Search results for: low temperature ultra-high vacuum four scanning tunneling microscope
6113 Typical Characteristics and Compositions of Solvent System in Application of Maceration Technology to Isolate Antioxidative Activated Extract of Natural Products
Authors: Yohanes Buang, Suwari
Abstract:
Increasing interest of society in use and creation of herbal medicines has encouraged scientists/researchers to establish an ideal method to produce the best quality and quantity of pharmaceutical extracts. To have highest the antioxidative extracts, the method used must be at optimum conditions. Hence, the best method is not only able to provide highest quantity and quality of the isolated pharmaceutical extracts but also it has to be easy to do, simple, fast, and cheap. The characterization of solvents in maceration technique, in present study, involved various variables influencing quantity and quality of the pharmaceutical extracts, such as solvent’s optimum acidity-alkalinity (pH), temperature, concentration, and contact time. The shifting polarity of the solvent by combinations of water with ethanol (70:30) and (50:50) were also performed to completely record the best solvent system in application of maceration technology. Among those three solvents threated within Myrmecodia pendens, as a model of natural product, the results showed that water solvent system with conditions of alkalinity pH, optimum temperature, concentration, and contact time, is the best system to perform the maceration in order to have the highest isolated antioxidative activated extracts. The optimum conditions of the water solvent are at the alkalinity pH 9 up, 30 mg/mL of concentration, 40 min of contact time, 100 °C of temperature, and no ethanol used to replace parts of the water solvent. The present study strongly recommended the best conditions of solvent system to isolate the pharmaceutical extracts of natural products in application of the maceration technology.Keywords: extracts, herbal medicine, natural product, maceration technique
Procedia PDF Downloads 3036112 Numerical Analysis of Catalytic Combustion in a Tabular Reactor with Methane and Air Mixtures over Platinum Catalyst
Authors: Kumaresh Selvakumar, Man Young Kim
Abstract:
The presence of a catalyst inside an engine enables complete combustion at lower temperatures which promote desired chemical reactions. The objective of this work is to design and simulate a catalytic combustor by using CHEMKIN with detailed gas and surface chemistries. The simplified approach with single catalyst channel using plug flow reactor (PFR) can be used to predict reasonably well with the effect of various operating parameters such as the inlet temperature, velocity and fuel/air ratios. The numerical results are validated by comparing the surface chemistries in single channel catalytic combustor. The catalytic combustor operates at much lower temperature than the conventional combustor since lean-fuel mixture is used where the complete methane conversion is achieved. The coupling between gas and surface reactions in the catalyst bed is studied by investigating the commencement of flame ignition with respect to the surface site species.Keywords: catalytic combustion, honeycomb monolith, plug flow reactor, surface reactions
Procedia PDF Downloads 2336111 An Intelligent Steerable Drill System for Orthopedic Surgery
Authors: Wei Yao
Abstract:
A steerable and flexible drill is needed in orthopaedic surgery. For example, osteoarthritis is a common condition affecting millions of people for which joint replacement is an effective treatment which improves the quality and duration of life in elderly sufferers. Conventional surgery is not very accurate. Computer navigation and robotics can help increase the accuracy. For example, In Total Hip Arthroplasty (THA), robotic surgery is currently practiced mainly on acetabular side helping cup positioning and orientation. However, femoral stem positioning mostly uses hand-rasping method rather than robots for accurate positioning. The other case for using a flexible drill in surgery is Anterior Cruciate Ligament (ACL) Reconstruction. The majority of ACL Reconstruction failures are primarily caused by technical mistakes and surgical errors resulting from drilling the anatomical bone tunnels required to accommodate the ligament graft. The proposed new steerable drill system will perform orthopedic surgery through curved tunneling leading to better accuracy and patient outcomes. It may reduce intra-operative fractures, dislocations, early failure and leg length discrepancy by making possible a new level of precision. This technology is based on a robotically assisted, steerable, hand-held flexible drill, with a drill-tip tracking device and a multi-modality navigation system. The critical differentiator is that this robotically assisted surgical technology now allows the surgeon to prepare 'patient specific' and more anatomically correct 'curved' bone tunnels during orthopedic surgery rather than drilling straight holes as occurs currently with existing surgical tools. The flexible and steerable drill and its navigation system for femoral milling in total hip arthroplasty had been tested on sawbones to evaluate the accuracy of the positioning and orientation of femoral stem relative to the pre-operative plan. The data show the accuracy of the navigation system is better than traditional hand-rasping method.Keywords: navigation, robotic orthopedic surgery, steerable drill, tracking
Procedia PDF Downloads 1736110 The Effects of NaF Concentration on the Zinc Coating Electroplated in Supercritical CO2 Mixed Zinc Chloride Bath
Authors: Chun-Ying Lee, Mei-Wen Wu, Li-Yi Cheng, Chiang-Ho Cheng
Abstract:
This research studies the electroplating of zinc coating in the zinc chloride bath mixed with supercritical CO2. The sodium fluoride (NaF) was used as the bath additive to change the structure and property of the coating, and therefore the roughness and corrosion resistance of the zinc coating was investigated. The surface characterization was performed using optical microscope (OM), X-ray diffractometer (XRD), and α-step profilometer. Moreover, the potentiodynamic polarization measurement in 3% NaCl solution was employed in the corrosion resistance evaluation. Because of the emulsification of the electrolyte mixed in Sc-CO2, the electroplated zinc produced the coating with smoother surface, smaller grain, better throwing power and higher corrosion resistance. The main role played by the NaF was to reduce the coating’s roughness and grain size. In other words, the CO2 mixed with the electrolyte under the supercritical condition performed the similar function as brighter and leveler in zinc electroplating to enhance the throwing power and corrosion resistance of the coating.Keywords: supercritical CO2, zinc-electroplating, sodium fluoride, electroplating
Procedia PDF Downloads 5676109 Mechanism of Action of New Sustainable Flame Retardant Additives in Polyamide 6,6
Authors: I. Belyamani, M. K. Hassan, J. U. Otaigbe, W. R. Fielding, K. A. Mauritz, J. S. Wiggins, W. L. Jarrett
Abstract:
We have investigated the flame-retardant efficiency of special new phosphate glass (P-glass) compositions having different glass transition temperatures (Tg) on the processing conditions of polyamide 6,6 (PA6,6) and the final hybrid flame retardancy (FR). We have showed that the low Tg P glass composition (i.e., ILT 1) is a promising flame retardant for PA6,6 at a concentration of up to 15 wt. % compared to intermediate (IIT 3) and high (IHT 1) Tg P glasses. Cone calorimetry data showed that the ILT 1 decreased both the peak heat release rate and the total heat amount released from the PA6,6/ILT 1 hybrids, resulting in an efficient formation of a glassy char layer. These intriguing findings prompted to address several questions concerning the mechanism of action of the different P glasses studied. The general mechanism of action of phosphorous based FR additives occurs during the combustion stage by enhancing the morphology of the char and the thermal shielding effect. However, the present work shows that P glass based FR additives act during melt processing of PA6,6/P glass hybrids. Dynamic mechanical analysis (DMA) revealed that the Tg of PA6,6/ILT 1 was significantly shifted to a lower Tg (~65 oC) and another transition appeared at high temperature (~ 166 oC), thus indicating a strong interaction between PA6,6 and ILT 1. This was supported by a drop in the melting point and crystallinity of the PA6,6/ILT 1 hybrid material as detected by differential scanning calorimetry (DSC). The dielectric spectroscopic investigation of the networks’ molecular level structural variations (i.e. hybrids chain motion, Tg and sub-Tg relaxations) agreed very well with the DMA and DSC findings; it was found that the three different P glass compositions did not show any effect on the PA6,6 sub-Tg relaxations (related to the NH2 and OH chain end groups motions). Nevertheless, contrary to IIT 3 and IHT 1 based hybrids, the PA6,6/ILT 1 hybrid material showed an evidence of splitting the PA6,6 Tg relaxations into two peaks. Finally, the CPMAS 31P-NMR data confirmed the miscibility between ILT 1 and PA6,6 at the molecular level, as a much larger enhancement in cross-polarization for the PA6,6/15%ILT 1 hybrids was observed. It can be concluded that compounding low Tg P-glass (i.e. ILT 1) with PA6,6 facilitates hydrolytic chain scission of the PA6,6 macromolecules through a potential chemical interaction between phosphate and the alpha-Carbon of the amide bonds of the PA6,6, leading to better flame retardant properties.Keywords: broadband dielectric spectroscopy, composites, flame retardant, polyamide, phosphate glass, sustainable
Procedia PDF Downloads 2446108 Probing Neuron Mechanics with a Micropipette Force Sensor
Authors: Madeleine Anthonisen, M. Hussain Sangji, G. Monserratt Lopez-Ayon, Margaret Magdesian, Peter Grutter
Abstract:
Advances in micromanipulation techniques and real-time particle tracking with nanometer resolution have enabled biological force measurements at scales relevant to neuron mechanics. An approach to precisely control and maneuver neurite-tethered polystyrene beads is presented. Analogous to an Atomic Force Microscope (AFM), this multi-purpose platform is a force sensor with imaging acquisition and manipulation capabilities. A mechanical probe composed of a micropipette with its tip fixed to a functionalized bead is used to incite the formation of a neurite in a sample of rat hippocampal neurons while simultaneously measuring the tension in said neurite as the sample is pulled away from the beaded tip. With optical imaging methods, a force resolution of 12 pN is achieved. Moreover, the advantages of this technique over alternatives such as AFM, namely ease of manipulation which ultimately allows higher throughput investigation of the mechanical properties of neurons, is demonstrated.Keywords: axonal growth, axonal guidance, force probe, pipette micromanipulation, neurite tension, neuron mechanics
Procedia PDF Downloads 3726107 Blister Formation Mechanisms in Hot Rolling
Authors: Rebecca Dewfall, Mark Coleman, Vladimir Basabe
Abstract:
Oxide scale growth is an inevitable byproduct of the high temperature processing of steel. Blister is a phenomenon that occurs due to oxide growth, where high temperatures result in the swelling of surface scale, producing a bubble-like feature. Blisters can subsequently become embedded in the steel substrate during hot rolling in the finishing mill. This rolled in scale defect causes havoc within industry, not only with wear on machinery but loss of customer satisfaction, poor surface finish, loss of material, and profit. Even though blister is a highly prevalent issue, there is still much that is not known or understood. The classic iron oxidation system is a complex multiphase system formed of wustite, magnetite, and hematite, producing multi-layered scales. Each phase will have independent properties such as thermal coefficients, growth rate, and mechanical properties, etc. Furthermore, each additional alloying element will have different affinities for oxygen and different mobilities in the oxide phases so that oxide morphologies are specific to alloy chemistry. Therefore, blister regimes can be unique to each steel grade resulting in a diverse range of formation mechanisms. Laboratory conditions were selected to simulate industrial hot rolling with temperature ranges approximate to the formation of secondary and tertiary scales in the finishing mills. Samples with composition: 0.15Wt% C, 0.1Wt% Si, 0.86Wt% Mn, 0.036Wt% Al, and 0.028Wt% Cr, were oxidised in a thermo-gravimetric analyser (TGA), with an air velocity of 10litresmin-1, at temperaturesof 800°C, 850°C, 900°C, 1000°C, 1100°C, and 1200°C respectively. Samples were held at temperature in an argon atmosphere for 10minutes, then oxidised in air for 600s, 60s, 30s, 15s, and 4s, respectively. Oxide morphology and Blisters were characterised using EBSD, WDX, nanoindentation, FIB, and FEG-SEM imaging. Blister was found to have both a nucleation and growth process. During nucleation, the scale detaches from the substrate and blisters after a very short period, roughly 10s. The steel substrate is then exposed inside of the blister and further oxidised in the reducing atmosphere of the blister, however, the atmosphere within the blister is highly dependent upon the porosity of the blister crown. The blister crown was found to be consistently between 35-40um for all heating regimes, which supports the theory that the blister inflates, and the oxide then subsequently grows underneath. Upon heating, two modes of blistering were identified. In Mode 1 it was ascertained that the stresses produced by oxide growth will increase with increasing oxide thickness. Therefore, in Mode 1 the incubation time for blister formation is shortened by increasing temperature. In Mode 2 increase in temperature will result in oxide with a high ductility and high oxide porosity. The high oxide ductility and/or porosity accommodates for the intrinsic stresses from oxide growth. Thus Mode 2 is the inverse of Mode 1, and incubation time is increased with temperature. A new phenomenon was reported whereby blister formed exclusively through cooling at elevated temperatures above mode 2.Keywords: FEG-SEM, nucleation, oxide morphology, surface defect
Procedia PDF Downloads 1516106 Preparation of POMA Nanofibers by Electrospinning and Its Applications in Tissue Engineering
Authors: Lu-Chen Yeh‚ Jui-Ming Yeh
Abstract:
In this manuscript, we produced neat electrospun poly(o-methoxyaniline) (POMA) fibers and utilized it for applying the growth of neural stem cells. The transparency and morphology of as-prepared POMA fibers were characterized by UV-visible spectroscopy and scanning electron microscopy, respectively. It was found to have no adverse effects on the long-term proliferation of the neural stem cells (NSCs), retained the ability to self-renew, and exhibit multi-potentiality. Results of immunofluorescence staining studies confirmed that POMA electrospun fibers could provide a great environment for NSCs and enhance its differentiation.Keywords: electrospun, polyaniline, neural stem cell, differentiation
Procedia PDF Downloads 4136105 Carbon Storage in Natural Mangrove Biomass: Its Destruction and Potential Impact on Climate Change in the UAE
Authors: Hedaya Ali Al Ameri, Alya A. Arabi
Abstract:
Measuring the level of carbon storage in mangroves’ biomass has a potential impact in the climate change of UAE. Carbon dioxide is one of greenhouse gases. It is considered to be a main reason for global warming. Deforestation is a key source of the increase in carbon dioxide whereas forests such as mangroves assist in removing carbon dioxide from atmosphere by storing them in its biomass and soil. By using Kauffman and Donato methodology, above- and below-ground biomass and carbon stored in UAE’s natural mangroves were quantified. Carbon dioxide equivalent (CO2eq) released to the atmosphere was then estimated in case of mangroves deforestation in the UAE. The results show that the mean total biomass of mangroves in the UAE ranged from 15.75 Mg/ha to 3098.69 Mg/ha. The estimated CO2eq released upon deforestation in the UAE was found to have a minimal effect on the temperature increase and thus global warming.Keywords: carbon stored in biomass, mangrove deforestation, temperature change, United Arab Emirate
Procedia PDF Downloads 3996104 Dissolution of Zeolite as a Sorbent in Flue Gas Desulphurization Process Using a pH Stat Apparatus
Authors: Hilary Rutto, John Kabuba
Abstract:
Sulphur dioxide is a harmful gaseous product that needs to be minimized in the atmosphere. This research work investigates the use of zeolite as a possible additive that can improve the sulphur dioxide capture in wet flue gas desulphurisation dissolution process. This work determines the effect of temperature, solid to liquid ratio, acid concentration and stirring speed on the leaching of zeolite using a pH stat apparatus. The atomic absorption spectrometer was used to measure the calcium ions from the solution. It was found that the dissolution rate of zeolite decreased with increase in solid to liquid ratio and increases with increase in temperature, stirring speed and acid concentration. The activation energy for the dissolution rate of zeolite in hydrochloric acid was found to be 9.29kJ/mol. and therefore the product layer diffusion was the rate limiting step.Keywords: calcium ion, pH stat apparatus, wet flue gas desulphurization, zeolite
Procedia PDF Downloads 2916103 Development of CaO-based Sorbents Applied to Sorption Enhanced Steam Reforming Processes
Authors: P. Comendador, I. Garcia, S. Orozco, L. Santamaria, M. Amutio, G. Lopez, M. Olazar
Abstract:
In situ CO₂ capture in steam reforming processes has been studied in the last years as an alternative for increasing H₂ yields and H₂ purity in the product stream. For capturing the CO₂ at the reforming conditions, CaO-based sorbents are usually employed due to their properties at high temperature, low cost and high availability. However, the challenge is to develop high-capacity (gCO₂/gsorbent) materials that retain their capacity over cycles of operation. Besides, since the objective is to capture the CO₂ generated in situ, another key aspect is the sorption dynamics, which means that, in order to efficiently use the sorbent, it has to capture the CO₂ at a rate equal to or higher than the generation rate. In this work, different CaO-based materials have been prepared to aim at meeting these criteria. First, and by using the wet mixing method, different inert materials (Mg, Ce and Al) were combined with CaO. Second, and with the inert material selected (Mg), the effect of its concentration in the final material was studied. Transversally, the calcination temperature was also evaluated. It was determined that the wet mixing method is a simple procedure suitable for the preparation of CaO sorbents mixed with inert materials. The materials prepared by mixing the CaO with Mg have shown satisfactory anti-sintering properties and adequate sorption kinetics for their application in steam reforming processes. Regarding the concentration of Mg in the solid, it was concluded that high values contribute to the stability but at the expense of losing sorption capacity. Finally, it was observed that high calcination temperatures negatively affected the sorption properties of the final materials due to the decrease in the pore volume and the specific surface area.Keywords: calcination temperature effect, CO₂ capture, Mg-Ce-Al stabilizers, Mg varying concentration effect, Sorbent stabilization
Procedia PDF Downloads 846102 Embryonic and Larval Development of Pelophylax bedriagae (Amphibia, Anura), in Iran
Authors: Alireza Pesarakloo, Masoumeh Najibzadeh
Abstract:
We studied the development and morphology of different larval stages of Pelophylax bedriagae at two rearing temperatures (20 and 24°C). Eggs collected from a breeding site in south-western Iran. Diagnostic morphological characters are provided for Gosner (1960) larval stages 1-46. The larvae hatched about seven days after egg deposition. Principal diagnostic feature including the formation of the funnel-shaped oral disc became discernible about ten days after hatch at Gosner stage 21 and degenerated at Gosner stage 42. Larvae developed faster at higher temperatures. The largest body length of larval P. bedriagae measured about 54mm in 70 days after egg deposition. Based on our results, the longest metamorphosis time was observed on temperature (20°C) whilst the shortest metamorphosis time occurred on temperature (24°C). Compared with the majority of other Palearctic Anurans, it appears that embryonic and larval development is usually slow rapid in P. bedriagae.Keywords: development, larval stages, Pelophylax bedriagae, temperatures
Procedia PDF Downloads 1806101 Time of Death Determination in Medicolegal Death Investigations
Authors: Michelle Rippy
Abstract:
Medicolegal death investigation historically is a field that does not receive much research attention or advancement, as all of the subjects are deceased. Public health threats, drug epidemics and contagious diseases are typically recognized in decedents first, with thorough and accurate death investigations able to assist in epidemiology research and prevention programs. One vital component of medicolegal death investigation is determining the decedent’s time of death. An accurate time of death can assist in corroborating alibies, determining sequence of death in multiple casualty circumstances and provide vital facts in civil situations. Popular television portrays an unrealistic forensic ability to provide the exact time of death to the minute for someone found deceased with no witnesses present. The actuality of unattended decedent time of death determination can generally only be narrowed to a 4-6 hour window. In the mid- to late-20th century, liver temperatures were an invasive action taken by death investigators to determine the decedent’s core temperature. The core temperature was programmed into an equation to determine an approximate time of death. Due to many inconsistencies with the placement of the thermometer and other variables, the accuracy of the liver temperatures was dispelled and this once common place action lost scientific support. Currently, medicolegal death investigators utilize three major after death or post-mortem changes at a death scene. Many factors are considered in the subjective determination as to the time of death, including the cooling of the decedent, stiffness of the muscles, release of blood internally, clothing, ambient temperature, disease and recent exercise. Current research is utilizing non-invasive hospital grade tympanic thermometers to measure the temperature in the each of the decedent’s ears. This tool can be used at the scene and in conjunction with scene indicators may provide a more accurate time of death. The research is significant and important to investigations and can provide an area of accuracy to a historically inaccurate area, considerably improving criminal and civil death investigations. The goal of the research is to provide a scientific basis to unwitnessed deaths, instead of the art that the determination currently is. The research is currently in progress with expected termination in December 2018. There are currently 15 completed case studies with vital information including the ambient temperature, decedent height/weight/sex/age, layers of clothing, found position, if medical intervention occurred and if the death was witnessed. This data will be analyzed with the multiple variables studied and available for presentation in January 2019.Keywords: algor mortis, forensic pathology, investigations, medicolegal, time of death, tympanic
Procedia PDF Downloads 1236100 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques
Authors: Chinlun Lai, Lunjyh Jiang
Abstract:
Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.Keywords: baby care system, Internet of Things, deep learning, machine vision
Procedia PDF Downloads 2276099 Implementing Community Policing in Nigeria: Problems and Prospects
Authors: Mohammed Jamilu Haruna, Kawu Adamu Sule
Abstract:
This paper examines the evolution of modern policing in Nigeria to the present day, with a focus on the newly introduced community policing, which seeks to cement the operational vacuum created by the repressive and oppressive approach of the Nigeria Police Force (NPF), which renders the police incapable of addressing the twin problems of crime and disorder. Thus, the primary purpose for the implementation of community policing was to use it as a mechanism for building the lost trust between the police and the public, perhaps due to the long history of antagonistic and repressive relationships between them. If properly implemented, community policing has the prospect of empowering Nigerian citizens with the skills to protect themselves against invaders of their private security so that crimes can be prevented before anyone is victimized. Other prospects include, but are not limited to, (i) a favorable public view of the police, (ii) building of mutual trust, (iii) increased information flow through effective communication between the police and the public, and above all, (iv) increased police accountability. Unfortunately, problems such as aged suspicious and distrustful relationships, inadequate funding, poor training of officers, poor monitoring and evaluation of the community policing project, lack of public awareness of the benefits of the program, and sabotage by some of the personnel of the police who benefits from the status quo, were some of the reasons that troubled the implementation of community policing.Keywords: community, policing, problems, prospects, problem solving
Procedia PDF Downloads 836098 Enhanced Thermal Stability of Dielectric and Energy Storage Properties in 0.4BCZT-0.6BTSn Lead-Free Ceramics Elaborated by Sol-Gel Method
Authors: S. Khardazi, H. Zaitouni, A. Neqali, S. Lyubchyk, D. Mezzane, M. Amjoud, E. Choukri, S. Lyubchyk, Z. Kutnjak
Abstract:
In the present paper, structural, dielectric, ferroelectric, and energy storage properties of pure perovskite lead-free BCZT, BTSn, and BTSn-BCZT ferroelectric ceramics have been investigated. Rietveld refinement of XRD data confirms the coexistence of the rhombohedral and orthorhombic phases at room temperature in the composite BCZT–BTSn ceramic. Remarkably, an improved recoverable energy density of 137.86 mJ/cm³ and a high energy storage efficiency of 86.19 % at 80°C under a moderate applied electric field of 30 kV/cm were achieved in the designed BCZT–BTSn ceramic. Besides, the sample exhibits excellent thermal stability of the energy storage efficiency (less than 3%) in the temperature range of 70 to 130 °C under 30 kV/cm. Such results make the pb-free BCZT–BTSn ferroelectric ceramic a very promising potential matrix for energy storage capacitor applications.Keywords: sol-gel, ferroelectrics, lead-free, perovskites, energy storage
Procedia PDF Downloads 856097 Role of NaOH in the Synthesis of Waste-derived Solid Hydroxy Sodalite Catalyst for the Transesterification of Waste Animal Fat to Biodiesel
Authors: Thomas Chinedu Aniokete, Gordian Onyebuchukwu Mbah, Michael Daramola
Abstract:
A sustainable NaOH integrated hydrothermal protocol was developed for the synthesis of waste-derived hydroxy sodalite catalysts for transesterification of waste animal fat (WAF) with a high per cent free fatty acid (FFA) to biodiesel. In this work, hydroxy sodalite catalyst was synthesized from two complex waste materials namely coal fly ash (CFA) and waste industrial brine (WIB). Measured amounts of South African CFA and WIB obtained from a coal mine field were mixed with NaOH solution at different concentrations contained in secured glass vessels equipped with magnetic stirrers and formed consistent slurries after aging condition at 47 oC for 48 h. The slurries were then subjected to hydrothermal treatments at 140 oC for 48 h, washed thoroughly and separated by the action of a centrifuge on the mixture. The resulting catalysts were calcined in a muffle furnace for 2 h at 200 oC and subsequently characterized for different effects using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and Bennett Emmet Teller (BET) adsorption-desorption techniques. The produced animal fat methyl ester (AFME) was analyzed using the gas chromatography-mass spectrometry (GC-MS) method. Results of the investigation indicate profoundly an enhanced catalyst purity, textural property and desired morphology due to the action of NaOH. Similarly, the performance evaluation with respect to catalyst activity reveals a high catalytic conversion efficiency of 98 % of the high FFA WAF to biodiesel under the following reaction conditions; a methanol-to-WAF ratio of 15:1, amount of SOD catalyst of 3 wt % with a stirring speed of 300-500 rpm, a reaction temperature of 60 oC and a reaction time of 8 h. There was a recovered 96 % stable catalyst after reactions and potentially recyclable, thus contributing to the economic savings to the process that had been a major bottleneck to the production of biodiesel. This NaOH route for synthesizing waste-derived hydroxy sodalite (SOD) catalyst is a sustainable and eco-friendly technology that speaks directly to the global quest for renewable-fossil fuel controversy enforcing sustainable development goal 7.Keywords: coal fly ash, waste industrial brine, waste-derived hydroxy sodalite catalyst, sodium hydroxide, biodiesel, transesterification, biomass conversion
Procedia PDF Downloads 386096 Preparation of Gold Nanoparticles Stabilized in Acid-Activated Montmorillonite for Nitrophenol Reduction
Authors: Fatima Ammari, Meriem Chenouf
Abstract:
Synthesis of gold nanoparticles (AuNPs) has attracted much attention since the pioneering discovery of the high catalytic activity of supported gold nanoparticles in the reaction of CO oxidation at low temperature. In this research field, we used montmorillonite pre-acidified under gentle conditions for AuNPs stabilization; using different loading percentage 1, 2 and 5%. The gold nanoparticles were obtained using chemical reduction method using NaBH4 as reductant agent. The obtained gold nanoparticles stabilized in acid-activated montmorillonite were used as catalysts for reduction of 4-nitrophenol to aminophenol with sodium borohydride at room temperature The UV-Vis results confirm directly the gold nanaoparticles formation. The XRD N2 adsorption and MET results showed the formation of gold nanoparticles in the pores of preacidified montmorillonite with an average size of 5.7nm. The reduction reaction of 4-nitrophenol into 4-aminophenol with NaBH4 catalyzed by Au°-montmorillonite catalyst exhibits remarkably a high activity; the reaction was completed within 4.5min.Keywords: gold, acid-activated montmorillonite, nanoparticles, 4-nitrophenol
Procedia PDF Downloads 3926095 Removal of an Acid Dye from Water Using Cloud Point Extraction and Investigation of Surfactant Regeneration by pH Control
Authors: Ghouas Halima, Haddou Boumedienne, Jean Peal Cancelier, Cristophe Gourdon, Ssaka Collines
Abstract:
This work concerns the coacervate extraction of industrial dye, namely BezanylGreen - F2B, from an aqueous solution by nonionic surfactant “Lutensol AO7 and TX-114” (readily biodegradable). Binary water/surfactant and pseudo-binary (in the presence of solute) phase diagrams were plotted. The extraction results as a function of wt.% of the surfactant and temperature are expressed by the following four quantities: percentage of solute extracted, E%, residual concentrations of solute and surfactant in the dilute phase (Xs,w, and Xt,w, respectively) and volume fraction of coacervate at equilibrium (Фc). For each parameter, whose values are determined by a design of experiments, these results are subjected to empirical smoothing in three dimensions. The aim of this study is to find out the best compromise between E% and Фc. E% increases with surfactant concentration and temperature in optimal conditions, and the extraction extent of TA reaches 98 and 96 % using TX-114 and Lutensol AO7, respectively. The effect of sodium sulfate or cetyltrimethylammonium bromide (CTAB) addition is also studied. Finally, the possibility of recycling the surfactant is proved.Keywords: extraction, cloud point, non ionic surfactant, bezanyl green
Procedia PDF Downloads 1296094 Study on the Carboxymethylation of Glucomannan from Porang
Authors: Fadilah Fadilah, Sperisa Distantina, Santi T. Wijayanti, Rahmawati Andayani
Abstract:
Chemical modification process on glucomannan from porang via carboxymethylation have been conducted. The process was done in two stages, the alkalization, and the carboxymethylation. The alkalization was done by adding NaOH solution into the medium which was contained glucomannan and then stirred it in ambient temperature for thirty minutes. The carboxymethylation process was done by adding sodium mono chloroacetate solution into the alkalization product. The carboxymethylation process was conducted for a certain time, and the product was then analyzed for determining the degree of substitution. In this research, the influence of medium to the degree of substitution was studied. Three different medium were used, namely water, 70% ethanol, and 90% ethanol. The results show that 70% ethanol was a better medium than two others because give a higher degree of substitution. Using 70% ethanol as a medium, the experiments for studying the influence of temperature on the carboxymethylation stages were conducted. The results show that the degree of substitution at 65°C is higher than at 45°C.Keywords: carboxymethylation, degree of substitution, ethanol medium, glucomannan
Procedia PDF Downloads 2256093 Application of Electro-Optical Hybrid Cables in Horizontal Well Production Logging
Authors: Daofan Guo, Dong Yang
Abstract:
For decades, well logging with coiled tubing has relied solely on surface data such as pump pressure, wellhead pressure, depth counter, and weight indicator readings. While this data serves the oil industry well, modern smart logging utilizes real-time downhole information, which automatically increases operational efficiency and optimizes intervention qualities. For example, downhole pressure, temperature, and depth measurement data can be transmitted through the electro-optical hybrid cable in the coiled tubing to surface operators on a real-time base. This paper mainly introduces the unique structural features and various applications of the electro-optical hybrid cables which were deployed into downhole with the help of coiled tubing technology. Fiber optic elements in the cable enable optical communications and distributed measurements, such as distributed temperature and acoustic sensing. The electrical elements provide continuous surface power for downhole tools, eliminating the limitations of traditional batteries, such as temperature, operating time, and safety concerns. The electrical elements also enable cable telemetry operation of cable tools. Both power supply and signal transmission were integrated into an electro-optical hybrid cable, and the downhole information can be captured by downhole electrical sensors and distributed optical sensing technologies, then travels up through an optical fiber to the surface, which greatly improves the accuracy of measurement data transmission.Keywords: electro-optical hybrid cable, underground photoelectric composite cable, seismic cable, coiled tubing, real-time monitoring
Procedia PDF Downloads 1496092 Spatio-Temporal Analysis and Mapping of Malaria in Thailand
Authors: Krisada Lekdee, Sunee Sammatat, Nittaya Boonsit
Abstract:
This paper proposes a GLMM with spatial and temporal effects for malaria data in Thailand. A Bayesian method is used for parameter estimation via Gibbs sampling MCMC. A conditional autoregressive (CAR) model is assumed to present the spatial effects. The temporal correlation is presented through the covariance matrix of the random effects. The malaria quarterly data have been extracted from the Bureau of Epidemiology, Ministry of Public Health of Thailand. The factors considered are rainfall and temperature. The result shows that rainfall and temperature are positively related to the malaria morbidity rate. The posterior means of the estimated morbidity rates are used to construct the malaria maps. The top 5 highest morbidity rates (per 100,000 population) are in Trat (Q3, 111.70), Chiang Mai (Q3, 104.70), Narathiwat (Q4, 97.69), Chiang Mai (Q2, 88.51), and Chanthaburi (Q3, 86.82). According to the DIC criterion, the proposed model has a better performance than the GLMM with spatial effects but without temporal terms.Keywords: Bayesian method, generalized linear mixed model (GLMM), malaria, spatial effects, temporal correlation
Procedia PDF Downloads 4586091 In the Study of Co₂ Capacity Performance of Different Frothing Agents through Process Simulation
Authors: Muhammad Idrees, Masroor Abro, Sikandar Almani
Abstract:
Presently, the increasing CO₂ concentration in the atmosphere has been taken as one of the major challenges faced by the modern world. The average CO₂ in the atmosphere reached the highest value of 414.72 ppm in 2021, as reported in a conference of the parties (COP26). This study focuses on (i) the comparative study of MEA, NaOH, Acetic acid, and Na₂CO₃ in terms of their CO₂ capture performance, (ii) the significance of adding various frothing agents achieving improved absorption capacity of Na₂CO₃ and (iii) the overall economic evaluation of process with the help of Aspen Plus. The results obtained suggest that the addition of frothing agents significantly increased the absorption rate of dilute sodium carbonate such that from 45% to 99.9%. The effect of temperature, pressure and flow rate of liquid and flue gas streams on CO₂ absorption capacity was also investigated. It was found that the absorption capacity of Na₂CO₃ decreased with increasing temperature of the liquid stream and decreasing flow rate of the liquid stream and pressure of the gas stream.Keywords: CO₂, absorbents, frothing agents, process simulation
Procedia PDF Downloads 806090 Catalyst Assisted Microwave Plasma for NOx Formation
Authors: Babak Sadeghi, Rony Snyders, Marie-Paule.Delplancke-Ogletree
Abstract:
Nitrogen fixation (NF) is one of the crucial industrial processes. Many attempts have been made in order to artificially fix nitrogen, and among them, the Haber-Bosch’s (H-B) process is widely used. However, it presents two major drawbacks: huge fossil feedstock consumption and noticeable greenhouse gases emission. It is, therefore, necessary to develop alternatives. Plasma technology, as an inherent “green” technology, is considered to have a great potential for reducing the environmental impacts and improving the energy efficiency of the NF process. In this work, we have studied the catalyst assisted microwave plasma for NF application. Heterogeneous catalysts of MoO₃, with various loads 0, 5, 10, 20, and 30 wt%, supported on γ-alumina were prepared by conventional wet impregnation. Crystallinity, surface area, pore size, and microstructure were obtained by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption isotherm, Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). The XRD patterns of calcined alumina confirm the γ- phase. Characteristic picks of MoO₃ could not be observed for low loads (< 20 wt%), likely indicating a high dispersion of metal oxide over the support. The specific surface area along with pores size are decreasing with increasing calcination temperature and MoO₃ loading. The MoO₃ loading does not modify the microstructure. TEM and SEM results for loading inferior to 20 wt% are coherent with a monolayer of MoO₃ on the support as proposed elsewhere. For loading of 20 wt% and more, TEM and Electron diffraction (ED) show nanocrystalline ₃-D MoO₃ particles. The catalytic performances of these catalysts were investigated in the post-discharge of a microwave plasma for NOx formation from N₂/O₂ mixtures. The plasma is sustained by a surface wave launched in a quartz tube via a surfaguide supplied by a 2.45 GHz microwave generator in pulse mode. In-situ identification and quantification of the products were carried out by Fourier-transform infrared spectroscopy (FTIR) in the post-discharge region. FTIR analysis of the exhausted gas reveal NO and NO₂ bands in presence of catalyst while only NO band were assigned without catalyst. On the other hand, in presence of catalyst, a 10% increase of NOₓ formation and of 20% increase in energy efficiency are observed.Keywords: γ-Al2O₃-MoO₃, µ-waveplasma, N2 fixation, Plasma-catalysis, Plasma diagnostic
Procedia PDF Downloads 1816089 Is Ag@TiO2 Core-Shell Nanoparticles Superior to Ag Surface Doped TiO2 Nanostructures?
Authors: Xiaohong Yang, Haitao Fu, Xizhong An, Aibing Yu
Abstract:
Silver@titanium dioxide (Ag@TiO2) core-shell nanostructures and Ag surface doped TiO2 particles (TiO2@Ag) have been designed and synthesized by sol-gel and hydrothermal methods under mild conditions. These two types of Ag/TiO2 nanocomposites were characterized in terms of their properties by various techniques such as transmission electron microscope (TEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) and ultra violet-visible absorption spectroscopy (UV-Vis). Specifically, the photocatalystic performance and antibacterial behavior of such nanocomposites have been investigated and compared. It was found that The Ag@TiO2 core-shell nanostructures exhibit superior photocatalytic property to the Ag surface doped TiO2 particles under the reported conditions. While with UV pre-irradiation, the Ag@TiO2 core-shell composites exhibit better bactericidal performance. This is probably because the Ag cores tend to facilitate charge separation for TiO2, producing greater hydroxyl radicals on the surface of the TiO2 particles. These findings would be useful for the design and synthesis of Ag/TiO2 nanocomposites with desirable photocatalystic and antimicrobial activity for environmental applications.Keywords: Ag@TiO2 core-shell nanoparticles, Ag surface doped TiO2 nanoparticles, photocatalysis, antibacterial
Procedia PDF Downloads 4876088 Chloroform-Formic Acid Solvent Systems for Nanofibrous Polycaprolactone Webs
Authors: I. Yalcin Enis, J. Vojtech, T. Gok Sadikoglu
Abstract:
In this study, polycaprolactone (PCL) was dissolved in chloroform: ethanol solvent system at a concentration of 18 w/v %. 1, 2, 4, and 6 droplets of formic acid were added to the prepared 10ml PCL-chloroform:ethanol solutions separately. Fibrous webs were produced by electrospinning technique. Morphology of the webs was investigated by using scanning electron microscopy (SEM) whereas fiber diameters were measured by Image J Software System. The effect of formic acid addition to the mostly used chloroform solvent on fiber morphology was examined.Keywords: chloroform, electrospinning, formic acid polycaprolactone, fiber
Procedia PDF Downloads 2806087 Direct Conversion of Crude Oils into Petrochemicals under High Severity Conditions
Authors: Anaam H. Al-ShaikhAli, Mansour A. Al-Herz
Abstract:
The research leverages the proven HS-FCC technology to directly crack crude oils into petrochemical building blocks. Crude oils were subjected to an optimized hydro-processing process where metal contaminants and sulfur were reduced to an acceptable level for feeding the crudes into the HS-FCC technology. The hydro-processing is achieved through a fixed-bed reactor which is composed of 3 layers of catalysts. The crude oil is passed through a dementalization catalyst followed by a desulfurization catalyst and finally a de-aromatization catalyst. The hydroprocessing was conducted at an optimized liquid hourly space velocity (LHSV), temperature, and pressure for an optimal reduction of metals and sulfur from the crudes. The hydro-processed crudes were then fed into a micro activity testing (MAT) unit to simulate the HS-FCC technology. The catalytic cracking of crude oils was conducted over tailored catalyst formulations under an optimized catalyst/oil ratio and cracking temperature for optimal production of total light olefins.Keywords: petrochemical, catalytic cracking, catalyst synthesis, HS-FCC technology
Procedia PDF Downloads 996086 Evaluation of Low-Global Warming Potential Refrigerants in Vapor Compression Heat Pumps
Authors: Hamed Jafargholi
Abstract:
Global warming presents an immense environmental risk, causing detrimental impacts on ecological systems and putting coastal areas at risk. Implementing efficient measures to minimize greenhouse gas emissions and the use of fossil fuels is essential to reducing global warming. Vapor compression heat pumps provide a practical method for harnessing energy from waste heat sources and reducing energy consumption. However, traditional working fluids used in these heat pumps generally contain a significant global warming potential (GWP), which might cause severe greenhouse effects if they are released. The goal of the emphasis on low-GWP (below 150) refrigerants is to further the vapor compression heat pumps. A classification system for vapor compression heat pumps is offered, with different boundaries based on the needed heat temperature and advancements in heat pump technology. A heat pump could be classified as a low temperature heat pump (LTHP), medium temperature heat pump (MTHP), high temperature heat pump (HTHP), or ultra-high temperature heat pump (UHTHP). The HTHP/UHTHP border is 160 °C, the MTHP/HTHP and LTHP/MTHP limits are 100 and 60 °C, respectively. The refrigerant is one of the most important parts of a vapor compression heat pump system. Presently, the main ways to choose a refrigerant are based on ozone depletion potential (ODP) and GWP, with GWP being the lowest possible value and ODP being zero. Pure low-GWP refrigerants, such as natural refrigerants (R718 and R744), hydrocarbons (R290, R600), hydrofluorocarbons (R152a and R161), hydrofluoroolefins (R1234yf, R1234ze(E)), and hydrochlorofluoroolefin (R1233zd(E)), were selected as candidates for vapor compression heat pump systems based on these selection principles. The performance, characteristics, and potential uses of these low-GWP refrigerants in heat pump systems are investigated in this paper. As vapor compression heat pumps with pure low-GWP refrigerants become more common, more and more low-grade heat can be recovered. This means that energy consumption would decrease. The research outputs showed that the refrigerants R718 for UHTHP application, R1233zd(E) for HTHP application, R600, R152a, R161, R1234ze(E) for MTHP, and R744, R290, and R1234yf for LTHP application are appropriate. The selection of an appropriate refrigerant should, in fact, take into consideration two different environmental and thermodynamic points of view. It might be argued that, depending on the situation, a trade-off between these two groups should constantly be considered. The environmental approach is now far stronger than it was previously, according to the European Union regulations. This will promote sustainable energy consumption and social development in addition to assisting in the reduction of greenhouse gas emissions and the management of global warming.Keywords: vapor compression, global warming potential, heat pumps, greenhouse
Procedia PDF Downloads 406085 Multi-Objective Exergy Optimization of an Organic Rankine Cycle with Cyclohexane as Working Fluid
Authors: Touil Djamal, Fergani Zineb
Abstract:
In this study, an Organic Rankine Cycle (ORC) with Cyclohexane working fluid is proposed for cogeneration in the cement industry. In this regard: first, a parametric study is conducted to evaluate the effects of some key parameters on the system performances. Next, single and multi-objective optimizations are performed to achieve the system optimal design. The optimization considers the exergy efficiency, the cost per exergy unit and the environmental impact of the net produced power as objective functions. Finally, exergy, exergoeconomic and exergoenvironmental analysis of the cycle is carried out at the optimum operating conditions. The results show that the turbine inlet pressure, the pinch point temperature difference and the heat transfer fluid temperature have significant effects on the performances of the ORC system.Keywords: organic rankine cycle, multi-objective optimization, exergy, exergoeconomic, exergoenvironmental, multi-objective optimisation, organic rankine cycle, cement plant
Procedia PDF Downloads 2836084 Vapochromism of 3,3’,5,5’-Tetramethylbenzidine-Tetrasilisicfluormica Intercalation Compounds with High Selectivity for Water and Acetonitrile
Authors: Reira Kinoshita, Shin'ichi Ishimaru
Abstract:
Vapochromism is a type of chromism in which the color of a substance changes when it is exposed to the vapor of volatile materials, and has been investigated for the application of chemical sensors for volatile organic compounds causing sick building syndrome and health hazards in workspaces. We synthesized intercalation compounds of 3,3',5,5'-tetramethylbenzidine (TMB), and tetrasilisicfluormica (TSFM) by the commonly used cation-exchange method with the cation ratio TMB²⁺/CEC of TSFM = 1.0, 2.0, 2.7 and 5.4 to investigate the vapochromism of these materials. The obtained samples were characterized by powder XRD, XRF, TG-DTA, N₂ adsorption, and SEM. Vapochromism was measured for each sample under a controlled atmosphere by a handy reflectance spectrometer directly from the outside of the glass sample tubes. The color was yellow for all specimens vacuum-dried at 50 °C, but it turned green under H₂O vapor exposure for the samples with TMB²⁺/CEC = 2.0, 2.7, and 5.4 and blue under acetonitrile vapor for all cation ratios. Especially the sample TMB²⁺/CEC = 2.0 showed clear chromism both for water and acetonitrile. On the other hand, no clear color change was observed for vapors of alcohols, acetone, and non-polar solvents. From these results, this material can be expected to apply for easy detection of humidity and acetonitrile vapor in the environment.Keywords: chemical sensor, intercalation compound, tetramethylbenzidine, tetrasilisicfluormica, vapochromism, volatile organic compounds
Procedia PDF Downloads 124