Search results for: Deep Jyoti Singh
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3235

Search results for: Deep Jyoti Singh

265 Effects of the Quality Construction of Public Construction in Taiwan to Implementation Three Levels Quality Management Institution

Authors: Hsin-Hung Lai, Wei Lo

Abstract:

Whether it is in virtue or vice for a construction quality of public construction project, it is one of the important indicators for national economic development and overall construction, the impact on the quality of national life is very deep. In recent years, a number of scandal of public construction project occurred, the requirements of the government agencies and the public require the quality of construction of public construction project are getting stricter than ever, the three-level public construction project construction quality of quality control system implemented by the government has a profound impact. This study mainly aggregated the evolution of ISO 9000 quality control system, the difference between the practice of implementing management of construction quality by many countries and three-level quality control of our country, so we explored and found that almost all projects of enhancing construction quality are dominated by civil organizations in foreign countries, whereas, it is induced by the national power in our country and develop our three-level quality control system and audit mechanism based on IOS system and implement the works by legislation, we also explored its enhancement and relevance with construction quality of public construction project that are intervened by such system and national power, and it really presents the effectiveness of construction quality been enhanced by the audited result. The three-level quality control system of our country to promote the policy of public construction project is almost same with the quality control system of many developed countries; however our country mainly implements such system on public construction project only, we promote the three-level quality control system is for enhancing the quality of public construction project, for establishing effective quality management system, so as to urge, correct and prevent the defects of quality management by manufacturers, whereas, those developed countries is comprehensively promoting (both public construction project and civil construction) such system. Therefore, this study is to explore the scope for public construction project only; the most important is the quality recognition by the executor, either good quality or deterioration is not a single event, there is a certain procedure extends from the demand and feasibility analysis, design, tendering, contracting, construction performance, inspection, continuous improvement, completion and acceptance, transferring and meeting the needs of the users, all of mentioned above have a causal relationship and it is a systemic problems. So the best construction quality would be manufactured and managed by reasonable cost if it is by extensive thinking and be preventive. We aggregated the implemented results in the past 10 years (2005 to 2015), the audited results of both in central units and local ones were slightly increased in A-grade while those listed in B-grade were decreased, although the levels were not evidently upgraded, yet, such result presents that the construction quality of concept of manufacturers are improving, and the construction quality has been established in the design stage, thus it is relatively beneficial to the enhancement of construction quality of overall public construction project.

Keywords: ISO 9000, three-level quality control system, audit and review mechanism for construction implementation, quality of construction implementation

Procedia PDF Downloads 348
264 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities

Authors: Anudeep Appe, Bhanu Poluparthi, Lakshmi Kasivajjula, Udai Mv, Sobha Bagadi, Punya Modi, Aditya Singh, Hemanth Gunupudi, Spenser Troiano, Jeff Paul, Justin Stovall, Justin Yamamoto

Abstract:

The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data is considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP, to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since its data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for ex. quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP (SHapley Additive exPlanations), a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.

Keywords: competition, DAGs, facility, healthcare, machine learning, market share, random forest, SHAP

Procedia PDF Downloads 91
263 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method

Authors: Dangut Maren David, Skaf Zakwan

Abstract:

Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.

Keywords: prognostics, data-driven, imbalance classification, deep learning

Procedia PDF Downloads 175
262 Rupture Termination of the 1950 C. E. Earthquake and Recurrent Interval of Great Earthquake in North Eastern Himalaya, India

Authors: Rao Singh Priyanka, Jayangondaperumal R.

Abstract:

The Himalayan active fault has the potential to generate great earthquakes in the future, posing a biggest existential threat to humans in the Himalayan and adjacent region. Quantitative evaluation of accumulated and released interseismic strain is crucial to assess the magnitude and spatio-temporal variability of future great earthquakes along the Himalayan arc. To mitigate the destruction and hazards associated with such earthquakes, it is important to understand their recurrence cycle. The eastern Himalayan and Indo-Burman plate boundary systems offers an oblique convergence across two orthogonal plate boundaries, resulting in a zone of distributed deformation both within and away from the plate boundary and clockwise rotation of fault-bounded blocks. This seismically active region has poorly documented historical archive of the past large earthquakes. Thus, paleoseismologicalstudies confirm the surface rupture evidences of the great continental earthquakes (Mw ≥ 8) along the Himalayan Frontal Thrust (HFT), which along with the Geodetic studies, collectively provide the crucial information to understand and assess the seismic potential. These investigations reveal the rupture of 3/4th of the HFT during great events since medieval time but with debatable opinions for the timing of events due to unclear evidences, ignorance of transverse segment boundaries, and lack of detail studies. Recent paleoseismological investigations in the eastern Himalaya and Mishmi ranges confirms the primary surface ruptures of the 1950 C.E. great earthquake (M>8). However, a seismic gap exists between the 1714 C.E. and 1950 C.E. Assam earthquakes that did not slip since 1697 C.E. event. Unlike the latest large blind 2015 Gorkha earthquake (Mw 7.8), the 1950 C.E. event is not triggered by a large event of 1947 C.E. that occurred near the western edge of the great upper Assam event. Moreover, the western segment of the eastern Himalayadid not witness any surface breaking earthquake along the HFT for over the past 300 yr. The frontal fault excavations reveal that during the 1950 earthquake, ~3.1-m-high scarp along the HFT was formed due to the co-seismic slip of 5.5 ± 0.7 m at Pasighat in the Eastern Himalaya and a 10-m-high-scarp at a Kamlang Nagar along the Mishmi Thrust in the Eastern Himalayan Syntaxis is an outcome of a dip-slip displacement of 24.6 ± 4.6 m along a 25 ± 5°E dipping fault. This event has ruptured along the two orthogonal fault systems in the form of oblique thrust fault mechanism. Approx. 130 km west of Pasighat site, the Himebasti village has witnessed two earthquakes, the historical 1697 Sadiya earthquake, and the 1950 event, with a cumulative dip-slip displacement of 15.32 ± 4.69 m. At Niglok site, Arunachal Pradesh, a cumulative slip of ~12.82 m during at least three events since pre 19585 B.P. has produced ~6.2-m high scarp while the youngest scarp of ~2.4-m height has been produced during 1697 C.E. The site preserves two deformational events along the eastern HFT, providing an idea of last serial ruptures at an interval of ~850 yearswhile the successive surface rupturing earthquakes lacks in the Mishmi Range to estimate the recurrence cycle.

Keywords: paleoseismology, surface rupture, recurrence interval, Eastern Himalaya

Procedia PDF Downloads 84
261 A Case Study of Psycho-Social Status of Rohingya Women Refugees Settled in Delhi

Authors: Fizza Saghir

Abstract:

Rohingyas are an ethnic minority of predominantly Buddhist-Myanmar. Living in ghettos in Rakhine, one of the poorest states of Myanmar, for decades, they have been marginalized, discriminated, deprived of the basic amenities and have faced ghastly violations of their rights- politically, socially, economically and culturally. In 2012, in violence that, erupted between ethnic Rakhine Buddhists and Rohingya Muslims, hundreds of Rohingyas were slayed and many more displaced. The state does not recognize them as ‘citizens’ and the military and police have constantly persecuted and pushed them to either migrate to other countries like India, Bangladesh or else die of deprivation. Amidst the deadly violence, Rohingya women are the most vulnerable. Many of them have faced sexual abuse and gender-based violence. Minimalistic to insignificant studies have been done on the plight of Rohingya women refugees in context of India. Thus, this paper focuses on psycho-social status of Rohingya women refugees settled in Delhi, India. The research study used both quantitative and qualitative methods. It was explorative in nature and used non-probability sampling, purposive sampling, in particular. A sample size of 30 Rohingya women refugees was interviewed out of the universe of 45 Rohingya refugee families living in Kalindi Kunj Refugee Camp of Delhi. Case studies were developed. The paper explores the psychological and social status of the respondents along with a deep understanding of their issues and concerns. Moreover, it assesses the impact of violence and migration on respondents. It was found that Rohingya women refugees are deeply and severely affected by a violent past, an insecure present and an uncertain future. Major problems they face in Delhi, India are finding employment, lack of identity cards to avail government services, language barrier, lack of health and education facilities. All they desire is peace and shelter in India. Besides, recommendations and suggestions have been given to various stakeholders of the forced mass migration of Rohingya refugees which includes, Government of Myanmar, Government of India, other bordering nations of Myanmar, international NGOs and media and the Rohingya community, itself. Only an immediate, peaceful and continuous dialogue process can help resolve the issue of exodus of Rohingyas. Countries, including India, must come together to help the Rohingyas who are in need of urgent humanitarian aid and assistance.

Keywords: dialogue process, ethnic minority, forced mass migration, impact of violence and migration, psycho-social status, Rohingya women refugees, sexual abuse

Procedia PDF Downloads 177
260 Redefining Success Beyond Borders: A Deep Dive into Effective Methods to Boost Morale Among Virtual Workers for Exponential Project Performance

Authors: Florence Ibeh, David Oyewmi Oyekunle, David Boohene

Abstract:

The continuous advancement of information technology has completely transformed how businesses and organizations operate on a global scale. The widespread availability of virtual communication tools enables individuals to opt for remote work. While remote employment offers various benefits, such as facilitating corporate growth and enhancing customer support, it also presents distinct challenges. Therefore, investigating the intricacies of virtual team morale is crucial for ensuring the achievement of project objectives. For this study, content analysis of pre-existing secondary data was employed to examine the phenomenon. Essential elements vital for improving the success of projects within virtual teams were identified. These factors include technology adoption, creating a distraction-free work environment, effective leadership, trust-building, clear communication channels, well-defined task allocation, active team participation, and motivation. Furthermore, the study established a substantial correlation between morale levels and the participation and productivity of virtual team members. Higher levels of morale were associated with optimal performance among virtual teams. The study determined that the key factors for enhancing project performance in virtual teams are the adoption of technology, a focused environment, effective leadership, trust, communication, well-defined tasks, collaborative teamwork, and motivation. Additionally, the study discovered that modifying the optimal strategies employed by in-office teams can enhance the diminished morale prevalent in remote teams to sustain a high level of team morale for virtual teams. The findings of this study are highly significant in the dynamic field of project management. Currently, there is limited information regarding strategies that address challenges arising from external factors in virtual teams, such as ambient noise and disruptions caused by family members. The findings underscore the significance of selecting appropriate communication technologies, delineating distinct roles and responsibilities for virtual team members, and nurturing a culture of accountability and trust. Promoting seamless collaboration and instilling motivation among virtual team members are deemed highly effective in augmenting employee engagement and performance within virtual team setting.

Keywords: virtual teams, morale, project performance, distract-free environment, technology adaptation

Procedia PDF Downloads 99
259 Enhancing Athlete Training using Real Time Pose Estimation with Neural Networks

Authors: Jeh Patel, Chandrahas Paidi, Ahmed Hambaba

Abstract:

Traditional methods for analyzing athlete movement often lack the detail and immediacy required for optimal training. This project aims to address this limitation by developing a Real-time human pose estimation system specifically designed to enhance athlete training across various sports. This system leverages the power of convolutional neural networks (CNNs) to provide a comprehensive and immediate analysis of an athlete’s movement patterns during training sessions. The core architecture utilizes dilated convolutions to capture crucial long-range dependencies within video frames. Combining this with the robust encoder-decoder architecture to further refine pose estimation accuracy. This capability is essential for precise joint localization across the diverse range of athletic poses encountered in different sports. Furthermore, by quantifying movement efficiency, power output, and range of motion, the system provides data-driven insights that can be used to optimize training programs. Pose estimation data analysis can also be used to develop personalized training plans that target specific weaknesses identified in an athlete’s movement patterns. To overcome the limitations posed by outdoor environments, the project employs strategies such as multi-camera configurations or depth sensing techniques. These approaches can enhance pose estimation accuracy in challenging lighting and occlusion scenarios, where pose estimation accuracy in challenging lighting and occlusion scenarios. A dataset is collected From the labs of Martin Luther King at San Jose State University. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing different poses, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced pose detection model and lays the groundwork for future innovations in assistive enhancement technologies.

Keywords: computer vision, deep learning, human pose estimation, U-NET, CNN

Procedia PDF Downloads 59
258 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods

Authors: Mohammad Arabi

Abstract:

The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.

Keywords: electric motor, fault detection, frequency features, temporal features

Procedia PDF Downloads 52
257 The Debureaucratization Strategy for the Portuguese Health Service through Effective Communication

Authors: Fernando Araujo, Sandra Cardoso, Fátima Fonseca, Sandra Cavaca

Abstract:

A debureaucratization strategy for the Portuguese Health Service was assumed by the Executive Board of the SNS, in deep articulation with the Shared Services of the Ministry of Health. Two of the main dimensions were focused on sick leaves (SL), that transform primary health care (PHC) in administrative institutions, limiting access to patients. The self-declaration of illness (SDI) project, through the National Health Service Contact Centre (SNS24), began on May 1, 2023, and has already resulted in the issuance of more than 300,000 SDI without the need to allocate resources from the National Health Service (NHS). This political decision allows each citizen, in a maximum 2 times/year, and 3 days each time, if ill, through their own responsibility, report their health condition in a dematerialized way, and by this way justified the absence to work, although by Portuguese law in these first three days, there is no payment of salary. Using a digital approach, it is now feasible without the need to go to the PHC and occupy the time of the PHC only to obtain an SL. Through this measure, bureaucracy has been reduced, and the system has been focused on users, improving the lives of citizens and reducing the administrative burden on PHC, which now has more consultation times for users who need it. The second initiative, which began on March 1, 2024, allows the SL to be issued in emergency departments (ED) of public hospitals and in the health institutions of the social and private sectors. This project is intended to allow the user who has suffered a situation of acute urgent illness and who has been observed in an ED of a public hospital or in a private or social entity no longer need to go to PHC only to apply for the respective SL. Since March 1, 54,453 SLs have been issued, 242 in private or social sector institutions and 6,918 in public hospitals, of which 134 were in ED and 47,292 in PHC. This approach has proven to be technically robust, allows immediate resolution of problems and differentiates the performance of doctors. However, it is important to continue to qualify the proper functioning of the ED, preventing non-urgent users from going there only to obtain SL. Thus, in order to make better use of existing resources, it was operationalizing this extension of its issuance in a balanced way, allowing SL to be issued in the ED of hospitals only to critically ill patients or patients referred by INEM, SNS24, or PHC. In both cases, an intense public campaign was implemented to explain the way it works and the benefits for patients. In satisfaction surveys, more than 95% of patients and doctors were satisfied with the solutions, asking for extensions to other areas. The administrative simplification agenda of the NHS continues its effective development. For the success of this debureaucratization agenda, the key factors are effective communication and the ability to reach patients and health professionals in order to increase health literacy and the correct use of NHS.

Keywords: debureaucratization strategy, self-declaration of illness, sick leaves, SNS24

Procedia PDF Downloads 73
256 The Second Column of Origen’s Hexapla and the Transcription of BGDKPT Consonants: A Confrontation with Transliterated Hebrew Names in Greek Documents

Authors: Isabella Maurizio

Abstract:

This research analyses the pronunciation of Hebrew consonants 'bgdkpt' in II- III C. E. in Palestine, through the confrontation of two kinds of data: the fragments of transliteration of Old Testament in the Greek alphabet, from the second column of Origen’s synopsis, called Hexapla, and Hebrew names transliterated in Greek documents, especially epigraphs. Origen is a very important author, not only for his bgdkpt theological and exegetic works: the Hexapla, synoptic six columns for a critical edition of Septuaginta, has a relevant role in attempting to reconstruct the pronunciation of Hebrew language before Masoretic punctuation. For this reason, at the beginning, it is important to analyze the column in order to study phonetic and linguistic phenomena. Among the most problematic data, there is the evidence from bgdkpt consonants, always represented as Greek aspirated graphemes. This transcription raised the question if their pronunciation was the only spirant, and consequently, the double one, that is, the stop/spirant contrast, was introduced by Masoretes. However, the phonetic and linguistic examination of the column alone is not enough to establish a real pronunciation of language: this paper is significant because a confrontation between the second column’s transliteration and Hebrew names found in Greek documents epigraphic ones mainly, is achieved. Palestine in II - III was a bilingual country: Greek and Aramaic language lived together, the first one like the official language, the second one as the principal mean of communication between people. For this reason, Hebrew names are often found in Greek documents of the same geographical area: a deep examination of bgdkpt’s transliteration can help to understand better which the real pronunciation of these consonants was, or at least it allows to evidence a phonetic tendency. As a consequence, the research considers the contemporary documents to Origen and the previous ones: the first ones testify a specific stadium of pronunciation, the second ones reflect phonemes’ evolution. Alexandrian documents are also examined: Origen was from there, and the influence of Greek language, spoken in his native country, must be considered. The epigraphs have another implication: they are totally free from morphological criteria, probably used by Origen in his column, because of their popular origin. Thus, a confrontation between the hexaplaric transliteration and Hebrew names is absolutely required, in Hexapla’s studies: first of all, it can be the second clue of a pronunciation already noted in the column; then because, for documents’ specific nature, it has more probabilities to be real, reflecting a daily use of language. The examination of data shows a general tendency to employ the aspirated graphemes for bgdkpt consonants’ transliteration. This probably means that they were closer to Greek aspirated consonants rather than to the plosive ones. The exceptions are linked to a particular status of the name, i.e. its history and origin. In this way, this paper gives its contribution to onomastic studies, too: indeed, the research may contribute to verify the diffusion and the treatment of Jewish names in Hellenized world and in the koinè language.

Keywords: bgdkpt consonants, Greek epigraphs, Jewish names, origen's Hexapla

Procedia PDF Downloads 141
255 Shark Detection and Classification with Deep Learning

Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti

Abstract:

Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.

Keywords: classification, data mining, Instagram, remote monitoring, sharks

Procedia PDF Downloads 122
254 Evidence of Groundwater Reservoirs Associated with Fault Structures and Magmatic Dyke Intrusions: Insights from Geophysics and Well Data Analysis in Central Cameroon

Authors: Mbida Yem, Alessandra Ribodetti, Joseph Quentin Yéné Atangana, Fabrice Jouffray, Dieudonné Bisso

Abstract:

Central Cameroon is a mosaic complex of Proterozoïc litho-tectonic units, with structural deformations mainly inherited from Panafrican orogeny. It consists of a para-derived series with epicontinental affinity, structured as successive nappe thrusting southward on the Ntem complex, considered as the Congo Craton northern margin. A well-developed prograde metamorphic gradient is described from SE (Dja and Yokadouma meta-detritic series) to NW (gneiss and migmatites of the Yaounde series) with ages estimated at 600-620 Ma. Syn- to late phase of the Panafrican deformations crosscut the nappes structured with large mylonitic shear zones (Sanaga fault, Adamawa fault, Tcholiré-Banyo fault) coeval with intrusive granitoids. The scientific and industrial communities interested in exploring the groundwater resources of these litho-tectonic units using geophysics and geohydrology methods have grown steadily since the 1970s. In this paper, we present shallow and deep geophysical cross-sections that describe the most productive groundwater targets of the Central Cameroon litho-tectonic units. This study also discusses geological factors that control groundwater occurrences. The data analyzed were gathered from public and private groundwater surveys conducted in recent years and included 18 well-controlled resistivity sections and hydrogeological parameters of 150 drilling points. The depth of well records extends from 40 to 180m. Also, one of the challenges of geophysics investigations was to image groundwater reservoirs located above 120m depth. Therefore, the resistivity data were acquired using a 1200 m long digital streamer, with a 10 m electrode spacing in the selected sites. The modelled sections derived from these data show that the most productive groundwater targets of the study area include lithological contacts and dyke fault-zones. The average width of dyke fault-zones ranges between 40 and 380 m. These structures display a significant lateral extent, and their spatial distribution is often in correlation with mountain terranes and regional fault zones trending from SW-NE to NNW-SSE. Following these observations, transboundary aquifers associated with fractured magmatic rocks can be found in the study area.

Keywords: Proterozoic, resistivity sections, dyke fault-zones, groundwater target

Procedia PDF Downloads 7
253 An Analytical Metric and Process for Critical Infrastructure Architecture System Availability Determination in Distributed Computing Environments under Infrastructure Attack

Authors: Vincent Andrew Cappellano

Abstract:

In the early phases of critical infrastructure system design, translating distributed computing requirements to an architecture has risk given the multitude of approaches (e.g., cloud, edge, fog). In many systems, a single requirement for system uptime / availability is used to encompass the system’s intended operations. However, when architected systems may perform to those availability requirements only during normal operations and not during component failure, or during outages caused by adversary attacks on critical infrastructure (e.g., physical, cyber). System designers lack a structured method to evaluate availability requirements against candidate system architectures through deep degradation scenarios (i.e., normal ops all the way down to significant damage of communications or physical nodes). This increases risk of poor selection of a candidate architecture due to the absence of insight into true performance for systems that must operate as a piece of critical infrastructure. This research effort proposes a process to analyze critical infrastructure system availability requirements and a candidate set of systems architectures, producing a metric assessing these architectures over a spectrum of degradations to aid in selecting appropriate resilient architectures. To accomplish this effort, a set of simulation and evaluation efforts are undertaken that will process, in an automated way, a set of sample requirements into a set of potential architectures where system functions and capabilities are distributed across nodes. Nodes and links will have specific characteristics and based on sampled requirements, contribute to the overall system functionality, such that as they are impacted/degraded, the impacted functional availability of a system can be determined. A machine learning reinforcement-based agent will structurally impact the nodes, links, and characteristics (e.g., bandwidth, latency) of a given architecture to provide an assessment of system functional uptime/availability under these scenarios. By varying the intensity of the attack and related aspects, we can create a structured method of evaluating the performance of candidate architectures against each other to create a metric rating its resilience to these attack types/strategies. Through multiple simulation iterations, sufficient data will exist to compare this availability metric, and an architectural recommendation against the baseline requirements, in comparison to existing multi-factor computing architectural selection processes. It is intended that this additional data will create an improvement in the matching of resilient critical infrastructure system requirements to the correct architectures and implementations that will support improved operation during times of system degradation due to failures and infrastructure attacks.

Keywords: architecture, resiliency, availability, cyber-attack

Procedia PDF Downloads 110
252 Servitization in Machine and Plant Engineering: Leveraging Generative AI for Effective Product Portfolio Management Amidst Disruptive Innovations

Authors: Till Gramberg

Abstract:

In the dynamic world of machine and plant engineering, stagnation in the growth of new product sales compels companies to reconsider their business models. The increasing shift toward service orientation, known as "servitization," along with challenges posed by digitalization and sustainability, necessitates an adaptation of product portfolio management (PPM). Against this backdrop, this study investigates the current challenges and requirements of PPM in this industrial context and develops a framework for the application of generative artificial intelligence (AI) to enhance agility and efficiency in PPM processes. The research approach of this study is based on a mixed-method design. Initially, qualitative interviews with industry experts were conducted to gain a deep understanding of the specific challenges and requirements in PPM. These interviews were analyzed using the Gioia method, painting a detailed picture of the existing issues and needs within the sector. This was complemented by a quantitative online survey. The combination of qualitative and quantitative research enabled a comprehensive understanding of the current challenges in the practical application of machine and plant engineering PPM. Based on these insights, a specific framework for the application of generative AI in PPM was developed. This framework aims to assist companies in implementing faster and more agile processes, systematically integrating dynamic requirements from trends such as digitalization and sustainability into their PPM process. Utilizing generative AI technologies, companies can more quickly identify and respond to trends and market changes, allowing for a more efficient and targeted adaptation of the product portfolio. The study emphasizes the importance of an agile and reactive approach to PPM in a rapidly changing environment. It demonstrates how generative AI can serve as a powerful tool to manage the complexity of a diversified and continually evolving product portfolio. The developed framework offers practical guidelines and strategies for companies to improve their PPM processes by leveraging the latest technological advancements while maintaining ecological and social responsibility. This paper significantly contributes to deepening the understanding of the application of generative AI in PPM and provides a framework for companies to manage their product portfolios more effectively and adapt to changing market conditions. The findings underscore the relevance of continuous adaptation and innovation in PPM strategies and demonstrate the potential of generative AI for proactive and future-oriented business management.

Keywords: servitization, product portfolio management, generative AI, disruptive innovation, machine and plant engineering

Procedia PDF Downloads 83
251 Association between G2677T/A MDR1 Polymorphism with the Clinical Response to Disease Modifying Anti-Rheumatic Drugs in Rheumatoid Arthritis

Authors: Alan Ruiz-Padilla, Brando Villalobos-Villalobos, Yeniley Ruiz-Noa, Claudia Mendoza-Macías, Claudia Palafox-Sánchez, Miguel Marín-Rosales, Álvaro Cruz, Rubén Rangel-Salazar

Abstract:

Introduction: In patients with rheumatoid arthritis, resistance or poor response to disease modifying antirheumatic drugs (DMARD) may be a reflection of the increase in g-P. The expression of g-P may be important in mediating the effluence of DMARD from the cell. In addition, P-glycoprotein is involved in the transport of cytokines, IL-1, IL-2 and IL-4, from normal lymphocytes activated to the surrounding extracellular matrix, thus influencing the activity of RA. The involvement of P-glycoprotein in the transmembrane transport of cytokines can serve as a modulator of the efficacy of DMARD. It was shown that a number of lymphocytes with glycoprotein P activity is increased in patients with RA; therefore, P-glycoprotein expression could be related to the activity of RA and could be a predictor of poor response to therapy. Objective: To evaluate in RA patients, if the G2677T/A MDR1 polymorphisms is associated with differences in the rate of therapeutic response to disease-modifying antirheumatic agents in patients with rheumatoid arthritis. Material and Methods: A prospective cohort study was conducted. Fifty seven patients with RA were included. They had an active disease according to DAS-28 (score >3.2). We excluded patients receiving biological agents. All the patients were followed during 6 months in order to identify the rate of therapeutic response according to the American College of Rheumatology (ACR) criteria. At the baseline peripheral blood samples were taken in order to identify the G2677T/A MDR1 polymorphisms using PCR- Specific allele. The fragment was identified by electrophoresis in polyacrylamide gels stained with ethidium bromide. For statistical analysis, the genotypic and allelic frequencies of MDR1 gene polymorphism between responders and non-responders were determined. Chi-square tests as well as, relative risks with 95% confidence intervals (95%CI) were computed to identify differences in the risk for achieving therapeutic response. Results: RA patients had a mean age of 47.33 ± 12.52 years, 87.7% were women with a mean for DAS-28 score of 6.45 ± 1.12. At the 6 months, the rate of therapeutic response was 68.7 %. The observed genotype frequencies were: for G/G 40%, T/T 32%, A/A 19%, G/T 7% and for A/A genotype 2%. Patients with G allele developed at 6 months of treatment, higher rate for therapeutic response assessed by ACR20 compared to patients with others alleles (p=0.039). Conclusions: Patients with G allele of the - G2677T/A MDR1 polymorphisms had a higher rate of therapeutic response at 6 months with DMARD. These preliminary data support the requirement for a deep evaluation of these and other genotypes as factors that may influence the therapeutic response in RA.

Keywords: pharmacogenetics, MDR1, P-glycoprotein, therapeutic response, rheumatoid arthritis

Procedia PDF Downloads 209
250 European Hinterland and Foreland: Impact of Accessibility, Connectivity, Inter-Port Competition on Containerization

Authors: Dial Tassadit Rania, Figueiredo De Oliveira Gabriel

Abstract:

In this paper, we investigate the relationship between ports and their hinterland and foreland environments and the competitive relationship between the ports themselves. These two environments are changing, evolving and introducing new challenges for commercial and economic development at the regional, national and international levels. Because of the rise of the containerization phenomenon, shipping costs and port handling costs have considerably decreased due to economies of scale. The volume of maritime trade has increased substantially and the markets served by the ports have expanded. On these bases, overlapping hinterlands can give rise to the phenomenon of competition between ports. Our main contribution comparing to the existing literature on this issue, is to build a set of hinterland, foreland and competition indicators. Using these indicators? we investigate the effect of hinterland accessibility, foreland connectivity and inter-ports competition on containerized traffic of Europeans ports. For this, we have a 10-year panel database from 2004 to 2014. Our hinterland indicators are given by two indicators of accessibility; they describe the market potential of a port and are calculated using information on population and wealth (GDP). We then calculate population and wealth for different neighborhoods within a distance from a port ranging from 100 to 1000km. For the foreland, we produce two indicators: port connectivity and number of partners for each port. Finally, we compute the two indicators of inter-port competition and a market concentration indicator (Hirshmann-Herfindhal) for different neighborhood-distances around the port. We then apply a fixed-effect model to test the relationship above. Again, with a fixed effects model, we do a sensitivity analysis for each of these indicators to support the results obtained. The econometric results of the general model given by the regression of the accessibility indicators, the LSCI for port i, and the inter-port competition indicator on the containerized traffic of European ports show a positive and significant effect for accessibility to wealth and not to the population. The results are positive and significant for the two indicators of connectivity and competition as well. One of the main results of this research is that the port development given here by the increase of its containerized traffic is strongly related to the development of its hinterland and foreland environment. In addition, it is the market potential, given by the wealth of the hinterland that has an impact on the containerized traffic of a port. However, accessibility to a large population pool is not important for understanding the dynamics of containerized port traffic. Furthermore, in order to continue to develop, a port must penetrate its hinterland at a deep level exceeding 100 km around the port and seek markets beyond this perimeter. The port authorities could focus their marketing efforts on the immediate hinterland, which can, as the results shows, not be captive and thus engage new approaches of port governance to make it more attractive.

Keywords: accessibility, connectivity, European containerization, European hinterland and foreland, inter-port competition

Procedia PDF Downloads 197
249 Management of Caverno-Venous Leakage: A Series of 133 Patients with Symptoms, Hemodynamic Workup, and Results of Surgery

Authors: Allaire Eric, Hauet Pascal, Floresco Jean, Beley Sebastien, Sussman Helene, Virag Ronald

Abstract:

Background: Caverno-venous leakage (CVL) is devastating, although barely known disease, the first cause of major physical impairment in men under 25, and responsible for 50% of resistances to phosphodiesterase 5-inhibitors (PDE5-I), affecting 30 to 40% of users in this medication class. In this condition, too early blood drainage from corpora cavernosa prevents penile rigidity and penetration during sexual intercourse. The role of conservative surgery in this disease remains controversial. Aim: Assess complications and results of combined open surgery and embolization for CVL. Method: Between June 2016 and September 2021, 133 consecutive patients underwent surgery in our institution for CVL, causing severe erectile dysfunction (ED) resistance to oral medical treatment. Procedures combined vein embolization and ligation with microsurgical techniques. We performed a pre-and post-operative clinical (Erection Harness Scale: EHS) hemodynamic evaluation by duplex sonography in all patients. Before surgery, the CVL network was visualized by computed tomography cavernography. Penile EMG was performed in case of diabetes or suspected other neurological conditions. All patients were optimized for hormonal status—data we prospectively recorded. Results: Clinical signs suggesting CVL were ED since age lower than 25, loss of erection when changing position, penile rigidity varying according to the position. Main complications were minor pulmonary embolism in 2 patients, one after airline travel, one with Factor V Leiden heterozygote mutation, one infection and three hematomas requiring reoperation, one decreased gland sensitivity lasting for more than one year. Mean pre-operative pharmacologic EHS was 2.37+/-0.64, mean pharmacologic post-operative EHS was 3.21+/-0.60, p<0.0001 (paired t-test). The mean EHS variation was 0.87+/-0.74. After surgery, 81.5% of patients had a pharmacologic EHS equal to or over 3, allowing for intercourse with penetration. Three patients (2.2%) experienced lower post-operative EHS. The main cause of failure was leakage from the deep dorsal aspect of the corpus cavernosa. In a 14 months follow-up, 83.2% of patients had a clinical EHS equal to or over 3, allowing for sexual intercourse with penetration, one-third of them without any medication. 5 patients had a penile implant after unsuccessful conservative surgery. Conclusion: Open surgery combined with embolization for CVL is an efficient approach to CVL causing severe erectile dysfunction.

Keywords: erectile dysfunction, cavernovenous leakage, surgery, embolization, treatment, result, complications, penile duplex sonography

Procedia PDF Downloads 153
248 Application of Geosynthetics for the Recovery of Located Road on Geological Failure

Authors: Rideci Farias, Haroldo Paranhos

Abstract:

The present work deals with the use of drainage geo-composite as a deep drainage and geogrid element to reinforce the base of the body of the landfill destined to the road pavement on geological faults in the stretch of the TO-342 Highway, between the cities of Miracema and Miranorte, in the State of Tocantins / TO, Brazil, which for many years was the main link between TO-010 and BR-153, after the city of Palmas, also in the state of Tocantins / TO, Brazil. For this application, geotechnical and geological studies were carried out by means of SPT percussion drilling, drilling and rotary drilling, to understand the problem, identifying the type of faults, filling material and the definition of the water table. According to the geological and geotechnical studies carried out, the area where the route was defined, passes through a zone of longitudinal fault to the runway, with strong breaking / fracturing, with presence of voids, intense alteration and with advanced argilization of the rock and with the filling up parts of the faults by organic and compressible soils leachate from other horizons. This geology presents as a geotechnical aggravating agent a medium of high hydraulic load and very low resistance to penetration. For more than 20 years, the region presented constant excessive deformations in the upper layers of the pavement, which after routine services of regularization, reconformation, re-compaction of the layers and application of the asphalt coating. The faults were quickly propagated to the surface of the asphalt pavement, generating a longitudinal shear, forming steps (unevenness), close to 40 cm, causing numerous accidents and discomfort to the drivers, since the geometric positioning was in a horizontal curve. Several projects were presented to the region's highway department to solve the problem. Due to the need for partial closure of the runway, the short time for execution, the use of geosynthetics was proposed and the most adequate solution for the problem was taken into account the movement of existing geological faults and the position of the water level in relation to several Layers of pavement and failure. In order to avoid any flow of water in the body of the landfill and in the filling material of the faults, a drainage curtain solution was used, carried out at 4.0 meters depth, with drainage geo-composite and as reinforcement element and inhibitor of the possible A geogrid of 200 kN / m of resistance was inserted at the base of the reconstituted landfill. Recent evaluations, after 13 years of application of the solution, show the efficiency of the technique used, supported by the geotechnical studies carried out in the area.

Keywords: geosynthetics, geocomposite, geogrid, road, recovery, geological failure

Procedia PDF Downloads 170
247 Machine Learning in Patent Law: How Genetic Breeding Algorithms Challenge Modern Patent Law Regimes

Authors: Stefan Papastefanou

Abstract:

Artificial intelligence (AI) is an interdisciplinary field of computer science with the aim of creating intelligent machine behavior. Early approaches to AI have been configured to operate in very constrained environments where the behavior of the AI system was previously determined by formal rules. Knowledge was presented as a set of rules that allowed the AI system to determine the results for specific problems; as a structure of if-else rules that could be traversed to find a solution to a particular problem or question. However, such rule-based systems typically have not been able to generalize beyond the knowledge provided. All over the world and especially in IT-heavy industries such as the United States, the European Union, Singapore, and China, machine learning has developed to be an immense asset, and its applications are becoming more and more significant. It has to be examined how such products of machine learning models can and should be protected by IP law and for the purpose of this paper patent law specifically, since it is the IP law regime closest to technical inventions and computing methods in technical applications. Genetic breeding models are currently less popular than recursive neural network method and deep learning, but this approach can be more easily described by referring to the evolution of natural organisms, and with increasing computational power; the genetic breeding method as a subset of the evolutionary algorithms models is expected to be regaining popularity. The research method focuses on patentability (according to the world’s most significant patent law regimes such as China, Singapore, the European Union, and the United States) of AI inventions and machine learning. Questions of the technical nature of the problem to be solved, the inventive step as such, and the question of the state of the art and the associated obviousness of the solution arise in the current patenting processes. Most importantly, and the key focus of this paper is the problem of patenting inventions that themselves are developed through machine learning. The inventor of a patent application must be a natural person or a group of persons according to the current legal situation in most patent law regimes. In order to be considered an 'inventor', a person must actually have developed part of the inventive concept. The mere application of machine learning or an AI algorithm to a particular problem should not be construed as the algorithm that contributes to a part of the inventive concept. However, when machine learning or the AI algorithm has contributed to a part of the inventive concept, there is currently a lack of clarity regarding the ownership of artificially created inventions. Since not only all European patent law regimes but also the Chinese and Singaporean patent law approaches include identical terms, this paper ultimately offers a comparative analysis of the most relevant patent law regimes.

Keywords: algorithms, inventor, genetic breeding models, machine learning, patentability

Procedia PDF Downloads 109
246 Application of Micro-Tunneling Technique to Rectify Tilted Structures Constructed on Cohesive Soil

Authors: Yasser R. Tawfic, Mohamed A. Eid

Abstract:

Foundation differential settlement and supported structure tilting is an occasionally occurred engineering problem. This may be caused by overloading, changes in ground soil properties or unsupported nearby excavations. Engineering thinking points directly toward the logic solution for such problem by uplifting the settled side. This can be achieved with deep foundation elements such as micro-piles and macro-piles™, jacked piers and helical piers, jet grouted soil-crete columns, compaction grout columns, cement grouting or with chemical grouting, or traditional pit underpinning with concrete and mortar. Although, some of these techniques offer economic, fast and low noise solutions, many of them are quite the contrary. For tilted structures, with limited inclination, it may be much easier to cause a balancing settlement on the less-settlement side which shall be done carefully in a proper rate. This principal has been applied in Leaning Tower of Pisa stabilization with soil extraction from the ground surface. In this research, the authors attempt to introduce a new solution with a different point of view. So, micro-tunneling technique is presented in here as an intended ground deformation cause. In general, micro-tunneling is expected to induce limited ground deformations. Thus, the researchers propose to apply the technique to form small size ground unsupported holes to produce the target deformations. This shall be done in four phases: •Application of one or more micro-tunnels, regarding the existing differential settlement value, under the raised side of the tilted structure. •For each individual tunnel, the lining shall be pulled out from both sides (from jacking and receiving shafts) in slow rate. •If required, according to calculations and site records, an additional surface load can be applied on the raised foundation side. •Finally, a strengthening soil grouting shall be applied for stabilization after adjustment. A finite element based numerical model is presented to simulate the proposed construction phases for different tunneling positions and tunnels group. For each case, the surface settlements are calculated and induced plasticity points are checked. These results show the impact of the suggested procedure on the tilted structure and its feasibility. Comparing results also show the importance of the position selection and tunnels group gradual effect. Thus, a new engineering solution is presented to one of the structural and geotechnical engineering challenges.

Keywords: differential settlement, micro-tunneling, soil-structure interaction, tilted structures

Procedia PDF Downloads 209
245 Effects of Learner-Content Interaction Activities on the Context of Verbal Learning Outcomes in Interactive Courses

Authors: Alper Tolga Kumtepe, Erdem Erdogdu, M. Recep Okur, Eda Kaypak, Ozlem Kaya, Serap Ugur, Deniz Dincer, Hakan Yildirim

Abstract:

Interaction is one of the most important components of open and distance learning. According to Moore, who proposed one of the keystones on interaction types, there are three basic types of interaction: learner-teacher, learner-content, and learner-learner. From these interaction types, learner-content interaction, without doubt, can be identified as the most fundamental one on which all education is based. Efficacy, efficiency, and attraction of open and distance learning systems can be achieved by the practice of effective learner-content interaction. With the development of new technologies, interactive e-learning materials have been commonly used as a resource in open and distance learning, along with the printed books. The intellectual engagement of the learners with the content that is course materials may also affect their satisfaction for the open and distance learning practices in general. Learner satisfaction holds an important place in open and distance learning since it will eventually contribute to the achievement of learning outcomes. Using the learner-content interaction activities in course materials, Anadolu University, by its Open Education system, tries to involve learners in deep and meaningful learning practices. Especially, during the e-learning material design and production processes, identifying appropriate learner-content interaction activities within the context of learning outcomes holds a big importance. Considering the lack of studies adopting this approach, as well as its being a study on the use of e-learning materials in Open Education system, this research holds a big value in open and distance learning literature. In this respect, the present study aimed to investigate a) which learner-content interaction activities included in interactive courses are the most effective in learners’ achievement of verbal information learning outcomes and b) to what extent distance learners are satisfied with these learner-content interaction activities. For this study, the quasi-experimental research design was adopted. The 120 participants of the study were from Anadolu University Open Education Faculty students living in Eskişehir. The students were divided into 6 groups randomly. While 5 of these groups received different learner-content interaction activities as a part of the experiment, the other group served as the control group. The data were collected mainly through two instruments: pre-test and post-test. In addition to those tests, learners’ perceived learning was assessed with an item at the end of the program. The data collected from pre-test and post-test were analyzed by ANOVA, and in the light of the findings of this approximately 24-month study, suggestions for the further design of e-learning materials within the context of learner-content interaction activities will be provided at the conference. The current study is planned to be an antecedent for the following studies that will examine the effects of activities on other learning domains.

Keywords: interaction, distance education, interactivity, online courses

Procedia PDF Downloads 194
244 Species Profiling of White Grub Beetles and Evaluation of Pre and Post Sown Application of Insecticides against White Grub Infesting Soybean

Authors: Ajay Kumar Pandey, Mayank Kumar

Abstract:

White grub (Coleoptera: Scarabaeidae) is a major destructive pest in western Himalayan region of Uttarakhand. Beetles feed on apple, apricot, plum, walnut etc. during night while, second and third instar grubs feed on live roots of cultivated as well as non-cultivated crops. Collection and identification of scarab beetles through light trap was carried out at Crop Research Centre, Govind Ballab Pant University Pantnagar, Udham Singh Nagar (Uttarakhand) during 2018. Field trials were also conducted in 2018 to evaluate pre and post sown application of different insecticides against the white grub infesting soybean. The insecticides like Carbofuran 3 Granule (G) (750 g a.i./ha), Clothianidin 50 Water Dispersal Granule (WG) (120 g a.i./ha), Fipronil 0.3 G (50 g a.i./ha), Thiamethoxam 25 WG (80 g a.i./ha), Imidacloprid 70 WG (300 g a.i./ha), Chlorantraniliprole 0.4% G(100 g a.i./ha) and mixture of Fipronil 40% and Imidacloprid 40% WG (300 g a.i./ha) were applied at the time of sowing in pre sown experiment while same dosage of insecticides were applied in standing soybean crop during (first fortnight of July). Commutative plant mortality data were recorded after 20, 40, 60 days intervals and compared with untreated control. Total 23 species of white grub beetles recorded on the light trap and Holotrichia serrata Fabricious (Coleoptera: Melolonthinae) was found to be predominant species by recording 20.6% relative abundance out of the total light trap catch (i.e. 1316 beetles) followed by Phyllognathus sp. (14.6% relative abundance). H. rosettae and Heteronychus lioderus occupied third and fourth rank with 11.85% and 9.65% relative abundance, respectively. The emergence of beetles of predominant species started from 15th March, 2018. In April, average light trap catch was 382 white grub beetles, however, peak emergence of most of the white grub species was observed from June to July, 2018 i.e. 336 beetles in June followed by 303 beetles in the July. On the basis of the emergence pattern of white grub beetles, it may be concluded that the Peak Emergence Period (PEP) for the beetles of H. serrata was second fortnight of April for the total period of 15 days. In May, June and July relatively low population of H. serrata was observed. A decreasing trend in light trap catch was observed and went on till September during the study. No single beetle of H. serrata was observed on light trap from September onwards. The cumulative plant mortality data in both the experiments revealed that all the insecticidal treatments were significantly superior in protection-wise (6.49-16.82% cumulative plant mortality) over untreated control where highest plant mortality was 17.28 to 39.65% during study. The mixture of Fipronil 40% and Imidacloprid 40% WG applied at the rate of 300 g a.i. per ha proved to be most effective having lowest plant mortality i.e. 9.29 and 10.94% in pre and post sown crop, followed by Clothianidin 50 WG (120 g a.i. per ha) where the plant mortality was 10.57 and 11.93% in pre and post sown treatments, respectively. Both treatments were found significantly at par among each other. Production-wise, all the insecticidal treatments were found statistically superior (15.00-24.66 q per ha grain yields) over untreated control where the grain yield was 8.25 & 9.13 q per ha. Treatment Fipronil 40% + Imidacloprid 40% WG applied at the rate of 300 g a.i. per ha proved to be most effective and significantly superior over Imidacloprid 70WG applied at the rate of 300 g a.i. per ha.

Keywords: bio efficacy, insecticide, soybean, white grub

Procedia PDF Downloads 129
243 Baseline Data for Insecticide Resistance Monitoring in Tobacco Caterpillar, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) on Cole Crops

Authors: Prabhjot Kaur, B.K. Kang, Balwinder Singh

Abstract:

The tobacco caterpillar, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) is an agricultural important pest species. S. litura has a wide host range of approximately recorded 150 plant species worldwide. In Punjab, this pest attains sporadic status primarily on cauliflower, Brassica oleracea (L.). This pest destroys vegetable crop and particularly prefers the cruciferae family. However, it is also observed feeding on other crops such as arbi, Colocasia esculenta (L.), mung bean, Vigna radiata (L.), sunflower, Helianthus annuus (L.), cotton, Gossypium hirsutum (L.), castor, Ricinus communis (L.), etc. Larvae of this pest completely devour the leaves of infested plant resulting in huge crop losses which ranges from 50 to 70 per cent. Indiscriminate and continuous use of insecticides has contributed in development of insecticide resistance in insects and caused the environmental degradation as well. Moreover, a base line data regarding the toxicity of the newer insecticides would help in understanding the level of resistance developed in this pest and any possible cross-resistance there in, which could be assessed in advance. Therefore, present studies on development of resistance in S. litura against four new chemistry insecticides (emamectin benzoate, chlorantraniliprole, indoxacarb and spinosad) were carried out in the Toxicology laboratory, Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab, India during the year 2011-12. Various stages of S. litura (eggs, larvae) were collected from four different locations (Malerkotla, Hoshiarpur, Amritsar and Samrala) of Punjab. Resistance is developed in third instars of lepidopterous pests. Therefore, larval bioassays were conducted to estimate the response of field populations of thirty third-instar larvae of S. litura under laboratory conditions at 25±2°C and 65±5 per cent relative humidity. Leaf dip bioassay technique with diluted insecticide formulations recommended by Insecticide Resistance Action Committee (IRAC) was performed in the laboratory with seven to ten treatments depending on the insecticide class, respectively. LC50 values were estimated by probit analysis after correction to record control mortality data which was used to calculate the resistance ratios (RR). The LC50 values worked out for emamectin benzoate, chlorantraniliprole, indoxacarb, spinosad are 0.081, 0.088, 0.380, 4.00 parts per million (ppm) against pest populations collected from Malerkotla; 0.051, 0.060, 0.250, 3.00 (ppm) of Amritsar; 0.002, 0.001, 0.0076, 0.10 ppm for Samrala and 0.000014, 0.00001, 0.00056, 0.003 ppm against pest population of Hoshiarpur, respectively. The LC50 values for populations collected from these four locations were in the order Malerkotla>Amritsar>Samrala>Hoshiarpur for the insecticides (emamectin benzoate, chlorantraniliprole, indoxacarb and spinosad) tested. Based on LC50 values obtained, emamectin benzoate (0.000014 ppm) was found to be the most toxic among all the tested populations, followed by chlorantraniliprole (0.00001 ppm), indoxacarb (0.00056 ppm) and spinosad (0.003 ppm), respectively. The pairwise correlation coefficients of LC50 values indicated that there was lack of cross resistance for emamectin benzoate, chlorantraniliprole, spinosad, indoxacarb in populations of S. litura from Punjab. These insecticides may prove to be promising substitutes for the effective control of insecticide resistant populations of S. litura in Punjab state, India.

Keywords: Spodoptera litura, insecticides, toxicity, resistance

Procedia PDF Downloads 343
242 Human Interaction Skills and Employability in Courses with Internships: Report of a Decade of Success in Information Technology

Authors: Filomena Lopes, Miguel Magalhaes, Carla Santos Pereira, Natercia Durao, Cristina Costa-Lobo

Abstract:

The option to implement curricular internships with undergraduate students is a pedagogical option with some good results perceived by academic staff, employers, and among graduates in general and IT (Information Technology) in particular. Knowing that this type of exercise has never been so relevant, as one tries to give meaning to the future in a landscape of rapid and deep changes. We have as an example the potential disruptive impact on the jobs of advances in robotics, artificial intelligence and 3-D printing, which is a focus of fierce debate. It is in this context that more and more students and employers engage in the pursuit of career-promoting responses and business development, making their investment decisions of training and hiring. Three decades of experience and research in computer science degree and in information systems technologies degree at the Portucalense University, Portuguese private university, has provided strong evidence of its advantages. The Human Interaction Skills development as well as the attractiveness of such experiences for students are topics assumed as core in the Ccnception and management of the activities implemented in these study cycles. The objective of this paper is to gather evidence of the Human Interaction Skills explained and valued within the curriculum internship experiences of IT students employability. Data collection was based on the application of questionnaire to intern counselors and to students who have completed internships in these undergraduate courses in the last decade. The trainee supervisor, responsible for monitoring the performance of IT students in the evolution of traineeship activities, evaluates the following Human Interaction Skills: Motivation and interest in the activities developed, interpersonal relationship, cooperation in company activities, assiduity, ease of knowledge apprehension, Compliance with norms, insertion in the work environment, productivity, initiative, ability to take responsibility, creativity in proposing solutions, and self-confidence. The results show that these undergraduate courses promote the development of Human Interaction Skills and that these students, once they finish their degree, are able to initiate remunerated work functions, mainly by invitation of the institutions in which they perform curricular internships. Findings obtained from the present study contribute to widen the analysis of its effectiveness in terms of future research and actions in regard to the transition from Higher Education pathways to the Labour Market.

Keywords: human interaction skills, employability, internships, information technology, higher education

Procedia PDF Downloads 290
241 Development and Characterization of Novel Topical Formulation Containing Niacinamide

Authors: Sevdenur Onger, Ali Asram Sagiroglu

Abstract:

Hyperpigmentation is a cosmetically unappealing skin problem caused by an overabundance of melanin in the skin. Its pathophysiology is caused by melanocytes being exposed to paracrine melanogenic stimuli, which can upregulate melanogenesis-related enzymes (such as tyrosinase) and cause melanosome formation. Tyrosinase is linked to the development of melanosomes biochemically, and it is the main target of hyperpigmentation treatment. therefore, decreasing tyrosinase activity to reduce melanosomes has become the main target of hyperpigmentation treatment. Niacinamide (NA) is a natural chemical found in a variety of plants that is used as a skin-whitening ingredient in cosmetic formulations. NA decreases melanogenesis in the skin by inhibiting melanosome transfer from melanocytes to covering keratinocytes. Furthermore, NA protects the skin from reactive oxygen species and acts as a main barrier with the skin, reducing moisture loss by increasing ceramide and fatty acid synthesis. However, it is very difficult for hydrophilic compounds such as NA to penetrate deep into the skin. Furthermore, because of the nicotinic acid in NA, it is an irritant. As a result, we've concentrated on strategies to increase NA skin permeability while avoiding its irritating impacts. Since nanotechnology can affect drug penetration behavior by controlling the release and increasing the period of permanence on the skin, it can be a useful technique in the development of whitening formulations. Liposomes have become increasingly popular in the cosmetics industry in recent years due to benefits such as their lack of toxicity, high penetration ability in living skin layers, ability to increase skin moisture by forming a thin layer on the skin surface, and suitability for large-scale production. Therefore, liposomes containing NA were developed for this study. Different formulations were prepared by varying the amount of phospholipid and cholesterol and examined in terms of particle sizes, polydispersity index (PDI) and pH values. The pH values of the produced formulations were determined to be suitable with the pH value of the skin. Particle sizes were determined to be smaller than 250 nm and the particles were found to be of homogeneous size in the formulation (pdi<0.30). Despite the important advantages of liposomal systems, they have low viscosity and stability for topical use. For these reasons, in this study, liposomal cream formulations have been prepared for easy topical application of liposomal systems. As a result, liposomal cream formulations containing NA have been successfully prepared and characterized. Following the in-vitro release and ex-vivo diffusion studies to be conducted in the continuation of the study, it is planned to test the formulation that gives the most appropriate result on the volunteers after obtaining the approval of the ethics committee.

Keywords: delivery systems, hyperpigmentation, liposome, niacinamide

Procedia PDF Downloads 112
240 International Solar Alliance: A Case for Indian Solar Diplomacy

Authors: Swadha Singh

Abstract:

International Solar Alliance is the foremost treaty-based global organization concerned with tapping the potential of sun-abundant nations between the Tropics of Cancer and Capricorn and enables co-operation among them. As a founding member of the International Solar Alliance, India exhibits its positioning as an upcoming leader in clean energy. India has set ambitious goals and targets to expand the share of solar in its energy mix and is playing a proactive role both at the regional and global levels. ISA aims to serve multiple goals- bring about scale commercialization of solar power, boost domestic manufacturing, and leverage solar diplomacy in African countries, amongst others. Against this backdrop, this paper attempts to examine the ways in which ISA as an intergovernmental organization under Indian leadership can leverage the cause of clean energy (solar) diplomacy and effectively shape partnerships and collaborations with other developing countries in terms of sharing solar technology, capacity building, risk mitigation, mobilizing financial investment and providing an aggregate market. A more specific focus of ISA is on the developing countries, which in the absence of a collective, are constrained by technology and capital scarcity, despite being naturally endowed with solar resources. Solar rich but finance-constrained economies face political risk, foreign exchange risk, and off-taker risk. Scholars argue that aligning India’s climate change discourse and growth prospects in its engagements, collaborations, and partnerships at the bilateral, multilateral and regional level can help promote trade, attract investments, and promote resilient energy transition both in India and in partner countries. For developing countries, coming together in an action-oriented way on issues of climate and clean energy is particularly important since it is developing and underdeveloped countries that face multiple and coalescing challenges such as the adverse impact of climate change, uneven and low access to reliable energy, and pressing employment needs. Investing in green recovery is agreed to be an assured way to create resilient value chains, create sustainable livelihoods, and help mitigate climate threats. If India is able to ‘green its growth’ process, it holds the potential to emerge as a climate leader internationally. It can use its experience in the renewable sector to guide other developing countries in balancing multiple similar objectives of development, energy security, and sustainability. The challenges underlying solar expansion in India have lessons to offer other developing countries, giving India an opportunity to assume a leadership role in solar diplomacy and expand its geopolitical influence through inter-governmental organizations such as ISA. It is noted that India has limited capacity to directly provide financial funds and support and is not a leading manufacturer of cheap solar equipment, as does China; however, India can nonetheless leverage its large domestic market to scale up the commercialization of solar power and offer insights and learnings to similarly placed abundant solar countries. The paper examines the potential of and limits placed on India’s solar diplomacy.

Keywords: climate diplomacy, energy security, solar diplomacy, renewable energy

Procedia PDF Downloads 119
239 A Systematic Review Investigating the Use of EEG Measures in Neuromarketing

Authors: A. M. Byrne, E. Bonfiglio, C. Rigby, N. Edelstyn

Abstract:

Introduction: Neuromarketing employs numerous methodologies when investigating products and advertisement effectiveness. Electroencephalography (EEG), a non-invasive measure of electrical activity from the brain, is commonly used in neuromarketing. EEG data can be considered using time-frequency (TF) analysis, where changes in the frequency of brainwaves are calculated to infer participant’s mental states, or event-related potential (ERP) analysis, where changes in amplitude are observed in direct response to a stimulus. This presentation discusses the findings of a systematic review of EEG measures in neuromarketing. A systematic review summarises evidence on a research question, using explicit measures to identify, select, and critically appraise relevant research papers. Thissystematic review identifies which EEG measures are the most robust predictor of customer preference and purchase intention. Methods: Search terms identified174 papers that used EEG in combination with marketing-related stimuli. Publications were excluded if they were written in a language other than English or were not published as journal articles (e.g., book chapters). The review investigated which TF effect (e.g., theta-band power) and ERP component (e.g., N400) most consistently reflected preference and purchase intention. Machine-learning prediction was also investigated, along with the use of EEG combined with physiological measures such as eye-tracking. Results: Frontal alpha asymmetry was the most reliable TF signal, where an increase in activity over the left side of the frontal lobe indexed a positive response to marketing stimuli, while an increase in activity over the right side indexed a negative response. The late positive potential, a positive amplitude increase around 600 ms after stimulus presentation, was the most reliable ERP component, reflecting the conscious emotional evaluation of marketing stimuli. However, each measure showed mixed results when related to preference and purchase behaviour. Predictive accuracy was greatly improved through machine-learning algorithms such as deep neural networks, especially when combined with eye-tracking or facial expression analyses. Discussion: This systematic review provides a novel catalogue of the most effective use of each EEG measure commonly used in neuromarketing. Exciting findings to emerge are the identification of the frontal alpha asymmetry and late positive potential as markers of preferential responses to marketing stimuli. Predictive accuracy using machine-learning algorithms achieved predictive accuracies as high as 97%, and future research should therefore focus on machine-learning prediction when using EEG measures in neuromarketing.

Keywords: EEG, ERP, neuromarketing, machine-learning, systematic review, time-frequency

Procedia PDF Downloads 114
238 Flood Early Warning and Management System

Authors: Yogesh Kumar Singh, T. S. Murugesh Prabhu, Upasana Dutta, Girishchandra Yendargaye, Rahul Yadav, Rohini Gopinath Kale, Binay Kumar, Manoj Khare

Abstract:

The Indian subcontinent is severely affected by floods that cause intense irreversible devastation to crops and livelihoods. With increased incidences of floods and their related catastrophes, an Early Warning System for Flood Prediction and an efficient Flood Management System for the river basins of India is a must. Accurately modeled hydrological conditions and a web-based early warning system may significantly reduce economic losses incurred due to floods and enable end users to issue advisories with better lead time. This study describes the design and development of an EWS-FP using advanced computational tools/methods, viz. High-Performance Computing (HPC), Remote Sensing, GIS technologies, and open-source tools for the Mahanadi River Basin of India. The flood prediction is based on a robust 2D hydrodynamic model, which solves shallow water equations using the finite volume method. Considering the complexity of the hydrological modeling and the size of the basins in India, it is always a tug of war between better forecast lead time and optimal resolution at which the simulations are to be run. High-performance computing technology provides a good computational means to overcome this issue for the construction of national-level or basin-level flash flood warning systems having a high resolution at local-level warning analysis with a better lead time. High-performance computers with capacities at the order of teraflops and petaflops prove useful while running simulations on such big areas at optimum resolutions. In this study, a free and open-source, HPC-based 2-D hydrodynamic model, with the capability to simulate rainfall run-off, river routing, and tidal forcing, is used. The model was tested for a part of the Mahanadi River Basin (Mahanadi Delta) with actual and predicted discharge, rainfall, and tide data. The simulation time was reduced from 8 hrs to 3 hrs by increasing CPU nodes from 45 to 135, which shows good scalability and performance enhancement. The simulated flood inundation spread and stage were compared with SAR data and CWC Observed Gauge data, respectively. The system shows good accuracy and better lead time suitable for flood forecasting in near-real-time. To disseminate warning to the end user, a network-enabled solution is developed using open-source software. The system has query-based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. System effectively facilitates the management of post-disaster activities caused due to floods, like displaying spatial maps of the area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of the damage.

Keywords: flood, modeling, HPC, FOSS

Procedia PDF Downloads 89
237 Rehabilitation Team after Brain Damages as Complex System Integrating Consciousness

Authors: Olga Maksakova

Abstract:

A work with unconscious patients after acute brain damages besides special knowledge and practical skills of all the participants requires a very specific organization. A lot of said about team approach in neurorehabilitation, usually as for outpatient mode. Rehabilitologists deal with fixed patient problems or deficits (motion, speech, cognitive or emotional disorder). Team-building means superficial paradigm of management psychology. Linear mode of teamwork fits casual relationships there. Cases with deep altered states of consciousness (vegetative states, coma, and confusion) require non-linear mode of teamwork: recovery of consciousness might not be the goal due to phenomenon uncertainty. Rehabilitation team as Semi-open Complex System includes the patient as a part. Patient's response pattern becomes formed not only with brain deficits but questions-stimuli, context, and inquiring person. Teamwork is sourcing of phenomenology knowledge of patient's processes as Third-person approach is replaced with Second- and after First-person approaches. Here is a chance for real-time change. Patient’s contacts with his own body and outward things create a basement for restoration of consciousness. The most important condition is systematic feedbacks to any minimal movement or vegetative signal of the patient. Up to now, recovery work with the most severe contingent is carried out in the mode of passive physical interventions, while an effective rehabilitation team should include specially trained psychologists and psychotherapists. It is they who are able to create a network of feedbacks with the patient and inter-professional ones building up the team. Characteristics of ‘Team-Patient’ system (TPS) are energy, entropy, and complexity. Impairment of consciousness as the absence of linear contact appears together with a loss of essential functions (low energy), vegetative-visceral fits (excessive energy and low order), motor agitation (excessive energy and excessive order), etc. Techniques of teamwork are different in these cases for resulting optimization of the system condition. Directed regulation of the system complexity is one of the recovery tools. Different signs of awareness appear as a result of system self-organization. Joint meetings are an important part of teamwork. Regular or event-related discussions form the language of inter-professional communication, as well as the patient's shared mental model. Analysis of complex communication process in TPS may be useful for creation of the general theory of consciousness.

Keywords: rehabilitation team, urgent rehabilitation, severe brain damage, consciousness disorders, complex system theory

Procedia PDF Downloads 147
236 Molecular Characterization of Chicken B Cell Marker (ChB6) in Native Chicken of Poonch Region from International Borders of India and Pakistan

Authors: Mandeep Singh Azad.Dibyendu Chakraborty, Vikas Vohra

Abstract:

Introduction: Poonch is one of the remotest districts of the Jammu and Kashmir (UT) and situated on international borders. This native poultry population in these areas is quite hardy and thrives well in adverse climatic conditions. Till date, no local breed from this area (Jammu Province) has been characterized thus present study was undertaken with the main objectives of molecular characterization of ChB6 gene in local native chicken of Poonch region located at international borders between India and Pakistan. The chicken B-cell marker (ChB6) gene has been proposed as a candidate gene in regulating B-cell development. Material and Method: RNA was isolated by Blood RNA Purification Kit (HiPura) and Trizol method from whole blood samples. Positive PCR products with size 1110 bp were selected for further purification, sequencing and analysis. The amplified PCR product was sequenced by Sangers dideoxy chain termination method. The obtained sequence of ChB6 gene of Poonchi chicken were compared by MEGAX software. BioEdit software was used to construct phylogenic tree, and Neighbor Joining method was used to infer evolutionary history. In order to compute evolutionary distance Maximum Composite Likelihood method was used. Results: The positively amplified samples of ChB6 genes were then subjected to Sanger sequencing with “Primer Walking. The sequences were then analyzed using MEGA X and BioEdit software. The sequence results were compared with other reported sequence from different breed of chicken and with other species obtained from the NCBI (National Center for Biotechnology Information). ClustalW method using MEGA X software was used for multiple sequence alignment. The sequence results of ChB6 gene of Poonchi chicken was compared with Centrocercus urophasianus, G. gallus mRNA for B6.1 protein, G. gallus mRNA for B6.2, G. gallus mRNA for B6.3, Gallus gallus B6.1, Halichoeres bivittatus, Miniopterus fuliginosus Ferringtonia patagonica, Tympanuchus phasianellus. The genetic distances were 0.2720, 0.0000, 0.0245, 0.0212, 0.0147, 1.6461, 2.2394, 2.0070 and 0.2363 for ChB6 gene of Poonchi chicken sequence with other sequences in the present study respectively. Sequencing results showed variations between different species. It was observed that AT content were higher then GC content for ChB6 gene. The lower AT content suggests less thermostable. It was observed that there was no sequence difference within the Poonchi population for ChB6 gene. The high homology within chicken population indicates the conservation of ChB6 gene. The maximum difference was observed with Miniopterus fuliginosus (Eastern bent-wing bat) followed by Ferringtonia patagonica and Halichoeres bivittatus. Conclusion: Genetic variation is the essential component for genetic improvement. The results of immune related gene Chb6 shows between population genetic variability. Therefore, further association studies of this gene with some prevalent diseases in large population would be helpful to identify disease resistant/ susceptible genotypes in the indigenous chicken population.

Keywords: ChB6, sequencing, ClustalW, genetic distance, poonchi chicken, SNP

Procedia PDF Downloads 70