Search results for: carbon nanotubes network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7777

Search results for: carbon nanotubes network

4777 Study of Ageing in the Marine Environment of Bonded Composite Structures by Ultrasonic Guided Waves. Comparison of the Case of a Conventional Carbon-epoxy Composite and a Recyclable Resin-Based Composite

Authors: Hamza Hafidi Alaoui, Damien Leduc, Mounsif Ech Cherif El Kettani

Abstract:

This study is dedicated to the evaluation of the ageing of turbine blades in sea conditions, based on ultrasonic Non Destructive Testing (NDT) methods. This study is being developed within the framework of the European Interreg TIGER project. The Tidal Stream Industry Energiser Project, known as TIGER, is the biggest ever Interreg project driving collaboration and cost reductionthrough tidal turbine installations in the UK and France. The TIGER project will drive the growth of tidal stream energy to become a greater part of the energy mix, with significant benefits for coastal communities. In the bay of Paimpol-Bréhat (Brittany), different samples of composite material and bonded composite/composite structures have been immersed at the same time near a turbine. The studied samples are either conventional carbon-epoxy composite samples or composite samples based on a recyclable resin (called recyclamine). One of the objectives of the study is to compare the ageing of the two types of structure. A sample of each structure is picked up every 3 to 6 months and analyzed using ultrasonic guided waves and bulk waves and compared to reference samples. In order to classify the damage level as a function of time spent under the sea, the measure have been compared to a rheological model based on the Finite Elements Method (FEM). Ageing of the composite material, as well as that of the adhesive, is identified. The aim is to improve the quality of the turbine blade structure in terms of longevity and reduced maintenance needs.

Keywords: non-destructive testing, ultrasound, composites, guides waves

Procedia PDF Downloads 222
4776 Delamination Fracture Toughness Benefits of Inter-Woven Plies in Composite Laminates Produced through Automated Fibre Placement

Authors: Jayden Levy, Garth M. K. Pearce

Abstract:

An automated fibre placement method has been developed to build through-thickness reinforcement into carbon fibre reinforced plastic laminates during their production, with the goal of increasing delamination fracture toughness while circumventing the additional costs and defects imposed by post-layup stitching and z-pinning. Termed ‘inter-weaving’, the method uses custom placement sequences of thermoset prepreg tows to distribute regular fibre link regions in traditionally clean ply interfaces. Inter-weaving’s impact on mode I delamination fracture toughness was evaluated experimentally through double cantilever beam tests (ASTM standard D5528-13) on [±15°]9 laminates made from Park Electrochemical Corp. E-752-LT 1/4” carbon fibre prepreg tape. Unwoven and inter-woven automated fibre placement samples were compared to those of traditional laminates produced from standard uni-directional plies of the same material system. Unwoven automated fibre placement laminates were found to suffer a mostly constant 3.5% decrease in mode I delamination fracture toughness compared to flat uni-directional plies. Inter-weaving caused significant local fracture toughness increases (up to 50%), though these were offset by a matching overall reduction. These positive and negative behaviours of inter-woven laminates were respectively found to be caused by fibre breakage and matrix deformation at inter-weave sites, and the 3D layering of inter-woven ply interfaces providing numerous paths of least resistance for crack propagation.

Keywords: AFP, automated fibre placement, delamination, fracture toughness, inter-weaving

Procedia PDF Downloads 184
4775 Time Estimation of Return to Sports Based on Classification of Health Levels of Anterior Cruciate Ligament Using a Convolutional Neural Network after Reconstruction Surgery

Authors: Zeinab Jafari A., Ali Sharifnezhad B., Mohammad Razi C., Mohammad Haghpanahi D., Arash Maghsoudi

Abstract:

Background and Objective: Sports-related rupture of the anterior cruciate ligament (ACL) and following injuries have been associated with various disorders, such as long-lasting changes in muscle activation patterns in athletes, which might last after ACL reconstruction (ACLR). The rupture of the ACL might result in abnormal patterns of movement execution, extending the treatment period and delaying athletes’ return to sports (RTS). As ACL injury is especially prevalent among athletes, the lengthy treatment process and athletes’ absence from sports are of great concern to athletes and coaches. Thus, estimating safe time of RTS is of crucial importance. Therefore, using a deep neural network (DNN) to classify the health levels of ACL in injured athletes, this study aimed to estimate the safe time for athletes to return to competitions. Methods: Ten athletes with ACLR and fourteen healthy controls participated in this study. Three health levels of ACL were defined: healthy, six-month post-ACLR surgery and nine-month post-ACLR surgery. Athletes with ACLR were tested six and nine months after the ACLR surgery. During the course of this study, surface electromyography (sEMG) signals were recorded from five knee muscles, namely Rectus Femoris (RF), Vastus Lateralis (VL), Vastus Medialis (VM), Biceps Femoris (BF), Semitendinosus (ST), during single-leg drop landing (SLDL) and forward hopping (SLFH) tasks. The Pseudo-Wigner-Ville distribution (PWVD) was used to produce three-dimensional (3-D) images of the energy distribution patterns of sEMG signals. Then, these 3-D images were converted to two-dimensional (2-D) images implementing the heat mapping technique, which were then fed to a deep convolutional neural network (DCNN). Results: In this study, we estimated the safe time of RTS by designing a DCNN classifier with an accuracy of 90 %, which could classify ACL into three health levels. Discussion: The findings of this study demonstrate the potential of the DCNN classification technique using sEMG signals in estimating RTS time, which will assist in evaluating the recovery process of ACLR in athletes.

Keywords: anterior cruciate ligament reconstruction, return to sports, surface electromyography, deep convolutional neural network

Procedia PDF Downloads 79
4774 Preparation and Electro-Optic Characteristics of Polymer Network Liquid Crystals Based On Polymethylvinilpirydine and Polyethylene Glycol

Authors: T. D. Ibragimov, A. R. Imamaliyev, G. M. Bayramov

Abstract:

The polymer network liquid crystals based on the liquid crystals Н37 and 5CB with polymethylvinilpirydine (PMVP) and polyethylene glycol (PEG) have been developed. Mesogene substance 4-n-heptyoxibenzoic acid (HOBA) is served for stabilization of obtaining composites. Kinetics of network formation is investigated by methods of polarization microscopy and integrated small-angle scattering. It is shown that gel-like states of the composite H-37 + PMVP + HOBA and 5CB+PEG+HOBA are formed at polymer concentration above 7 % and 9 %, correspondingly. At slow cooling, the system separates into a liquid crystal –rich phase and a liquid crystal-poor phase. At this case, transition of these phases in the H-37 + PMVP + HOBA (87 % + 12 % + 1 %) composite to an anisotropic state occurs at 49 оС and и 41 оС, accordingly, while the composite 5CB+PEG+HOBA (85% +13 % +2%) passes to anisotropic state at 36 оС corresponding to the isotropic-nematic transition of pure 5CB. The basic electro-optic parameters of the obtained composites are determined at room temperature. It is shown that the threshold voltage of the composite H-37 + PMVP + HOBA increase in comparison with pure H-37 and, accordingly, there is a shift of voltage dependence of rise times to the high voltage region. The contrast ratio worsens while decay time improves in comparison with the pure liquid crystal at all applied voltage. The switching times of the composite 5CB + PEG + HOBA (85% +13 % +2%) show anomalous behavior connected with incompleteness of the transition to an anisotropic state. Experimental results are explained by phase separation of the system, diminution of a working area of electro-optical effects and influence of areas with the high polymer concentration on areas with their low concentration.

Keywords: liquid crystals, polymers, small-angle scattering, optical properties

Procedia PDF Downloads 620
4773 A Geospatial Consumer Marketing Campaign Optimization Strategy: Case of Fuzzy Approach in Nigeria Mobile Market

Authors: Adeolu O. Dairo

Abstract:

Getting the consumer marketing strategy right is a crucial and complex task for firms with a large customer base such as mobile operators in a competitive mobile market. While empirical studies have made efforts to identify key constructs, no geospatial model has been developed to comprehensively assess the viability and interdependency of ground realities regarding the customer, competition, channel and the network quality of mobile operators. With this research, a geo-analytic framework is proposed for strategy formulation and allocation for mobile operators. Firstly, a fuzzy analytic network using a self-organizing feature map clustering technique based on inputs from managers and literature, which depicts the interrelationships amongst ground realities is developed. The model is tested with a mobile operator in the Nigeria mobile market. As a result, a customer-centric geospatial and visualization solution is developed. This provides a consolidated and integrated insight that serves as a transparent, logical and practical guide for strategic, tactical and operational decision making.

Keywords: geospatial, geo-analytics, self-organizing map, customer-centric

Procedia PDF Downloads 184
4772 Performance Evaluation of a Fuel Cell Membrane Electrode Assembly Prepared from a Reinforced Proton Exchange Membrane

Authors: Yingjeng James Li, Yun Jyun Ou, Chih Chi Hsu, Chiao-Chih Hu

Abstract:

A fuel cell is a device that produces electric power by reacting fuel and oxidant electrochemically. There is no pollution produced from a fuel cell if hydrogen is employed as the fuel. Therefore, a fuel cell is considered as a zero emission device and is a source of green power. A membrane electrode assembly (MEA) is the key component of a fuel cell. It is, therefore, beneficial to develop MEAs with high performance. In this study, an MEA for proton exchange membrane fuel cell (PEMFC) was prepared from a 15-micron thick reinforced PEM. The active area of such MEA is 25 cm2. Carbon supported platinum (Pt/C) was employed as the catalyst for both anode and cathode. The platinum loading is 0.6 mg/cm2 based on the sum of anode and cathode. Commercially available carbon papers coated with a micro porous layer (MPL) serve as gas diffusion layers (GDLs). The original thickness of the GDL is 250 μm. It was compressed down to 163 μm when assembled into the single cell test fixture. Polarization curves were taken by using eight different test conditions. At our standard test condition (cell: 70 °C; anode: pure hydrogen, 100%RH, 1.2 stoic, ambient pressure; cathode: air, 100%RH, 3.0 stoic, ambient pressure), the cell current density is 1250 mA/cm2 at 0.6 V, and 2400 mA/cm2 at 0.4 V. At self-humidified condition and cell temperature of 55 °C, the cell current density is 1050 mA/cm2 at 0.6 V, and 2250 mA/cm2 at 0.4 V. Hydrogen crossover rate of the MEA is 0.0108 mL/min*cm2 according to linear sweep voltammetry experiments. According to the MEA’s Pt loading and the cyclic voltammetry experiments, the Pt electrochemical surface area is 60 m2/g. The ohmic part of the impedance spectroscopy results shows that the membrane resistance is about 60 mΩ*cm2 when the MEA is operated at 0.6 V.

Keywords: fuel cell, membrane electrode assembly, proton exchange membrane, reinforced

Procedia PDF Downloads 295
4771 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks

Authors: Anne-Lena Kampen, Øivind Kure

Abstract:

Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.

Keywords: central machine learning, embedded machine learning, energy consumption, local machine learning, wireless sensor networks, WSN

Procedia PDF Downloads 156
4770 A Hybrid Fuzzy Clustering Approach for Fertile and Unfertile Analysis

Authors: Shima Soltanzadeh, Mohammad Hosain Fazel Zarandi, Mojtaba Barzegar Astanjin

Abstract:

Diagnosis of male infertility by the laboratory tests is expensive and, sometimes it is intolerable for patients. Filling out the questionnaire and then using classification method can be the first step in decision-making process, so only in the cases with a high probability of infertility we can use the laboratory tests. In this paper, we evaluated the performance of four classification methods including naive Bayesian, neural network, logistic regression and fuzzy c-means clustering as a classification, in the diagnosis of male infertility due to environmental factors. Since the data are unbalanced, the ROC curves are most suitable method for the comparison. In this paper, we also have selected the more important features using a filtering method and examined the impact of this feature reduction on the performance of each methods; generally, most of the methods had better performance after applying the filter. We have showed that using fuzzy c-means clustering as a classification has a good performance according to the ROC curves and its performance is comparable to other classification methods like logistic regression.

Keywords: classification, fuzzy c-means, logistic regression, Naive Bayesian, neural network, ROC curve

Procedia PDF Downloads 341
4769 Enhancing Air Quality: Investigating Filter Lifespan and Byproducts in Air Purification Solutions

Authors: Freja Rydahl Rasmussen, Naja Villadsen, Stig Koust

Abstract:

Air purifiers have become widely implemented in a wide range of settings, including households, schools, institutions, and hospitals, as they tackle the pressing issue of indoor air pollution. With their ability to enhance indoor air quality and create healthier environments, air purifiers are particularly vital when ventilation options are limited. These devices incorporate a diverse array of technologies, including HEPA filters, active carbon filters, UV-C light, photocatalytic oxidation, and ionizers, each designed to combat specific pollutants and improve air quality within enclosed spaces. However, the safety of air purifiers has not been investigated thoroughly, and many questions still arise when applying them. Certain air purification technologies, such as UV-C light or ionization, can unintentionally generate undesirable byproducts that can negatively affect indoor air quality and health. It is well-established that these technologies can inadvertently generate nanoparticles or convert common gaseous compounds into harmful ones, thus exacerbating air pollution. However, the formation of byproducts can vary across products, necessitating further investigation. There is a particular concern about the formation of the carcinogenic substance formaldehyde from common gases like acetone. Many air purifiers use mechanical filtration to remove particles, dust, and pollen from the air. Filters need to be replaced periodically for optimal efficiency, resulting in an additional cost for end-users. Currently, there are no guidelines for filter lifespan, and replacement recommendations solely rely on manufacturers. A market screening revealed that manufacturers' recommended lifespans vary greatly (from 1 month to 10 years), and there is a need for general recommendations to guide consumers. Activated carbon filters are used to adsorb various types of chemicals that can pose health risks or cause unwanted odors. These filters have a certain capacity before becoming saturated. If not replaced in a timely manner, the adsorbed substances are likely to be released from the filter through off-gassing or losing adsorption efficiency. The goal of this study is to investigate the lifespan of filters as well as investigate the potentially harmful effects of air purifiers. Understanding the lifespan of filters used in air purifiers and the potential formation of harmful byproducts is essential for ensuring their optimal performance, guiding consumers in their purchasing decisions, and establishing industry standards for safer and more effective air purification solutions. At this time, a selection of air purifiers has been chosen, and test methods have been established. In the following 3 months, the tests will be conducted, and the results will be ready for presentation later.

Keywords: air purifiers, activated carbon filters, byproducts, clean air, indoor air quality

Procedia PDF Downloads 74
4768 Reduction and Smelting of Magnetic Fraction Obtained by Magnetic-Gravimetric-Separation (MGS) of Electric Arc Furnace Dust

Authors: Sara Scolari, Davide Mombelli, Gianluca Dall'Osto, Jasna Kastivnik, Gašper Tavčar, Carlo Mapelli

Abstract:

The EIT Raw Materials RIS-DustRec-II project aims to transform Electric Arc Furnace Dust (EAFD) into a valuable resource by overcoming the challenges associated with traditional recycling approaches. EAFD, a zinc-rich industrial by-product typically recycled by the Waelz process, contains complex oxides such as franklinite (ZnFe₂O₄), which hinder the efficient extraction of zinc, by also introducing other valuable elements (Fe, Ni, Cr, Cu, …) in the slag. The project aims to develop a multistage multidisciplinary approach to separate EAFD into two streams: a magnetic and non-magnetic one. In this paper the production of self-reducing briquettes from the magnetic stream of EAFD with a reducing agent, aiming to drive carbothermic reduction and recover iron as a usable alloy, was investigated. Research was focused on optimizing the magnetic and subsequent gravimetric separation (MGS) processes, followed by high-temperature smelting to evaluate reduction efficiency and phase separation. The characterization of selected two different raw EAFD samples and their magnetic-gravitational separation to isolate zinc- and iron-rich fractions was performed by X-ray diffraction and scanning electron microscope. The iron-enriched concentrates were then agglomerated into self-reducing briquettes by mixing them with either biochar (olive pomace pyrolyzed at 350 and 750°C and wood chips pyrolyzed at 750 °C) and a Cupola Furnace dust as reducing agents, combined with gelatinized corn starch as a binder. Cylindrical briquettes were produced and cured for 14 days to ensure structural integrity during subsequent thermal treatments. Smelting tests were carried out at 1400 °C in an inert argon atmosphere to assess the metallization efficiency and the separation between metal and slag phases. A carbon/oxides mass ratio of 0.262 (C/(ZnO+Fe₂O₃)) was used in these tests to maintain continuity with previous studies and to standardize reduction conditions. The magnetic and gravimetric separations effectively isolated zinc- and iron-enriched fractions, particularly for one of the two EAFD, where the concentration of Zn in the concentration fraction was reduced by 8 wt.% while Fe reached 45 wt.%. The reduction tests conducted at 1400 °C showed that the chosen carbon/oxides ratio was sufficient for the smelting of the reducible oxides within the briquettes. However, an important limitation became apparent: the amount of carbon, exceeding the stochiometric value, proved to be excessive for the effective coalescence of metal droplets, preventing clear metal-slag separation. To address this, further smelting tests were carried out in an air atmosphere rather than inert conditions to burn off excess carbon. This paper demonstrates the potential of controlled carbothermic reduction for EAFD recycling. By carefully optimizing the C/(ZnO+Fe₂O₃) ratio, the process can maximize metal recovery while achieving better separation of the metal and slag phases. This approach offers a promising alternative to traditional EAFD recycling methods, with further studies recommended to refine the parameters for industrial application.

Keywords: biochars, electrical arc furnace dust, metallization, smelting

Procedia PDF Downloads 15
4767 Privacy-Preserving Location Sharing System with Client/Server Architecture in Mobile Online Social Network

Authors: Xi Xiao, Chunhui Chen, Xinyu Liu, Guangwu Hu, Yong Jiang

Abstract:

Location sharing is a fundamental service in mobile Online Social Networks (mOSNs), which raises significant privacy concerns in recent years. Now, most location-based service applications adopt client/server architecture. In this paper, a location sharing system, named CSLocShare, is presented to provide flexible privacy-preserving location sharing with client/server architecture in mOSNs. CSLocShare enables location sharing between both trusted social friends and untrusted strangers without the third-party server. In CSLocShare, Location-Storing Social Network Server (LSSNS) provides location-based services but do not know the users’ real locations. The thorough analysis indicates that the users’ location privacy is protected. Meanwhile, the storage and the communication cost are saved. CSLocShare is more suitable and effective in reality.

Keywords: mobile online social networks, client/server architecture, location sharing, privacy-preserving

Procedia PDF Downloads 332
4766 The Selective Reduction of a Morita-baylis-hillman Adduct-derived Ketones Using Various Ketoreductase Enzyme Preparations

Authors: Nompumelelo P. Mathebula, Roger A. Sheldon, Daniel P. Pienaar, Moira L. Bode

Abstract:

The preparation of enantiopure Morita-Baylis-Hillman (MBH) adducts remains a challenge in organic chemistry. MBH adducts are highly functionalised compounds which act as key intermediates in the preparation of compounds of medicinal importance. MBH adducts are prepared in racemic form by reacting various aldehydes and activated alkenes in the presence of DABCO. Enantiopure MBH adducts can be obtained by employing Enzymatic kinetic resolution (EKR). This technique has been successfully demonstrated in our group, amongst others, using lipases in either hydrolysis or transesterification reactions. As these methods only allow 50% of each enantiomer to be obtained, our interest grew in exploring other enzymatic methods for the synthesis of enantiopure MBH adducts where, theoretically, 100% of the desired enantiomer could be obtained.Dehydrogenase enzymes can be employed on prochiral substrates to obtain optically pure compounds by reducing carbon-carbon double bonds or carbonyl groups of ketones. Ketoreductases have been used historically to obtain enantiopure secondary alcohols on an industrial scale. Ketoreductases are NAD(P)H-dependent enzymes and thus require nicotinamide as a cofactor. This project focuses on employing ketoreductase enzymes to selectively reduce ketones derived from Morita-Baylis-Hillman (MBH) adducts in order to obtain these adducts in enantiopure form.Results obtained from this study will be reported. Good enantioselectivity was observed using a range of different ketoreductases, however, reactions were complicated by the formation of an unexpected by-product, which was characterised employing single crystal x-ray crystallography techniques. Methods to minimise by-product formation are currently being investigated.

Keywords: ketoreductase, morita-baylis-hillman, selective reduction, x-ray crystallography

Procedia PDF Downloads 70
4765 Mitigation of Electromagnetic Interference Generated by GPIB Control-Network in AC-DC Transfer Measurement System

Authors: M. M. Hlakola, E. Golovins, D. V. Nicolae

Abstract:

The field of instrumentation electronics is undergoing an explosive growth, due to its wide range of applications. The proliferation of electrical devices in a close working proximity can negatively influence each other’s performance. The degradation in the performance is due to electromagnetic interference (EMI). This paper investigates the negative effects of electromagnetic interference originating in the General Purpose Interface Bus (GPIB) control-network of the ac-dc transfer measurement system. Remedial measures of reducing measurement errors and failure of range of industrial devices due to EMI have been explored. The ac-dc transfer measurement system was analyzed for the common-mode (CM) EMI effects. Further investigation of coupling path as well as more accurate identification of noise propagation mechanism has been outlined. To prevent the occurrence of common-mode (ground loops) which was identified between the GPIB system control circuit and the measurement circuit, a microcontroller-driven GPIB switching isolator device was designed, prototyped, programmed and validated. This mitigation technique has been explored to reduce EMI effectively.

Keywords: CM, EMI, GPIB, ground loops

Procedia PDF Downloads 290
4764 Exploring the Situational Approach to Decision Making: User eConsent on a Health Social Network

Authors: W. Rowan, Y. O’Connor, L. Lynch, C. Heavin

Abstract:

Situation Awareness can offer the potential for conscious dynamic reflection. In an era of online health data sharing, it is becoming increasingly important that users of health social networks (HSNs) have the information necessary to make informed decisions as part of the registration process and in the provision of eConsent. This research aims to leverage an adapted Situation Awareness (SA) model to explore users’ decision making processes in the provision of eConsent. A HSN platform was used to investigate these behaviours. A mixed methods approach was taken. This involved the observation of registration behaviours followed by a questionnaire and focus group/s. Early results suggest that users are apt to automatically accept eConsent, and only later consider the long-term implications of sharing their personal health information. Further steps are required to continue developing knowledge and understanding of this important eConsent process. The next step in this research will be to develop a set of guidelines for the improved presentation of eConsent on the HSN platform.

Keywords: eConsent, health social network, mixed methods, situation awareness

Procedia PDF Downloads 295
4763 Organizational Resilience in the Perspective of Supply Chain Risk Management: A Scholarly Network Analysis

Authors: William Ho, Agus Wicaksana

Abstract:

Anecdotal evidence in the last decade shows that the occurrence of disruptive events and uncertainties in the supply chain is increasing. The coupling of these events with the nature of an increasingly complex and interdependent business environment leads to devastating impacts that quickly propagate within and across organizations. For example, the recent COVID-19 pandemic increased the global supply chain disruption frequency by at least 20% in 2020 and is projected to have an accumulative cost of $13.8 trillion by 2024. This crisis raises attention to organizational resilience to weather business uncertainty. However, the concept has been criticized for being vague and lacking a consistent definition, thus reducing the significance of the concept for practice and research. This study is intended to solve that issue by providing a comprehensive review of the conceptualization, measurement, and antecedents of operational resilience that have been discussed in the supply chain risk management literature (SCRM). We performed a Scholarly Network Analysis, combining citation-based and text-based approaches, on 252 articles published from 2000 to 2021 in top-tier journals based on three parameters: AJG ranking and ABS ranking, UT Dallas and FT50 list, and editorial board review. We utilized a hybrid scholarly network analysis by combining citation-based and text-based approaches to understand the conceptualization, measurement, and antecedents of operational resilience in the SCRM literature. Specifically, we employed a Bibliographic Coupling Analysis in the research cluster formation stage and a Co-words Analysis in the research cluster interpretation and analysis stage. Our analysis reveals three major research clusters of resilience research in the SCRM literature, namely (1) supply chain network design and optimization, (2) organizational capabilities, and (3) digital technologies. We portray the research process in the last two decades in terms of the exemplar studies, problems studied, commonly used approaches and theories, and solutions provided in each cluster. We then provide a conceptual framework on the conceptualization and antecedents of resilience based on studies in these clusters and highlight potential areas that need to be studied further. Finally, we leverage the concept of abnormal operating performance to propose a new measurement strategy for resilience. This measurement overcomes the limitation of most current measurements that are event-dependent and focus on the resistance or recovery stage - without capturing the growth stage. In conclusion, this study provides a robust literature review through a scholarly network analysis that increases the completeness and accuracy of research cluster identification and analysis to understand conceptualization, antecedents, and measurement of resilience. It also enables us to perform a comprehensive review of resilience research in SCRM literature by including research articles published during the pandemic and connects this development with a plethora of articles published in the last two decades. From the managerial perspective, this study provides practitioners with clarity on the conceptualization and critical success factors of firm resilience from the SCRM perspective.

Keywords: supply chain risk management, organizational resilience, scholarly network analysis, systematic literature review

Procedia PDF Downloads 77
4762 A Holistic View of Microbial Community Dynamics during a Toxic Harmful Algal Bloom

Authors: Shi-Bo Feng, Sheng-Jie Zhang, Jin Zhou

Abstract:

The relationship between microbial diversity and algal bloom has received considerable attention for decades. Microbes undoubtedly affect annual bloom events and impact the physiology of both partners, as well as shape ecosystem diversity. However, knowledge about interactions and network correlations among broader-spectrum microbes that lead to the dynamics in a complete bloom cycle are limited. In this study, pyrosequencing and network approaches simultaneously assessed the associate patterns among bacteria, archaea, and microeukaryotes in surface water and sediments in response to a natural dinoflagellate (Alexandrium sp.) bloom. In surface water, among the bacterial community, Gamma-Proteobacteria and Bacteroidetes dominated in the initial bloom stage, while Alpha-Proteobacteria, Cyanobacteria, and Actinobacteria become the most abundant taxa during the post-stage. In the archaea biosphere, it clustered predominantly with Methanogenic members in the early pre-bloom period while the majority of species identified in the later-bloom stage were ammonia-oxidizing archaea and Halobacteriales. In eukaryotes, dinoflagellate (Alexandrium sp.) was dominated in the onset stage, whereas multiply species (such as microzooplankton, diatom, green algae, and rotifera) coexistence in bloom collapse stag. In sediments, the microbial species biomass and richness are much higher than the water body. Only Flavobacteriales and Rhodobacterales showed a slight response to bloom stages. Unlike the bacteria, there are small fluctuations of archaeal and eukaryotic structure in the sediment. The network analyses among the inter-specific associations show that bacteria (Alteromonadaceae, Oceanospirillaceae, Cryomorphaceae, and Piscirickettsiaceae) and some zooplankton (Mediophyceae, Mamiellophyceae, Dictyochophyceae and Trebouxiophyceae) have a stronger impact on the structuring of phytoplankton communities than archaeal effects. The changes in population were also significantly shaped by water temperature and substrate availability (N & P resources). The results suggest that clades are specialized at different time-periods and that the pre-bloom succession was mainly a bottom-up controlled, and late-bloom period was controlled by top-down patterns. Additionally, phytoplankton and prokaryotic communities correlated better with each other, which indicate interactions among microorganisms are critical in controlling plankton dynamics and fates. Our results supplied a wider view (temporal and spatial scales) to understand the microbial ecological responses and their network association during algal blooming. It gives us a potential multidisciplinary explanation for algal-microbe interaction and helps us beyond the traditional view linked to patterns of algal bloom initiation, development, decline, and biogeochemistry.

Keywords: microbial community, harmful algal bloom, ecological process, network

Procedia PDF Downloads 116
4761 Comparative Histological, Immunohistochemical and Biochemical Study on the Effect of Vit. C, Vit. E, Gallic Acid and Silymarin on Carbon Tetrachloride Model of Liver Fibrosis in Rats

Authors: Safaa S. Hassan, Mohammed H. Elbakry, Safwat A. Mangoura, Zainab M. Omar

Abstract:

Background: Liver fibrosis is the main reason for increased mortality in chronic liver disease. It has no standard treatment. Antioxidants from a variety of sources are capable of slowing or preventing oxidation of other molecules. Aim: to evaluate the hepatoprotective effect of vit. C, vit. E and gallic acid in comparison to silymarin in the rat model of carbon tetrachloride induced liver fibrosis and their possible mechanisms of action. Material& Methods: A total number of 60 adult male albino rats 160-200gm were divided into six equal groups; received subcutaneous (s.c) injection for 8 weeks. Group I: as control. Group II: received 1.5 mL/kg of CCL4 .Group III: CCL4 and co- treatment with silymarin 100mg/kg p.o. daily. Group IV: CCL4 and co-treatment with vit. C 50mg/kg p.o. daily. Group V: CCL4 and co-treatment with vit. E 200mg/kg. p.o. Group VI: CCL4 and co-treatment with Gallic acid 100mg/kg. p.o. daily. Liver was processed for histological and immunohistochemical examination. Levels of AST, ALT, ALP, reduced GSH, MDA, SOD and hydroxyproline concentration were measured and evaluated statistically. Results: Light and electron microscopic examination of liver of group II exhibited foci of altered cells with dense nuclei and vacuolated, granular cytoplasm, mononuclear cell infiltration in portal areas, profuse collagen fiber deposits were found around portal tract, more intense staining α-SMA-positive cells occupied most of the liver fibrosis tissue, electron lucent areas in the cytoplasm of the hepatocytes, margination of nuclear chromatin. Treatment by any of the antioxidants variably reduced the hepatic structural changes induced by CCL4. Biochemical analysis showed that carbon tetrachloride significantly increased the levels of serum AST, ALT, ALP, hepatic malondialdehyde and hydroxyproline content. Moreover, it decreased the activities of superoxide dismutase and glutathione. Treatment with silymarin, gallic acid, vit. C and vit. E decreased significantly the AST, ALT, and ALP levels in plasma, MDA and hydroxyproline and increased the activities of SOD and glutathione in liver tissue. The effect of administration of CCl4 was improved with the used antioxidants in variable degrees. The most efficient antioxidant was silymarin followed by gallic acid and vit. C then vit. E. It is possibly due to their antioxidant effect, free radical scavenging properties and the reduction of oxidant dependent activation and proliferation of HSCs. Conclusion: So these antioxidants can be a promising drugs candidate for ameliorating liver fibrosis better than the use of the drugs and their side effects.

Keywords: antioxidant, ccl4, gallic acid, liver fibrosis

Procedia PDF Downloads 273
4760 Spare Part Carbon Footprint Reduction with Reman Applications

Authors: Enes Huylu, Sude Erkin, Nur A. Özdemir, Hatice K. Güney, Cemre S. Atılgan, Hüseyin Y. Altıntaş, Aysemin Top, Muammer Yılman, Özak Durmuş

Abstract:

Remanufacturing (reman) applications allow manufacturers to contribute to the circular economy and help to introduce products with almost the same quality, environment-friendly, and lower cost. The objective of this study is to present that the carbon footprint of automotive spare parts used in vehicles could be reduced by reman applications based on Life Cycle Analysis which was framed with ISO 14040 principles. In that case, it was aimed to investigate reman applications for 21 parts in total. So far, research and calculations have been completed for the alternator, turbocharger, starter motor, compressor, manual transmission, auto transmission, and DPF (diesel particulate filter) parts, respectively. Since the aim of Ford Motor Company and Ford OTOSAN is to achieve net zero based on Science-Based Targets (SBT) and the Green Deal that the European Union sets out to make it climate neutral by 2050, the effects of reman applications are researched. In this case, firstly, remanufacturing articles available in the literature were searched based on the yearly high volume of spare parts sold. Paper review results related to their material composition and emissions released during incoming production and remanufacturing phases, the base part has been selected to take it as a reference. Then, the data of the selected base part from the research are used to make an approximate estimation of the carbon footprint reduction of the relevant part used in Ford OTOSAN. The estimation model is based on the weight, and material composition of the referenced paper reman activity. As a result of this study, it was seen that remanufacturing applications are feasible to apply technically and environmentally since it has significant effects on reducing the emissions released during the production phase of the vehicle components. For this reason, the research and calculations of the total number of targeted products in yearly volume have been completed to a large extent. Thus, based on the targeted parts whose research has been completed, in line with the net zero targets of Ford Motor Company and Ford OTOSAN by 2050, if remanufacturing applications are preferred instead of recent production methods, it is possible to reduce a significant amount of the associated greenhouse gas (GHG) emissions of spare parts used in vehicles. Besides, it is observed that remanufacturing helps to reduce the waste stream and causes less pollution than making products from raw materials by reusing the automotive components.

Keywords: greenhouse gas emissions, net zero targets, remanufacturing, spare parts, sustainability

Procedia PDF Downloads 83
4759 Social Licence to Operate Methodology to Secure Commercial, Community and Regulatory Approval for Small and Large Scale Fisheries

Authors: Kelly S. Parkinson, Katherine Y. Teh-White

Abstract:

Futureye has a bespoke social licence to operate methodology which has successfully secured community approval and commercial return for fisheries which have faced regulatory and financial risk. This unique approach to fisheries management focuses on delivering improved social and environmental outcomes to support the fishing industry make steps towards achieving the United Nations SDGs. An SLO is the community’s implicit consent for a business or project to exist. An SLO must be earned and maintained alongside regulatory licences. In current and new operations, it helps you to anticipate and measure community concerns around your operations – leading to more predictable and sensible policy outcomes that will not jeopardise your commercial returns. Rising societal expectations and increasing activist sophistication mean the international fishing industry needs to resolve community concerns at each stage their supply chain. Futureye applied our tested social licence to operate (SLO) methodology to help Austral Fisheries who was being attacked by activists concerned about the sustainability of Patagonian Toothfish. Austral was Marine Stewardship Council certified, but pirates were making the overall catch unsustainable. Austral wanted to be carbon neutral. SLO provides a lens on the risk that helps industries and companies act before regulatory and political risk escalates. To do this assessment, we have a methodology that assesses the risk that we can then translate into a process to create a strategy. 1) Audience: we understand the drivers of change and the transmission of those drivers across all audience segments. 2) Expectation: we understand the level of social norming of changing expectations. 3) Outrage: we understand the technical and perceptual aspects of risk and the opportunities to mitigate these. 4) Inter-relationships: we understand the political, regulatory, and reputation system so that we can understand the levers of change. 5) Strategy: we understand whether the strategy will achieve a social licence through bringing the internal and external stakeholders on the journey. Futureye’s SLO methodologies helped Austral to understand risks and opportunities to enhance its resilience. Futureye reviewed the issues, assessed outrage and materiality and mapped SLO threats to the company. Austral was introduced to a new way that it could manage activism, climate action, and responsible consumption. As a result of Futureye’s work, Austral worked closely with Sea Shepherd who was campaigning against pirates illegally fishing Patagonian Toothfish as well as international governments. In 2016 Austral launched the world’s first carbon neutral fish which won Austral a thirteen percent premium for tender on the open market. In 2017, Austral received the prestigious Banksia Foundation Sustainability Leadership Award for seafood that is sustainable, healthy and carbon neutral. Austral’s position as a leader in sustainable development has opened doors for retailers all over the world. Futureye’s SLO methodology can identify the societal, political and regulatory risks facing fisheries and position them to proactively address the issues and become an industry leader in sustainability.

Keywords: carbon neutral, fisheries management, risk communication, social licence to operate, sustainable development

Procedia PDF Downloads 123
4758 Biodegradation of Malathion by Acinetobacter baumannii Strain AFA Isolated from Domestic Sewage in Egypt

Authors: Ahmed F. Azmy, Amal E. Saafan, Tamer M. Essam, Magdy A. Amin, Shaban H. Ahmed

Abstract:

Bacterial strains capable of degradation of malathion from the domestic sewage were isolated by an enrichment culture technique. Three bacterial strains were screened and identified as Acinetobacter baumannii (AFA), Pseudomonas aeruginosae (PS1),andPseudomonas mendocina (PS2) based on morphological, biochemical identification and 16S rRNA sequence analysis. Acinetobacter baumannii AFA was the most efficient malathion degrading bacterium, so used for further biodegradation study. AFA was able to grow in mineral salt medium (MSM) supplemented with malathion (100 mg/l) as a sole carbon source, and within 14 days, 84% of the initial dose was degraded by the isolate measured by high performance liquid chromatography. Strain AFA could also degrade other organophosphorus compounds including diazenon, chlorpyrifos and fenitrothion. The effect of different culture conditions on the degradation of malathion like inoculum density, other carbon or nitrogen sources, temperature and shaking were examined. Degradation of malathion and bacterial cell growth were accelerated when culture media were supplemented with yeast extract, glucose and citrate. The optimum conditions for malathion degradation by strain AFA were; an inoculum density of 1.5x 1012CFU/ml at 30°C with shaking. A specific polymerase chain reaction primers were designed manually using multiple sequence alignment of the corresponding carboxylesterase enzymes of Acinetobacter species. Sequencing result of amplified PCR product and phylogenetic analysis showed low degree of homology with the other carboxylesterase enzymes of Acinetobacter strains, so we suggested that this enzyme is a novel esterase enzyme. Isolated bacterial strains may have potential role for use in bioremediation of malathion contaminated.

Keywords: Acinetobacter baumannii, biodegradation, malathion, organophosphate pesticides

Procedia PDF Downloads 489
4757 Weed Classification Using a Two-Dimensional Deep Convolutional Neural Network

Authors: Muhammad Ali Sarwar, Muhammad Farooq, Nayab Hassan, Hammad Hassan

Abstract:

Pakistan is highly recognized for its agriculture and is well known for producing substantial amounts of wheat, cotton, and sugarcane. However, some factors contribute to a decline in crop quality and a reduction in overall output. One of the main factors contributing to this decline is the presence of weed and its late detection. This process of detection is manual and demands a detailed inspection to be done by the farmer itself. But by the time detection of weed, the farmer will be able to save its cost and can increase the overall production. The focus of this research is to identify and classify the four main types of weeds (Small-Flowered Cranesbill, Chick Weed, Prickly Acacia, and Black-Grass) that are prevalent in our region’s major crops. In this work, we implemented three different deep learning techniques: YOLO-v5, Inception-v3, and Deep CNN on the same Dataset, and have concluded that deep convolutions neural network performed better with an accuracy of 97.45% for such classification. In relative to the state of the art, our proposed approach yields 2% better results. We devised the architecture in an efficient way such that it can be used in real-time.

Keywords: deep convolution networks, Yolo, machine learning, agriculture

Procedia PDF Downloads 120
4756 Model and Neural Control of the Depth of Anesthesia during Surgery

Authors: Javier Fernandez, Mayte Medina, Rafael Fernandez de Canete, Nuria Alcain, Juan Carlos Ramos-Diaz

Abstract:

At present, the experimentation of anesthetic drugs on patients requires a regulation protocol, and the response of each patient to several doses of entry drug must be well known. Therefore, the development of pharmacological dose control systems is a promising field of research in anesthesiology. In this paper, it has been developed a non-linear compartmental the pharmacokinetic-pharmacodynamical model which describes the anesthesia depth effect in a sufficiently reliable way over a set of patients with the depth effect quantified by the Bi-Spectral Index. Afterwards, an Artificial Neural Network (ANN) predictive controller has been designed based on the depth of anesthesia model so as to keep the patient in the optimum condition while he undergoes surgical treatment. For the purpose of quantifying the efficiency of the neural predictive controller, a classical proportional-integral-derivative controller has also been developed to compare both strategies. Results show the superior performance of predictive neural controller during BiSpectral Index reference tracking.

Keywords: anesthesia, bi-spectral index, neural network control, pharmacokinetic-pharmacodynamical model

Procedia PDF Downloads 339
4755 Statistical Analysis and Optimization of a Process for CO2 Capture

Authors: Muftah H. El-Naas, Ameera F. Mohammad, Mabruk I. Suleiman, Mohamed Al Musharfy, Ali H. Al-Marzouqi

Abstract:

CO2 capture and storage technologies play a significant role in contributing to the control of climate change through the reduction of carbon dioxide emissions into the atmosphere. The present study evaluates and optimizes CO2 capture through a process, where carbon dioxide is passed into pH adjusted high salinity water and reacted with sodium chloride to form a precipitate of sodium bicarbonate. This process is based on a modified Solvay process with higher CO2 capture efficiency, higher sodium removal, and higher pH level without the use of ammonia. The process was tested in a bubble column semi-batch reactor and was optimized using response surface methodology (RSM). CO2 capture efficiency and sodium removal were optimized in terms of major operating parameters based on four levels and variables in Central Composite Design (CCD). The operating parameters were gas flow rate (0.5–1.5 L/min), reactor temperature (10 to 50 oC), buffer concentration (0.2-2.6%) and water salinity (25-197 g NaCl/L). The experimental data were fitted to a second-order polynomial using multiple regression and analyzed using analysis of variance (ANOVA). The optimum values of the selected variables were obtained using response optimizer. The optimum conditions were tested experimentally using desalination reject brine with salinity ranging from 65,000 to 75,000 mg/L. The CO2 capture efficiency in 180 min was 99% and the maximum sodium removal was 35%. The experimental and predicted values were within 95% confidence interval, which demonstrates that the developed model can successfully predict the capture efficiency and sodium removal using the modified Solvay method.

Keywords: CO2 capture, water desalination, Response Surface Methodology, bubble column reactor

Procedia PDF Downloads 290
4754 Comparison of Quality of Life One Year after Bariatric Intervention: Systematic Review of the Literature with Bayesian Network Meta-Analysis

Authors: Piotr Tylec, Alicja Dudek, Grzegorz Torbicz, Magdalena Mizera, Natalia Gajewska, Michael Su, Tanawat Vongsurbchart, Tomasz Stefura, Magdalena Pisarska, Mateusz Rubinkiewicz, Piotr Malczak, Piotr Major, Michal Pedziwiatr

Abstract:

Introduction: Quality of life after bariatric surgery is an important factor when evaluating the final result of the treatment. Considering the vast surgical options, we tried to globally compare available methods in terms of quality of following the surgery. The aim of the study is to compare the quality of life a year after bariatric intervention using network meta-analysis methods. Material and Methods: We performed a systematic review according to PRISMA guidelines with Bayesian network meta-analysis. Inclusion criteria were: studies comparing at least two methods of weight loss treatment of which at least one is surgical, assessment of the quality of life one year after surgery by validated questionnaires. Primary outcomes were quality of life one year after bariatric procedure. The following aspects of quality of life were analyzed: physical, emotional, general health, vitality, role physical, social, mental, and bodily pain. All questionnaires were standardized and pooled to a single scale. Lifestyle intervention was considered as a referenced point. Results: An initial reference search yielded 5636 articles. 18 studies were evaluated. In comparison of total score of quality of life, we observed that laparoscopic sleeve gastrectomy (LSG) (median (M): 3.606, Credible Interval 97.5% (CrI): 1.039; 6.191), laparoscopic Roux en-Y gastric by-pass (LRYGB) (M: 4.973, CrI: 2.627; 7.317) and open Roux en-Y gastric by-pass (RYGB) (M: 9.735, CrI: 6.708; 12.760) had better results than other bariatric intervention in relation to lifestyle interventions. In the analysis of the physical aspects of quality of life, we notice better results in LSG (M: 3.348, CrI: 0.548; 6.147) and in LRYGB procedure (M: 5.070, CrI: 2.896; 7.208) than control intervention, and worst results in open RYGB (M: -9.212, CrI: -11.610; -6.844). Analyzing emotional aspects, we found better results than control intervention in LSG, in LRYGB, in open RYGB, and laparoscopic gastric plication. In general health better results were in LSG (M: 9.144, CrI: 4.704; 13.470), in LRYGB (M: 6.451, CrI: 10.240; 13.830) and in single-anastomosis gastric by-pass (M: 8.671, CrI: 1.986; 15.310), and worst results in open RYGB (M: -4.048, CrI: -7.984; -0.305). In social and vital aspects of quality of life, better results were observed in LSG and LRYGB than control intervention. We did not find any differences between bariatric interventions in physical role, mental and bodily aspects of quality of life. Conclusion: The network meta-analysis revealed that better quality of life in total score one year after bariatric interventions were after LSG, LRYGB, open RYGB. In physical and general health aspects worst quality of life was in open RYGB procedure. Other interventions did not significantly affect the quality of life after a year compared to dietary intervention.

Keywords: bariatric surgery, network meta-analysis, quality of life, one year follow-up

Procedia PDF Downloads 161
4753 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery

Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong

Abstract:

The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.

Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition

Procedia PDF Downloads 292
4752 The Analysis of Changes in Urban Hierarchy of Isfahan Province in the Fifty-Year Period (1956-2006)

Authors: Hamidreza Joudaki, Yousefali Ziari

Abstract:

The appearance of city and urbanism is one of the important processes which have affected social communities. Being industrialized urbanism developed along with each other in the history. In addition, they have had simple relationship for more than six thousand years, that is, from the appearance of the first cities. In 18th century by coming out of industrial capitalism, progressive development took place in urbanism in the world. In Iran, the city of each region made its decision by itself and the capital of region (downtown) was the only central part and also the regional city without any hierarchy, controlled its realm. However, this method of ruling during these three decays, because of changing in political, social and economic issues that have caused changes in rural and urban relationship. Moreover, it has changed the variety of performance of cities and systematic urban network in Iran. Today, urban system has very vast imbalanced apace and performance. In Isfahan, the trend of urbanism is like the other part of Iran and systematic urban hierarchy is not suitable and normal. This article is a quantitative and analytical. The statistical communities are Isfahan Province cities and the changes in urban network and its hierarchy during the period of fifty years (1956 -2006) has been surveyed. In addition, those data have been analyzed by model of Rank and size and Entropy index. In this article Iran cities and also the factor of entropy of primate city and urban hierarchy of Isfahan Province have been introduced. Urban residents of this Province have been reached from 55 percent to 83% (2006). As we see the analytical data reflects that there is mismatching and imbalance between cities. Because the entropy index was.91 in 1956.And it decreased to.63 in 2006. Isfahan city is the primate city in the whole of these periods. Moreover, the second and the third cities have population gap with regard to the other cities and finally, they do not follow the system of rank-size.

Keywords: urban network, urban hierarchy, primate city, Isfahan province, urbanism, first cities

Procedia PDF Downloads 260
4751 Structural Protein-Protein Interactions Network of Breast Cancer Lung and Brain Metastasis Corroborates Conformational Changes of Proteins Lead to Different Signaling

Authors: Farideh Halakou, Emel Sen, Attila Gursoy, Ozlem Keskin

Abstract:

Protein–Protein Interactions (PPIs) mediate major biological processes in living cells. The study of PPIs as networks and analyze the network properties contribute to the identification of genes and proteins associated with diseases. In this study, we have created the sub-networks of brain and lung metastasis from primary tumor in breast cancer. To do so, we used seed genes known to cause metastasis, and produced their interactions through a network-topology based prioritization method named GUILDify. In order to have the experimental support for the sub-networks, we further curated them using STRING database. We proceeded by modeling structures for the interactions lacking complex forms in Protein Data Bank (PDB). The functional enrichment analysis shows that KEGG pathways associated with the immune system and infectious diseases, particularly the chemokine signaling pathway, are important for lung metastasis. On the other hand, pathways related to genetic information processing are more involved in brain metastasis. The structural analyses of the sub-networks vividly demonstrated their difference in terms of using specific interfaces in lung and brain metastasis. Furthermore, the topological analysis identified genes such as RPL5, MMP2, CCR5 and DPP4, which are already known to be associated with lung or brain metastasis. Additionally, we found 6 and 9 putative genes that are specific for lung and brain metastasis, respectively. Our analysis suggests that variations in genes and pathways contributing to these different breast metastasis types may arise due to change in tissue microenvironment. To show the benefits of using structural PPI networks instead of traditional node and edge presentation, we inspect two case studies showing the mutual exclusiveness of interactions and effects of mutations on protein conformation which lead to different signaling.

Keywords: breast cancer, metastasis, PPI networks, protein conformational changes

Procedia PDF Downloads 245
4750 Investigations into the Efficiencies of Steam Conversion in Three Reactor Chemical Looping

Authors: Ratnakumar V. Kappagantula, Gordon D. Ingram, Hari B. Vuthaluru

Abstract:

This paper analyzes a three reactor chemical looping process for hydrogen production from natural gas, allowing for carbon dioxide capture through chemical looping technology. An oxygen carrier is circulated to separate carbon dioxide, to reduce steam for hydrogen production and to supply oxygen for combustion. In this study, the emphasis is placed on the steam conversion in the steam reactor by investigating the hydrogen efficiencies of the complete system at steam conversions of 15.8% and 50%. An Aspen Plus model was developed for a Three Reactor Chemical Looping process to study the effects of operational parameters on hydrogen production is investigated. Maximum hydrogen production was observed under stoichiometric conditions. Different conversions in the steam reactor, which was modelled as a Gibbs reactor, were found when Gibbs-identified products and user identified products were chosen. Simulations were performed for different oxygen carriers, which consist of an active metal oxide on an inert support material. For the same metal oxide mass flowrate, the fuel reactor temperature decreased for different support materials in the order: aluminum oxide (Al2O3) > magnesium aluminate (MgAl2O4) > zirconia (ZrO2). To achieve the same fuel reactor temperature for the same oxide mass flow rate, the inert mass fraction was found to be 0.825 for ZrO2, 0.7 for MgAl2O4 and 0.6 for Al2O3. The effect of poisoning of the oxygen carrier was also analyzed. With 3000 ppm sulfur-based impurities in the feed gas, the hydrogen product energy rate of the process were found to decrease by 0.4%.

Keywords: aspen plus, chemical looping combustion, inert support balls, oxygen carrier

Procedia PDF Downloads 330
4749 Survey Research Assessment for Renewable Energy Integration into the Mining Industry

Authors: Kateryna Zharan, Jan C. Bongaerts

Abstract:

Mining operations are energy intensive, and the share of energy costs in total costs is often quoted in the range of 40 %. Saving on energy costs is, therefore, a key element of any mine operator. With the improving reliability and security of renewable energy (RE) sources, and requirements to reduce carbon dioxide emissions, perspectives for using RE in mining operations emerge. These aspects are stimulating the mining companies to search for ways to substitute fossil energy with RE. Hereby, the main purpose of this study is to present the survey research assessment in matter of finding out the key issues related to the integration of RE into mining activities, based on the mining and renewable energy experts’ opinion. The purpose of the paper is to present the outcomes of a survey conducted among mining and renewable energy experts about the feasibility of RE in mining operations. The survey research has been developed taking into consideration the following categories: first of all, the mining and renewable energy experts were chosen based on the specific criteria. Secondly, they were offered a questionnaire to gather their knowledge and opinions on incentives for mining operators to turn to RE, barriers and challenges to be expected, environmental effects, appropriate business models and the overall impact of RE on mining operations. The outcomes of the survey allow for the identification of factors which favor and disfavor decision-making on the use of RE in mining operations. It concludes with a set of recommendations for further study. One of them relates to a deeper analysis of benefits for mining operators when using RE, and another one suggests that appropriate business models considering economic and environmental issues need to be studied and developed. The results of the paper will be used for developing a hybrid optimized model which might be adopted at mines according to their operation processes as well as economic and environmental perspectives.

Keywords: carbon dioxide emissions, mining industry, photovoltaic, renewable energy, survey research, wind generation

Procedia PDF Downloads 361
4748 Use of Corn Stover for the Production of 2G Bioethanol, Enzymes, and Xylitol Under a Biorefinery Concept

Authors: Astorga-Trejo Rebeca, Fonseca-Peralta Héctor Manuel, Beltrán-Arredondo Laura Ivonne, Castro-Martínez Claudia

Abstract:

The use of biomass as feedstock for the production of fuels and other chemicals of interest is an ever-growing accepted option in the way to the development of biorefinery complexes; in the Mexican state of Sinaloa, two million tons of residues from corn crops are produced every year, most of which can be converted to bioethanol and other products through biotechnological conversion using yeast and other microorganisms. Therefore, the objective of this work was to take advantage of corn stover and evaluate its potential as a substrate for the production of second-generation bioethanol (2G), enzymes, and xylitol. To produce bioethanol 2G, an acid-alkaline pretreatment was carried out prior to saccharification and fermentation. The microorganisms used for the production of enzymes, as well as for the production of xylitol, were isolated and characterized in our workgroup. Statistical analysis was performed using Design Expert version 11.0. The results showed that it is possible to obtain 2G bioethanol employing corn stover as a carbon source and Saccharomyces cerevisiae ItVer01 and Candida intermedia CBE002 with yields of 0.42 g and 0.31 g, respectively. It was also shown that C. intermedia has the ability to produce xylitol with a good yield (0.46 g/g). On the other hand, qualitative and quantitative studies showed that the native strains of Fusarium equiseti (0.4 IU/mL - xylanase), Bacillus velezensis (1.2 IU/mL – xylanase and 0.4 UI/mL - amylase) and Penicillium funiculosum (1.5 IU / mL - cellulases) have the capacity to produce xylanases, amylases or cellulases using corn stover as raw material. This study allowed us to demonstrate that it is possible to use corn stover as a carbon source, a low-cost raw material with high availability in our country, to obtain bioproducts of industrial interest, using processes that are more environmentally friendly and sustainable. It is necessary to continue the optimization of each bioprocess.

Keywords: biomass, corn stover, biorefinery, bioethanol 2G, enzymes, xylitol

Procedia PDF Downloads 172