, complementary subjects
Procedia PDF Downloads 3595127 A Reinforcement Learning Based Method for Heating, Ventilation, and Air Conditioning Demand Response Optimization Considering Few-Shot Personalized Thermal Comfort
Authors: Xiaohua Zou, Yongxin Su
Abstract:
The reasonable operation of heating, ventilation, and air conditioning (HVAC) is of great significance in improving the security, stability, and economy of power system operation. However, the uncertainty of the operating environment, thermal comfort varies by users and rapid decision-making pose challenges for HVAC demand response optimization. In this regard, this paper proposes a reinforcement learning-based method for HVAC demand response optimization considering few-shot personalized thermal comfort (PTC). First, an HVAC DR optimization framework based on few-shot PTC model and DRL is designed, in which the output of few-shot PTC model is regarded as the input of DRL. Then, a few-shot PTC model that distinguishes between awake and asleep states is established, which has excellent engineering usability. Next, based on soft actor criticism, an HVAC DR optimization algorithm considering the user’s PTC is designed to deal with uncertainty and make decisions rapidly. Experiment results show that the proposed method can efficiently obtain use’s PTC temperature, reduce energy cost while ensuring user’s PTC, and achieve rapid decision-making under uncertainty.Keywords: HVAC, few-shot personalized thermal comfort, deep reinforcement learning, demand response
Procedia PDF Downloads 905126 Mental Health Diagnosis through Machine Learning Approaches
Authors: Md Rafiqul Islam, Ashir Ahmed, Anwaar Ulhaq, Abu Raihan M. Kamal, Yuan Miao, Hua Wang
Abstract:
Mental health of people is equally important as of their physical health. Mental health and well-being are influenced not only by individual attributes but also by the social circumstances in which people find themselves and the environment in which they live. Like physical health, there is a number of internal and external factors such as biological, social and occupational factors that could influence the mental health of people. People living in poverty, suffering from chronic health conditions, minority groups, and those who exposed to/or displaced by war or conflict are generally more likely to develop mental health conditions. However, to authors’ best knowledge, there is dearth of knowledge on the impact of workplace (especially the highly stressed IT/Tech workplace) on the mental health of its workers. This study attempts to examine the factors influencing the mental health of tech workers. A publicly available dataset containing more than 65,000 cells and 100 attributes is examined for this purpose. Number of machine learning techniques such as ‘Decision Tree’, ‘K nearest neighbor’ ‘Support Vector Machine’ and ‘Ensemble’, are then applied to the selected dataset to draw the findings. It is anticipated that the analysis reported in this study would contribute in presenting useful insights on the attributes contributing in the mental health of tech workers using relevant machine learning techniques.Keywords: mental disorder, diagnosis, occupational stress, IT workplace
Procedia PDF Downloads 2885125 Assessment of Designed Outdoor Playspaces as Learning Environments and Its Impact on Child’s Wellbeing: A Case of Bhopal, India
Authors: Richa Raje, Anumol Antony
Abstract:
Playing is the foremost stepping stone for childhood development. Play is an essential aspect of a child’s development and learning because it creates meaningful enduring environmental connections and increases children’s performance. The children’s proficiencies are ever varying in their course of growth. There is innovation in the activities, as it kindles the senses, surges the love for exploration, overcomes linguistic barriers and physiological development, which in turn allows them to find their own caliber, spontaneity, curiosity, cognitive skills, and creativity while learning during play. This paper aims to comprehend the learning in play which is the most essential underpinning aspect of the outdoor play area. It also assesses the trend of playgrounds design that is merely hammered with equipment's. It attempts to derive a relation between the natural environment and children’s activities and the emotions/senses that can be evoked in the process. One of the major concerns with our outdoor play is that it is limited to an area with a similar kind of equipment, thus making the play highly regimented and monotonous. This problem is often lead by the strict timetables of our education system that hardly accommodates play. Due to these reasons, the play areas remain neglected both in terms of design that allows learning and wellbeing. Poorly designed spaces fail to inspire the physical, emotional, social and psychological development of the young ones. Currently, the play space has been condensed to an enclosed playground, driveway or backyard which confines the children’s capability to leap the boundaries set for him. The paper emphasizes on study related to kids ranging from 5 to 11 years where the behaviors during their interactions in a playground are mapped and analyzed. The theory of affordance is applied to various outdoor play areas, in order to study and understand the children’s environment and how variedly they perceive and use them. A higher degree of affordance shall form the basis for designing the activities suitable in play spaces. It was observed during their play that, they choose certain spaces of interest majority being natural over other artificial equipment. The activities like rolling on the ground, jumping from a height, molding earth, hiding behind tree, etc. suggest that despite equipment they have an affinity towards nature. Therefore, we as designers need to take a cue from their behavior and practices to be able to design meaningful spaces for them, so the child gets the freedom to test their precincts.Keywords: children, landscape design, learning environment, nature and play, outdoor play
Procedia PDF Downloads 127