Search results for: single image
6875 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs
Authors: Agastya Pratap Singh
Abstract:
This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications
Procedia PDF Downloads 256874 Electrocatalytic Enhancement Mechanism of Dual-Atom and Single-Atom MXenes-Based Catalyst in Oxygen and Hydrogen Evolution Reactions
Authors: Xin Zhao. Xuerong Zheng. Andrey L. Rogach
Abstract:
Using single metal atoms has been considered an efficient way to develop new HER and OER catalysts. MXenes, a class of two-dimensional materials, have attracted tremendous interest as promising substrates for single-atom metal catalysts. However, there is still a lack of systematic investigations on the interaction mechanisms between various MXenes substrates and single atoms. Besides, due to the poor interaction between metal atoms and substrates resulting in low loading and stability, dual-atom MXenes-based catalysts have not been successfully synthesized. We summarized the electrocatalytic enhancement mechanism of three MXenes-based single-atom catalysts through experimental and theoretical results demonstrating the stronger hybridization between Co 3d and surface-terminated O 2p orbitals, optimizing the electronic structure of Co single atoms in the composite. This, in turn, lowers the OER and HER energy barriers and accelerates the catalytic kinetics in the case of the Co@V2CTx composite. The poor interaction between single atoms and substrates can be improved by a surface modification to synthesize dual-atom catalysts. The synergistic electronic structure enhances the stability and electrocatalytic activity of the catalyst. Our study provides guidelines for designing single-atom and dual-atom MXene-based electrocatalysts and sheds light on the origins of the catalytic activity of single-atoms on MXene substrates.Keywords: dual-atom catalyst, single-atom catalyst, MXene substrates, water splitting
Procedia PDF Downloads 696873 Pilot-free Image Transmission System of Joint Source Channel Based on Multi-Level Semantic Information
Authors: Linyu Wang, Liguo Qiao, Jianhong Xiang, Hao Xu
Abstract:
In semantic communication, the existing joint Source Channel coding (JSCC) wireless communication system without pilot has unstable transmission performance and can not effectively capture the global information and location information of images. In this paper, a pilot-free image transmission system of joint source channel based on multi-level semantic information (Multi-level JSCC) is proposed. The transmitter of the system is composed of two networks. The feature extraction network is used to extract the high-level semantic features of the image, compress the information transmitted by the image, and improve the bandwidth utilization. Feature retention network is used to preserve low-level semantic features and image details to improve communication quality. The receiver also is composed of two networks. The received high-level semantic features are fused with the low-level semantic features after feature enhancement network in the same dimension, and then the image dimension is restored through feature recovery network, and the image location information is effectively used for image reconstruction. This paper verifies that the proposed multi-level JSCC algorithm can effectively transmit and recover image information in both AWGN channel and Rayleigh fading channel, and the peak signal-to-noise ratio (PSNR) is improved by 1~2dB compared with other algorithms under the same simulation conditions.Keywords: deep learning, JSCC, pilot-free picture transmission, multilevel semantic information, robustness
Procedia PDF Downloads 1206872 Robust and Real-Time Traffic Counting System
Authors: Hossam M. Moftah, Aboul Ella Hassanien
Abstract:
In the recent years the importance of automatic traffic control has increased due to the traffic jams problem especially in big cities for signal control and efficient traffic management. Traffic counting as a kind of traffic control is important to know the road traffic density in real time. This paper presents a fast and robust traffic counting system using different image processing techniques. The proposed system is composed of the following four fundamental building phases: image acquisition, pre-processing, object detection, and finally counting the connected objects. The object detection phase is comprised of the following five steps: subtracting the background, converting the image to binary, closing gaps and connecting nearby blobs, image smoothing to remove noises and very small objects, and detecting the connected objects. Experimental results show the great success of the proposed approach.Keywords: traffic counting, traffic management, image processing, object detection, computer vision
Procedia PDF Downloads 2946871 Robust Data Image Watermarking for Data Security
Authors: Harsh Vikram Singh, Ankur Rai, Anand Mohan
Abstract:
In this paper, we propose secure and robust data hiding algorithm based on DCT by Arnold transform and chaotic sequence. The watermark image is scrambled by Arnold cat map to increases its security and then the chaotic map is used for watermark signal spread in middle band of DCT coefficients of the cover image The chaotic map can be used as pseudo-random generator for digital data hiding, to increase security and robustness .Performance evaluation for robustness and imperceptibility of proposed algorithm has been made using bit error rate (BER), normalized correlation (NC), and peak signal to noise ratio (PSNR) value for different watermark and cover images such as Lena, Girl, Tank images and gain factor .We use a binary logo image and text image as watermark. The experimental results demonstrate that the proposed algorithm achieves higher security and robustness against JPEG compression as well as other attacks such as addition of noise, low pass filtering and cropping attacks compared to other existing algorithm using DCT coefficients. Moreover, to recover watermarks in proposed algorithm, there is no need to original cover image.Keywords: data hiding, watermarking, DCT, chaotic sequence, arnold transforms
Procedia PDF Downloads 5156870 Determining the Number of Single Models in a Combined Forecast
Authors: Serkan Aras, Emrah Gulay
Abstract:
Combining various forecasting models is an important tool for researchers to attain more accurate forecasts. A great number of papers have shown that selecting single models as dissimilar models, or methods based on different information as possible leads to better forecasting performances. However, there is not a certain rule regarding the number of single models to be used in any combining methods. This study focuses on determining the optimal or near optimal number for single models with the help of statistical tests. An extensive experiment is carried out by utilizing some well-known time series data sets from diverse fields. Furthermore, many rival forecasting methods and some of the commonly used combining methods are employed. The obtained results indicate that some statistically significant performance differences can be found regarding the number of the single models in the combining methods under investigation.Keywords: combined forecast, forecasting, M-competition, time series
Procedia PDF Downloads 3556869 HR MRI CS Based Image Reconstruction
Authors: Krzysztof Malczewski
Abstract:
Magnetic Resonance Imaging (MRI) reconstruction algorithm using compressed sensing is presented in this paper. It is exhibited that the offered approach improves MR images spatial resolution in circumstances when highly undersampled k-space trajectories are applied. Compressed Sensing (CS) aims at signal and images reconstructing from significantly fewer measurements than were conventionally assumed necessary. Magnetic Resonance Imaging (MRI) is a fundamental medical imaging method struggles with an inherently slow data acquisition process. The use of CS to MRI has the potential for significant scan time reductions, with visible benefits for patients and health care economics. In this study the objective is to combine super-resolution image enhancement algorithm with CS framework benefits to achieve high resolution MR output image. Both methods emphasize on maximizing image sparsity on known sparse transform domain and minimizing fidelity. The presented algorithm considers the cardiac and respiratory movements.Keywords: super-resolution, MRI, compressed sensing, sparse-sense, image enhancement
Procedia PDF Downloads 4306868 A Novel Approach of Secret Communication Using Douglas-Peucker Algorithm
Authors: R. Kiruthika, A. Kannan
Abstract:
Steganography is the problem of hiding secret messages in 'innocent – looking' public communication so that the presence of the secret message cannot be detected. This paper introduces a steganographic security in terms of computational in-distinguishability from a channel of probability distributions on cover messages. This method first splits the cover image into two separate blocks using Douglas – Peucker algorithm. The text message and the image will be hided in the Least Significant Bit (LSB) of the cover image.Keywords: steganography, lsb, embedding, Douglas-Peucker algorithm
Procedia PDF Downloads 3636867 Sampling Two-Channel Nonseparable Wavelets and Its Applications in Multispectral Image Fusion
Authors: Bin Liu, Weijie Liu, Bin Sun, Yihui Luo
Abstract:
In order to solve the problem of lower spatial resolution and block effect in the fusion method based on separable wavelet transform in the resulting fusion image, a new sampling mode based on multi-resolution analysis of two-channel non separable wavelet transform, whose dilation matrix is [1,1;1,-1], is presented and a multispectral image fusion method based on this kind of sampling mode is proposed. Filter banks related to this kind of wavelet are constructed, and multiresolution decomposition of the intensity of the MS and panchromatic image are performed in the sampled mode using the constructed filter bank. The low- and high-frequency coefficients are fused by different fusion rules. The experiment results show that this method has good visual effect. The fusion performance has been noted to outperform the IHS fusion method, as well as, the fusion methods based on DWT, IHS-DWT, IHS-Contourlet transform, and IHS-Curvelet transform in preserving both spectral quality and high spatial resolution information. Furthermore, when compared with the fusion method based on nonsubsampled two-channel non separable wavelet, the proposed method has been observed to have higher spatial resolution and good global spectral information.Keywords: image fusion, two-channel sampled nonseparable wavelets, multispectral image, panchromatic image
Procedia PDF Downloads 4406866 An Approach for Reducing Morphological Operator Dataset and Recognize Optical Character Based on Significant Features
Authors: Ashis Pradhan, Mohan P. Pradhan
Abstract:
Pattern Matching is useful for recognizing character in a digital image. OCR is one such technique which reads character from a digital image and recognizes them. Line segmentation is initially used for identifying character in an image and later refined by morphological operations like binarization, erosion, thinning, etc. The work discusses a recognition technique that defines a set of morphological operators based on its orientation in a character. These operators are further categorized into groups having similar shape but different orientation for efficient utilization of memory. Finally the characters are recognized in accordance with the occurrence of frequency in hierarchy of significant pattern of those morphological operators and by comparing them with the existing database of each character.Keywords: binary image, morphological patterns, frequency count, priority, reduction data set and recognition
Procedia PDF Downloads 4146865 Analysis of Advanced Modulation Format Using Gain and Loss Spectrum for Long Range Radio over Fiber System
Authors: Shaina Nagpal, Amit Gupta
Abstract:
In this work, all optical Stimulated Brillouin Scattering (SBS) generated single sideband with suppressed carrier is presented to provide better efficiency. The generation of single sideband and enhanced carrier power signal using the SBS technique is further used to strengthen the low shifted sideband and to suppress the upshifted sideband. These generated single sideband signals are able to work at high frequency ranges. Also, generated single sideband is validated over 90 km transmission using single mode fiber with acceptable bit error rate. The results for an equivalent are then compared so that the acceptable technique is chosen and also the required quality for the optimum performance of the system is reported.Keywords: stimulated Brillouin scattering, radio over fiber, upper side band, quality factor
Procedia PDF Downloads 2366864 Role of Radiologic Technologist Specialist in Plain Image Interpretation of Adults in the Middle East: A Radiologist’s Perspective
Authors: Awad Mohamed Elkhadir, Rajab M. Ben Yousef
Abstract:
Background/Aim: Radiological technologists are medical professionals who perform diagnostic imaging tests such as X-rays, magnetic resonance imaging (MRI) scans, and computer tomography (CT) scans. Despite the recognition of image interpretation by British radiologists, it is still considered a problem in the Arab world. This study evaluates the perceptions of radiologists in the Middle East concerning the plain image interpretation of adults by radiologic technologist specialists. Methods: This is a cross-sectional study that follows a quantitative approach. A close-ended questionnaire was distributed among 103 participants who were radiologists by profession from various hospitals in Saudi Arabia and Sudan. The gathered data was then analyzed through Statistical Package for Social Sciences (SPSS). Results: The results showed that 29% recognized the Radiologic Technologist Specialist (RTS) role of writing image reports, while 61% did not. A total of 38% of participants believed that RTS image interpretation would help diagnose unreported radiographs. 47% of the sample responded that the workload and stress on radiologists would reduce by allowing reporting for RTS, while 37% did not. Lastly, 43% believe that image interpretation by RTS can be introduced into the Middle East in the future. Conclusion: The study's findings reveal that the combination of image reporting and radiography improves the care of the patients. The study's outcomes also show that the burden of the medical practitioners reduces due to image reporting of the radiographers. Further researches need to be conducted in the Arab World to obtain and measure the associated factors of the desired criteria.Keywords: Arab world, image interpretation, radiographer, radiologist, Saudi Arabia, Sudan
Procedia PDF Downloads 1006863 Image Steganography Using Predictive Coding for Secure Transmission
Authors: Baljit Singh Khehra, Jagreeti Kaur
Abstract:
In this paper, steganographic strategy is used to hide the text file inside an image. To increase the storage limit, predictive coding is utilized to implant information. In the proposed plan, one can exchange secure information by means of predictive coding methodology. The predictive coding produces high stego-image. The pixels are utilized to insert mystery information in it. The proposed information concealing plan is powerful as contrasted with the existing methodologies. By applying this strategy, a provision helps clients to productively conceal the information. Entropy, standard deviation, mean square error and peak signal noise ratio are the parameters used to evaluate the proposed methodology. The results of proposed approach are quite promising.Keywords: cryptography, steganography, reversible image, predictive coding
Procedia PDF Downloads 4176862 Factors Influencing the Development and Implementation of Radiology Technologist Specialist Role in Image Interpretation in Sudan
Authors: Awad Elkhadir, Rajab M. Ben Yousef
Abstract:
Introduction: The production of high-quality medical images by radiology technologists is useful in diagnosing and treating various injuries and diseases. However, the factors affecting the role of radiology technologists in image interpretation in Sudan have not been investigated widely. Methods: Cross-sectional study has been employed by recruiting ten radiology college deans in Sudan. The questionnaire was distributed online, and obtained data were analyzed using Microsoft Excel and IBM-SPSS version 16.0 to generate descriptive statistics. Results: The study results have shown that half of the deans were doubtful about the readiness of Sudan to implement the role of radiology technologist specialist in image interpretation. The majority of them (60%) believed that this issue had been most strongly pushed by researchers over the past decade. The factors affecting the implementation of the radiology technologist specialist role in image interpretation included; education/training (100%), recognition (30%), technical issues (30%), people-related issues (20%), management changes (30%), government role (30%), costs (10%), and timings (20%). Conclusion: The study concluded that there is a need for a change in image interpretation by radiology technologists in Sudan.Keywords: development, image interpretation, implementation, radiology technologist specialist, Sudan
Procedia PDF Downloads 886861 Design and Implementation of Partial Denoising Boundary Image Matching Using Indexing Techniques
Authors: Bum-Soo Kim, Jin-Uk Kim
Abstract:
In this paper, we design and implement a partial denoising boundary image matching system using indexing techniques. Converting boundary images to time-series makes it feasible to perform fast search using indexes even on a very large image database. Thus, using this converting method we develop a client-server system based on the previous partial denoising research in the GUI (graphical user interface) environment. The client first converts a query image given by a user to a time-series and sends denoising parameters and the tolerance with this time-series to the server. The server identifies similar images from the index by evaluating a range query, which is constructed using inputs given from the client, and sends the resulting images to the client. Experimental results show that our system provides much intuitive and accurate matching result.Keywords: boundary image matching, indexing, partial denoising, time-series matching
Procedia PDF Downloads 1376860 Deepnic, A Method to Transform Each Variable into Image for Deep Learning
Authors: Nguyen J. M., Lucas G., Brunner M., Ruan S., Antonioli D.
Abstract:
Deep learning based on convolutional neural networks (CNN) is a very powerful technique for classifying information from an image. We propose a new method, DeepNic, to transform each variable of a tabular dataset into an image where each pixel represents a set of conditions that allow the variable to make an error-free prediction. The contrast of each pixel is proportional to its prediction performance and the color of each pixel corresponds to a sub-family of NICs. NICs are probabilities that depend on the number of inputs to each neuron and the range of coefficients of the inputs. Each variable can therefore be expressed as a function of a matrix of 2 vectors corresponding to an image whose pixels express predictive capabilities. Our objective is to transform each variable of tabular data into images into an image that can be analysed by CNNs, unlike other methods which use all the variables to construct an image. We analyse the NIC information of each variable and express it as a function of the number of neurons and the range of coefficients used. The predictive value and the category of the NIC are expressed by the contrast and the color of the pixel. We have developed a pipeline to implement this technology and have successfully applied it to genomic expressions on an Affymetrix chip.Keywords: tabular data, deep learning, perfect trees, NICS
Procedia PDF Downloads 906859 Monocular Visual Odometry for Three Different View Angles by Intel Realsense T265 with the Measurement of Remote
Authors: Heru Syah Putra, Aji Tri Pamungkas Nurcahyo, Chuang-Jan Chang
Abstract:
MOIL-SDK method refers to the spatial angle that forms a view with a different perspective from the Fisheye image. Visual Odometry forms a trusted application for extending projects by tracking using image sequences. A real-time, precise, and persistent approach that is able to contribute to the work when taking datasets and generate ground truth as a reference for the estimates of each image using the FAST Algorithm method in finding Keypoints that are evaluated during the tracking process with the 5-point Algorithm with RANSAC, as well as produce accurate estimates the camera trajectory for each rotational, translational movement on the X, Y, and Z axes.Keywords: MOIL-SDK, intel realsense T265, Fisheye image, monocular visual odometry
Procedia PDF Downloads 1346858 Spaces of Interpretation: Personal Space
Authors: Yehuda Roth
Abstract:
In quantum theory, a system’s time evolution is predictable unless an observer performs measurement, as the measurement process can randomize the system. This randomness appears when the measuring device does not accurately describe the measured item, i.e., when the states characterizing the measuring device appear as a superposition of those being measured. When such a mismatch occurs, the measured data randomly collapse into a single eigenstate of the measuring device. This scenario resembles the interpretation process in which the observer does not experience an objective reality but interprets it based on preliminary descriptions initially ingrained into his/her mind. This distinction is the motivation for the present study in which the collapse scenario is regarded as part of the interpretation process of the observer. By adopting the formalism of the quantum theory, we present a complete mathematical approach that describes the interpretation process. We demonstrate this process by applying the proposed interpretation formalism to the ambiguous image "My wife and mother-in-law" to identify whether a woman in the picture is young or old.Keywords: quantum-like interpretation, ambiguous image, determination, quantum-like collapse, classified representation
Procedia PDF Downloads 1046857 Particle Swarm Optimization Algorithm vs. Genetic Algorithm for Image Watermarking Based Discrete Wavelet Transform
Authors: Omaima N. Ahmad AL-Allaf
Abstract:
Over communication networks, images can be easily copied and distributed in an illegal way. The copyright protection for authors and owners is necessary. Therefore, the digital watermarking techniques play an important role as a valid solution for authority problems. Digital image watermarking techniques are used to hide watermarks into images to achieve copyright protection and prevent its illegal copy. Watermarks need to be robust to attacks and maintain data quality. Therefore, we discussed in this paper two approaches for image watermarking, first is based on Particle Swarm Optimization (PSO) and the second approach is based on Genetic Algorithm (GA). Discrete wavelet transformation (DWT) is used with the two approaches separately for embedding process to cover image transformation. Each of PSO and GA is based on co-relation coefficient to detect the high energy coefficient watermark bit in the original image and then hide the watermark in original image. Many experiments were conducted for the two approaches with different values of PSO and GA parameters. From experiments, PSO approach got better results with PSNR equal 53, MSE equal 0.0039. Whereas GA approach got PSNR equal 50.5 and MSE equal 0.0048 when using population size equal to 100, number of iterations equal to 150 and 3×3 block. According to the results, we can note that small block size can affect the quality of image watermarking based PSO/GA because small block size can increase the search area of the watermarking image. Better PSO results were obtained when using swarm size equal to 100.Keywords: image watermarking, genetic algorithm, particle swarm optimization, discrete wavelet transform
Procedia PDF Downloads 2266856 Automatic Multi-Label Image Annotation System Guided by Firefly Algorithm and Bayesian Method
Authors: Saad M. Darwish, Mohamed A. El-Iskandarani, Guitar M. Shawkat
Abstract:
Nowadays, the amount of available multimedia data is continuously on the rise. The need to find a required image for an ordinary user is a challenging task. Content based image retrieval (CBIR) computes relevance based on the visual similarity of low-level image features such as color, textures, etc. However, there is a gap between low-level visual features and semantic meanings required by applications. The typical method of bridging the semantic gap is through the automatic image annotation (AIA) that extracts semantic features using machine learning techniques. In this paper, a multi-label image annotation system guided by Firefly and Bayesian method is proposed. Firstly, images are segmented using the maximum variance intra cluster and Firefly algorithm, which is a swarm-based approach with high convergence speed, less computation rate and search for the optimal multiple threshold. Feature extraction techniques based on color features and region properties are applied to obtain the representative features. After that, the images are annotated using translation model based on the Net Bayes system, which is efficient for multi-label learning with high precision and less complexity. Experiments are performed using Corel Database. The results show that the proposed system is better than traditional ones for automatic image annotation and retrieval.Keywords: feature extraction, feature selection, image annotation, classification
Procedia PDF Downloads 5866855 A Robust Digital Image Watermarking Against Geometrical Attack Based on Hybrid Scheme
Authors: M. Samadzadeh Mahabadi, J. Shanbehzadeh
Abstract:
This paper presents a hybrid digital image-watermarking scheme, which is robust against varieties of attacks and geometric distortions. The image content is represented by important feature points obtained by an image-texture-based adaptive Harris corner detector. These feature points are extracted from LL2 of 2-D discrete wavelet transform which are obtained by using the Harris-Laplacian detector. We calculate the Fourier transform of circular regions around these points. The amplitude of this transform is rotation invariant. The experimental results demonstrate the robustness of the proposed method against the geometric distortions and various common image processing operations such as JPEG compression, colour reduction, Gaussian filtering, median filtering, and rotation.Keywords: digital watermarking, geometric distortions, geometrical attack, Harris Laplace, important feature points, rotation, scale invariant feature
Procedia PDF Downloads 5016854 Image Compression Based on Regression SVM and Biorthogonal Wavelets
Authors: Zikiou Nadia, Lahdir Mourad, Ameur Soltane
Abstract:
In this paper, we propose an effective method for image compression based on SVM Regression (SVR), with three different kernels, and biorthogonal 2D Discrete Wavelet Transform. SVM regression could learn dependency from training data and compressed using fewer training points (support vectors) to represent the original data and eliminate the redundancy. Biorthogonal wavelet has been used to transform the image and the coefficients acquired are then trained with different kernels SVM (Gaussian, Polynomial, and Linear). Run-length and Arithmetic coders are used to encode the support vectors and its corresponding weights, obtained from the SVM regression. The peak signal noise ratio (PSNR) and their compression ratios of several test images, compressed with our algorithm, with different kernels are presented. Compared with other kernels, Gaussian kernel achieves better image quality. Experimental results show that the compression performance of our method gains much improvement.Keywords: image compression, 2D discrete wavelet transform (DWT-2D), support vector regression (SVR), SVM Kernels, run-length, arithmetic coding
Procedia PDF Downloads 3826853 Digital Image Correlation: Metrological Characterization in Mechanical Analysis
Authors: D. Signore, M. Ferraiuolo, P. Caramuta, O. Petrella, C. Toscano
Abstract:
The Digital Image Correlation (DIC) is a newly developed optical technique that is spreading in all engineering sectors because it allows the non-destructive estimation of the entire surface deformation without any contact with the component under analysis. These characteristics make the DIC very appealing in all the cases the global deformation state is to be known without using strain gages, which are the most used measuring device. The DIC is applicable to any material subjected to distortion caused by either thermal or mechanical load, allowing to obtain high-definition mapping of displacements and deformations. That is why in the civil and the transportation industry, DIC is very useful for studying the behavior of metallic materials as well as of composite materials. DIC is also used in the medical field for the characterization of the local strain field of the vascular tissues surface subjected to uniaxial tensile loading. DIC can be carried out in the two dimension mode (2D DIC) if a single camera is used or in a three dimension mode (3D DIC) if two cameras are involved. Each point of the test surface framed by the cameras can be associated with a specific pixel of the image, and the coordinates of each point are calculated knowing the relative distance between the two cameras together with their orientation. In both arrangements, when a component is subjected to a load, several images related to different deformation states can be are acquired through the cameras. A specific software analyzes the images via the mutual correlation between the reference image (obtained without any applied load) and those acquired during the deformation giving the relative displacements. In this paper, a metrological characterization of the digital image correlation is performed on aluminum and composite targets both in static and dynamic loading conditions by comparison between DIC and strain gauges measures. In the static test, interesting results have been obtained thanks to an excellent agreement between the two measuring techniques. In addition, the deformation detected by the DIC is compliant with the result of a FEM simulation. In the dynamic test, the DIC was able to follow with a good accuracy the periodic deformation of the specimen giving results coherent with the ones given by FEM simulation. In both situations, it was seen that the DIC measurement accuracy depends on several parameters such as the optical focusing, the parameters chosen to perform the mutual correlation between the images and, finally, the reference points on image to be analyzed. In the future, the influence of these parameters will be studied, and a method to increase the accuracy of the measurements will be developed in accordance with the requirements of the industries especially of the aerospace one.Keywords: accuracy, deformation, image correlation, mechanical analysis
Procedia PDF Downloads 3116852 Image-Based (RBG) Technique for Estimating Phosphorus Levels of Different Crops
Authors: M. M. Ali, Ahmed Al- Ani, Derek Eamus, Daniel K. Y. Tan
Abstract:
In this glasshouse study, we developed the new image-based non-destructive technique for detecting leaf P status of different crops such as cotton, tomato and lettuce. Plants were allowed to grow on nutrient media containing different P concentrations, i.e. 0%, 50% and 100% of recommended P concentration (P0 = no P, L; P1 = 2.5 mL 10 L-1 of P and P2 = 5 mL 10 L-1 of P as NaH2PO4). After 10 weeks of growth, plants were harvested and data on leaf P contents were collected using the standard destructive laboratory method and at the same time leaf images were collected by a handheld crop image sensor. We calculated leaf area, leaf perimeter and RGB (red, green and blue) values of these images. This data was further used in the linear discriminant analysis (LDA) to estimate leaf P contents, which successfully classified these plants on the basis of leaf P contents. The data indicated that P deficiency in crop plants can be predicted using the image and morphological data. Our proposed non-destructive imaging method is precise in estimating P requirements of different crop species.Keywords: image-based techniques, leaf area, leaf P contents, linear discriminant analysis
Procedia PDF Downloads 3806851 An Image Stitching Approach for Scoliosis Analysis
Authors: Siti Salbiah Samsudin, Hamzah Arof, Ainuddin Wahid Abdul Wahab, Mohd Yamani Idna Idris
Abstract:
Standard X-ray spine images produced by conventional screen-film technique have a limited field of view. This limitation may obstruct a complete inspection of the spine unless images of different parts of the spine are placed next to each other contiguously to form a complete structure. Another solution to producing a whole spine image is by assembling the digitized x-ray images of its parts automatically using image stitching. This paper presents a new Medical Image Stitching (MIS) method that utilizes Minimum Average Correlation Energy (MACE) filters to identify and merge pairs of x-ray medical images. The effectiveness of the proposed method is demonstrated in two sets of experiments involving two databases which contain a total of 40 pairs of overlapping and non-overlapping spine images. The experimental results are compared to those produced by the Normalized Cross Correlation (NCC) and Phase Only Correlation (POC) methods for comparison. It is found that the proposed method outperforms those of the NCC and POC methods in identifying both the overlapping and non-overlapping medical images. The efficacy of the proposed method is further vindicated by its average execution time which is about two to five times shorter than those of the POC and NCC methods.Keywords: image stitching, MACE filter, panorama image, scoliosis
Procedia PDF Downloads 4586850 Single Species vs Mixed Microbial Culture Degradation of Pesticide in a Membrane Bioreactor
Authors: Karan R. Chavan, Srivats Gopalan, Kumudini V. Marathe
Abstract:
In the current work, the comparison of degradation of malathion by single species, Pseudomonas Stutzeri, and Activated Sludge/Mixed Microbial Culture is studied in a Membrane Bioreactor. Various parameters were considered to study the effect of single species degradation compared to degradation by activated sludge. The experimental results revealed 85-90% reduction in the COD of the Malathion containing synthetic wastewater. Complete reduction of malathion was observed within 24 hours in both the cases. The critical flux was 10 LMH for both the systems. Fouling propensity, Cake and Membrane resistances were calculated thus giving an insight regarding the working of Membrane Bioreactor-based on single species and activated sludge.Keywords: fouling, membrane bioreactor, mixed microbial culture, single species
Procedia PDF Downloads 3586849 The Influence of Social Media on the Body Image of First Year Female Medical Students of University of Khartoum, 2022
Authors: Razan Farah, Siham Ballah
Abstract:
Facebook, Instagram, TikTok and other social media applications have become an integral component of everyone’s social life, particularly among younger generations and adolescences. These social apps have been changing a lot of conceptions and believes in the population by representing public figures and celebrities as role models. The social comparison theory, which says that people self-evaluate based on comparisons with similar others, is commonly used to explore the impact of social media on body image. There is a need to study the influence of those social platforms on the body image as there have been an increase in body dissatisfaction in the recent years. This cross sectional study used a self administered questionnaire on a simple random sample of 133 female medical students of the first year. Finding shows that the response rate was 75%. There was an association between social media usage and noticing how the person look(p value = .022), but no significant association between social media use and body image influence or dissatisfaction was found. This study implies more research under this topic in Sudan as the literature are scarce.Keywords: body image, body dissatisfaction, social media, adolescences
Procedia PDF Downloads 716848 Automatic Algorithm for Processing and Analysis of Images from the Comet Assay
Authors: Yeimy L. Quintana, Juan G. Zuluaga, Sandra S. Arango
Abstract:
The comet assay is a method based on electrophoresis that is used to measure DNA damage in cells and has shown important results in the identification of substances with a potential risk to the human population as innumerable physical, chemical and biological agents. With this technique is possible to obtain images like a comet, in which the tail of these refers to damaged fragments of the DNA. One of the main problems is that the image has unequal luminosity caused by the fluorescence microscope and requires different processing to condition it as well as to know how many optimal comets there are per sample and finally to perform the measurements and determine the percentage of DNA damage. In this paper, we propose the design and implementation of software using Image Processing Toolbox-MATLAB that allows the automation of image processing. The software chooses the optimum comets and measuring the necessary parameters to detect the damage.Keywords: artificial vision, comet assay, DNA damage, image processing
Procedia PDF Downloads 3106847 The "Street Less Traveled": Body Image and Its Relationship with Eating Attitudes, Influence of Media and Self-Esteem among College Students
Authors: Aditya Soni, Nimesh Parikh, R. A. Thakrar
Abstract:
Background: A cross-sectional study looked to focus body image satisfaction, heretofore under investigated arena in our setting. This study additionally examined the relationship of body mass index, influence of media and self-esteem. Our second objective was to assess whether there was any relationship between body image dissatisfaction and gender. Methods: A cross-sectional study using body image satisfaction described in words was undertaken, which also explored relationship with body mass index (BMI), influence of media, self-esteem and other selected co-variables such as socio-demographic details, overall satisfaction in life, and particularly in academic/professional life, current health status using 5-item based Likert scale. Convenience sampling was used to select participants of both genders aged from 17 to 32 on a sample size of 303 participants. Results : The body image satisfaction had significant relationship with Body mass index (P<0.001), eating attitude (P<0.001), influence of media (P<0.001) and self-esteem (P<0.001). Students with low weight had a significantly higher prevalence of body image satisfaction while overweight students had a significantly higher prevalence of dissatisfaction (P<0.001). Females showed more concern about body image as compared to males. Conclusions: Generally, this study reveals that the eating attitude, influence of the media and self-esteem is significantly related to the body image. On an empowering note, this level needs to be saved for overall mental and sound advancement of people. Proactive preventive measures could be started in foundations on identity improvement, acknowledgement of self and individual contrasts while keeping up ideal weight and dynamic life style.Keywords: body image, body mass index, media, self-esteem
Procedia PDF Downloads 5746846 Detecting and Disabling Digital Cameras Using D3CIP Algorithm Based on Image Processing
Authors: S. Vignesh, K. S. Rangasamy
Abstract:
The paper deals with the device capable of detecting and disabling digital cameras. The system locates the camera and then neutralizes it. Every digital camera has an image sensor known as a CCD, which is retro-reflective and sends light back directly to its original source at the same angle. The device shines infrared LED light, which is invisible to the human eye, at a distance of about 20 feet. It then collects video of these reflections with a camcorder. Then the video of the reflections is transferred to a computer connected to the device, where it is sent through image processing algorithms that pick out infrared light bouncing back. Once the camera is detected, the device would project an invisible infrared laser into the camera's lens, thereby overexposing the photo and rendering it useless. Low levels of infrared laser neutralize digital cameras but are neither a health danger to humans nor a physical damage to cameras. We also discuss the simplified design of the above device that can used in theatres to prevent piracy. The domains being covered here are optics and image processing.Keywords: CCD, optics, image processing, D3CIP
Procedia PDF Downloads 357