Search results for: resistivity sections
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1163

Search results for: resistivity sections

893 Shaping of World-Class Delhi: Politics of Marginalization and Inclusion

Authors: Aparajita Santra

Abstract:

In the context of the government's vision of turning Delhi into a green, privatized and slum free city, giving it a world-class image at par with the global cities of the world, this paper investigates into the various processes and politics of things that went behind defining spaces in the city and attributing an aesthetic image to it. The paper will explore two cases that were forged primarily through the forces of one particular type of power relation. One would be to look at the modernist movement adopted by the Nehruvian government post-independence and the next case will look at special periods like Emergency and Commonwealth games. The study of these cases will help understand the ambivalence embedded in the different rationales of the Government and different powerful agencies adopted in order to build world-classness. Through the study, it will be easier to discern how city spaces were reconfigured in the name of 'good governance'. In this process, it also became important to analyze the double nature of law, both as a protector of people’s rights and as a threat to people. What was interesting to note through the study was that in the process of nation building and creating an image for the city, the government’s policies and programs were mostly aimed at the richer sections of the society and the poorer sections and people from lower income groups kept getting marginalized, subdued, and pushed further away (These marginalized people were pushed away even geographically!). The reconfiguration of city space and attributing an aesthetic character to it, led to an alteration not only in the way in which citizens perceived and engaged with these spaces, but also brought about changes in the way they envisioned their place in the city. Ironically, it was found that every attempt to build any kind of facility for the city’s elite in turn led to an inevitable removal of the marginalized sections of the society as a necessary step to achieve a clean, green and world-class city. The paper questions the claim made by the government for creating a just, equitable city and granting rights to all. An argument is put forth that in the politics of redistribution of space, the city that has been designed is meant for the aspirational middle-class and elite only, who are ideally primed to live in world-class cities. Thus, the aim is to study city spaces, urban form, the associated politics and power plays involved within and understand whether segmented cities are being built in the name of creating sensible, inclusive cities.

Keywords: aesthetics, ambivalence, governmentality, power, World-class

Procedia PDF Downloads 119
892 Estimation of the Road Traffic Emissions and Dispersion in the Developing Countries Conditions

Authors: Hicham Gourgue, Ahmed Aharoune, Ahmed Ihlal

Abstract:

We present in this work our model of road traffic emissions (line sources) and dispersion of these emissions, named DISPOLSPEM (Dispersion of Poly Sources and Pollutants Emission Model). In its emission part, this model was designed to keep the consistent bottom-up and top-down approaches. It also allows to generate emission inventories from reduced input parameters being adapted to existing conditions in Morocco and in the other developing countries. While several simplifications are made, all the performance of the model results are kept. A further important advantage of the model is that it allows the uncertainty calculation and emission rate uncertainty according to each of the input parameters. In the dispersion part of the model, an improved line source model has been developed, implemented and tested against a reference solution. It provides improvement in accuracy over previous formulas of line source Gaussian plume model, without being too demanding in terms of computational resources. In the case study presented here, the biggest errors were associated with the ends of line source sections; these errors will be canceled by adjacent sections of line sources during the simulation of a road network. In cases where the wind is parallel to the source line, the use of the combination discretized source and analytical line source formulas minimizes remarkably the error. Because this combination is applied only for a small number of wind directions, it should not excessively increase the calculation time.

Keywords: air pollution, dispersion, emissions, line sources, road traffic, urban transport

Procedia PDF Downloads 442
891 Temperature Dependent Magneto-Transport Properties of MnAl Binary Alloy Thin Films

Authors: Vineet Barwal, Sajid Husain, Nanhe Kumar Gupta, Soumyarup Hait, Sujeet Chaudhary

Abstract:

High perpendicular magnetic anisotropy (PMA) and low damping constant (α) in ferromagnets are one of the few necessary requirements for their potential applications in the field of spintronics. In this regards, ferromagnetic τ-phase of MnAl possesses the highest PMA (Ku > 107 erg/cc) at room temperature, high saturation magnetization (Ms~800 emu/cc) and a Curie temperature of ~395K. In this work, we have investigated the magnetotransport behaviour of this potentially useful binary system MnₓAl₁₋ₓ films were synthesized by co-sputtering (pulsed DC magnetron sputtering) on Si/SiO₂ (where SiO₂ is native oxide layer) substrate using 99.99% pure Mn and Al sputtering targets. Films of constant thickness (~25 nm) were deposited at the different growth temperature (Tₛ) viz. 30, 300, 400, 500, and 600 ºC with a deposition rate of ~5 nm/min. Prior to deposition, the chamber was pumped down to a base pressure of 2×10⁻⁷ Torr. During sputtering, the chamber was maintained at a pressure of 3.5×10⁻³ Torr with the 55 sccm Ar flow rate. Films were not capped for the purpose of electronic transport measurement, which leaves a possibility of metal oxide formation on the surface of MnAl (both Mn and Al have an affinity towards oxide formation). In-plane and out-of-plane transverse magnetoresistance (MR) measurements on films sputtered under optimized growth conditions revealed non-saturating behavior with MR values ~6% and 40% at 9T, respectively at 275 K. Resistivity shows a parabolic dependence on the field H, when the H is weak. At higher H, non-saturating positive MR that increases exponentially with the strength of magnetic field is observed, a typical character of hopping type conduction mechanism. An anomalous decrease in MR is observed on lowering the temperature. From the temperature dependence of reistivity, it is inferred that the two competing states are metallic and semiconducting, respectively and the energy scale of the phenomenon produces the most interesting effects, i.e., the metal-insulator transition and hence the maximum sensitivity to external fields, at room temperature. Theory of disordered 3D systems effectively explains the crossover temperature coefficient of resistivity from positive to negative with lowering of temperature. These preliminary findings on the MR behavior of MnAl thin films will be presented in detail. The anomalous large MR in mixed phase MnAl system is evidently useful for future spintronic applications.

Keywords: magnetoresistance, perpendicular magnetic anisotropy, spintronics, thin films

Procedia PDF Downloads 125
890 Long-Term Field Performance of Paving Fabric Interlayer Systems to Reduce Reflective Cracking

Authors: Farshad Amini, Kejun Wen

Abstract:

The formation of reflective cracking of pavement overlays has confronted highway engineers for many years. Stress-relieving interlayers, such as paving fabrics, have been used in an attempt to reduce or delay reflective cracking. The effectiveness of paving fabrics in reducing reflection cracking is related to joint or crack movement in the underlying pavement, crack width, overlay thickness, subgrade conditions, climate, and traffic volume. The nonwoven geotextiles are installed between the old and new asphalt layers. Paving fabrics enhance performance through two mechanisms: stress relief and waterproofing. Several factors including proper installation, remedial work performed before overlay, overlay thickness, variability of pavement strength, existing pavement condition, base/subgrade support condition, and traffic volume affect the performance. The primary objective of this study was to conduct a long-term monitoring of the paving fabric interlayer systems to evaluate its effectiveness and performance. A comprehensive testing, monitoring, and analysis program were undertaken, where twelve 500-ft pavement sections of a four-lane highway were rehabilitated, and then monitored for seven years. A comparison between the performance of paving fabric treatment systems and control sections is reported. Lessons learned, and the various factors are discussed.

Keywords: monitoring, paving fabrics, performance, reflective cracking

Procedia PDF Downloads 334
889 Comparing the Quality of Electronic and Paper Do-Not-Resucscitate Forms in Hosptail

Authors: Anmol Patel

Abstract:

Cardiopulmonary resuscitation is medical intervention which should be considered for all inpatients; with a patient centred approach, open communication and accurate documentation of clinical decisions. National enquiries have shown that in a significant number of cases CPR was attempted when it was considered inappropriate. In these circumstances attempting to prevent a natural death and subjecting a patient to trauma at the end of life would deprive them of a dignified death. Anticipatory “do not attempt CPR (DNACPR)” decisions aim to prevent this for those considered appropriate. As a legal document, these forms are required to be completed accurately and thoroughly. The aim of this study was to evaluate the difference in quality of DNACPR forms completed using electronic versus paper formats. A retrospective review of DNACPR forms and related documentation was completed in two District General Hospitals in South-East England, one of which uses electronic forms, while the other uses paper red forms. 50 completed forms from each hospital were analysed to assess for legibility, and quality of completion of all subsections of the form, including communications with family, relatives and the Multidisciplinary team. The hospital using paper forms showed a 40-44% rate of completion of sections relating to communication with patients and family, compared to 70% with the hospital using electronic forms. Similar trends were observed with other sections of the form. Conclusion: This study suggests that the implementation of electronic DNACPR forms significantly improves clinical practice and promotes better open communication with patients, family and the MDT.

Keywords: DNACPR, resuscitation, DNAR, patient communication

Procedia PDF Downloads 79
888 Modeling of Full Range Flow Boiling Phenomenon in 23m Long Vertical Steam Generator Tube

Authors: Chaitanya R. Mali, V. Vinod, Ashwin W. Patwardhan

Abstract:

Design of long vertical steam generator (SG) tubes in nuclear power plant involves an understanding of different aspects of flow boiling phenomenon such as flow instabilities, flow regimes, dry out, critical heat flux, pressure drop, etc. The knowledge of the prediction of local thermal hydraulic characteristics is necessary to understand these aspects. For this purpose, the methodology has been developed which covers all the flow boiling regimes to model full range flow boiling phenomenon. In this methodology, the vertical tube is divided into four sections based on vapor fraction value at the end of each section. Different modeling strategies have been applied to the different sections of the vertical tube. Computational fluid dynamics simulations have been performed on a vertical SG tube of 0.0126 m inner diameter and 23 m length. The thermal hydraulic parameters such as vapor fraction, liquid temperature, heat transfer coefficient, pressure drop, heat flux distribution have been analyzed for different designed heat duties (1.1 MW (20%) to 3.3 MW (60%)) and flow conditions (10 % to 80 %). The sensitivity of different boiling parameters such as bubble departure diameter, nucleation site density, bubble departure frequency on the thermal hydraulic parameters was also studied. Flow instability has been observed at 20 % designed heat duty and 20 % flow conditions.

Keywords: thermal hydraulics, boiling, vapor fraction, sensitivity

Procedia PDF Downloads 147
887 Characterising the Performance Benefits of a 1/7-Scale Morphing Rotor Blade

Authors: Mars Burke, Alvin Gatto

Abstract:

Rotary-wing aircraft serve as indispensable components in the advancement of aviation, valued for their ability to operate in diverse and challenging environments without the need for conventional runways. This versatility makes them ideal for applications like environmental conservation, precision agriculture, emergency medical support, and rapid-response operations in rugged terrains. However, although highly maneuverable, rotary-wing platforms generally have lower aerodynamic efficiency than fixed-wing aircraft. This study takes the view of improving aerodynamic performance by examining a 1/7th scale rotor blade model with a NACA0012 airfoil using CROTOR software. The analysis focuses on optimal spanwise locations for separating morphing and fixed blade sections at 85%, 90%, and 95% of the blade radius (r/R) with up to +20 degrees of twist incorporated to the design.. Key performance metrics assessed include lift coefficient (CL), drag coefficient (CD), lift-to-drag ratio (CL / CD), Mach number, power, thrust coefficient, and Figure of Merit (FOM). Results indicate that the 0.90 r/R position is optimal for dividing the morphing and fixed sections, achieving a significant improvement of over 7% in both lift-to-drag ratio and FOM. These findings underscoring the substantial impact on overall performance of the rotor system and rotational aerodynamics that geometric modifications through the inclusion of a morphing capability can ultimately realise.

Keywords: rotary morphing, rotational aerodynamics, rotorcraft morphing, rotor blade, twist morphing

Procedia PDF Downloads 16
886 An Integrated Geophysical Investigation for Earthen Dam Inspection: A Case Study of Huai Phueng Dam, Udon Thani, Northeastern Thailand

Authors: Noppadol Poomvises, Prateep Pakdeerod, Anchalee Kongsuk

Abstract:

In the middle of September 2017, a tropical storm named ‘DOKSURI’ swept through Udon Thani, Northeastern Thailand. The storm dumped heavy rain for many hours and caused large amount of water flowing into Huai Phueng reservoir. Level of impounding water increased rapidly, and the extra water flowed over a service spillway, morning-glory type constructed by concrete material for about 50 years ago. Subsequently, a sinkhole was formed on the dam crest and five points of water piping were found on downstream slope closely to spillway. Three techniques of geophysical investigation were carried out to inspect cause of failures; Electrical Resistivity Imaging (ERI), Multichannel Analysis of Surface Wave (MASW), and Ground Penetrating Radar (GPR), respectively. Result of ERI clearly shows evidence of overtop event and heterogeneity around spillway that implied possibility of previous shape of sinkhole around the pipe. The shear wave velocity of subsurface soil measured by MASW can numerically convert to undrained shear strength of impervious clay core. Result of GPR clearly reveals partial settlements of freeboard zone at top part of the dam and also shaping new refilled material to plug the sinkhole back to the condition it should be. In addition, the GPR image is a main answer to confirm that there are not any sinkholes in the survey lines, only that found on top of the spillway. Integrity interpretation of the three results together with several evidences observed during a field walk-through and data from drilled holes can be interpreted that there are four main causes in this account. The first cause is too much water flowing over the spillway. Second, the water attacking morning glory spillway creates cracks upon concrete contact where the spillway is cross-cut to the center of the dam. Third, high velocity of water inside the concrete pipe sucking fine particle of embankment material down via those cracks and flushing out to the river channel. Lastly, loss of clay material of the dam into the concrete pipe creates the sinkhole at the crest. However, in case of failure by piping, it is possible that they can be formed both by backward erosion (internal erosion along or into embedded structure of spillway walls) and also by excess saturated water of downstream material.

Keywords: dam inspection, GPR, MASW, resistivity

Procedia PDF Downloads 242
885 Insulation Properties of Rod-Plane Electrode Covered with ATH/SIR Nano-Composite in Dry-Air

Authors: Jae-Yong Sim, Jung-Hun Kwon, Ji-Sung Park, Kee-Joe Lim

Abstract:

One of the latest trends for insulation systems to improve the insulation performance is the use of eco-friendly hybrid insulation using compressed dry-air. Despite the excellent insulation performance of sulphurhexafluoride (SF6) gas, its use has been restricted due to the problems with significant global warming potential (GWP). Accordingly, lightning impulse performance of the hybrid insulation system covered with an aluminum trihydrate/silicone rubber (ATH/SIR) nanocomposite was examined in air at atmospheric pressure and in compressed air at pressures between 0.2 and 0.6 MPa. In the experiments, the most common breakdown path took place along the surface of the covered rod. The insulation reliability after several discharges should be guaranteed in hybrid insulation. On the other hand, the surface of the covered rod was carbonized after several discharges. Therefore, nanoscale ATH can be used as a reinforcement of covered dielectrics to inhibit carbonization on the surface of a covered rod. The results were analyzed in terms of the surface resistivity of the cover dielectrics.

Keywords: nanocomposite, hybrid insulation, ATH, dry-air

Procedia PDF Downloads 450
884 Reservoir Characterization of the Pre-Cenomanian Sandstone: Central Sinai, Egypt

Authors: Abdel Moktader A. El Sayed, Nahla A. El Sayed

Abstract:

Fifty-one sandstone core samples were obtained from the wadi Saal area. They belong to the Pre-Cenomanian age. These samples were subjected to various laboratory measurements such as density, porosity, permeability, electrical resistivity, grain size analysis and ultrasonic wave velocity. The parameters describing reservoir properties are outlined. The packing index, reservoir quality index, flow zone indicator and pore throat radius (R35 and R36) were calculated. The obtained interrelationships among these parameters allow improving petrophysical knowledge about the Pre-Cenomanian reservoir information. The obtained rock physics models could be employed with some precautions to the subsurface existences of the Pre-Cenomanian sandstone reservoirs, especially in the surrounding areas.

Keywords: resevoir sandstone, Egypt, Sinai, permeability

Procedia PDF Downloads 100
883 Integrated Geophysical Surveys for Sinkhole and Subsidence Vulnerability Assessment, in the West Rand Area of Johannesburg

Authors: Ramoshweu Melvin Sethobya, Emmanuel Chirenje, Mihlali Hobo, Simon Sebothoma

Abstract:

The recent surge in residential infrastructure development around the metropolitan areas of South Africa has necessitated conditions for thorough geotechnical assessments to be conducted prior to site developments to ensure human and infrastructure safety. This paper appraises the success in the application of multi-method geophysical techniques for the delineation of sinkhole vulnerability in a residential landscape. Geophysical techniques ERT, MASW, VES, Magnetics and gravity surveys were conducted to assist in mapping sinkhole vulnerability, using an existing sinkhole as a constraint at Venterspost town, West of Johannesburg city. A combination of different geophysical techniques and results integration from those proved to be useful in the delineation of the lithologic succession around sinkhole locality, and determining the geotechnical characteristics of each layer for its contribution to the development of sinkholes, subsidence and cavities at the vicinity of the site. Study results have also assisted in the determination of the possible depth extension of the currently existing sinkhole and the location of sites where other similar karstic features and sinkholes could form. Results of the ERT, VES and MASW surveys have uncovered dolomitic bedrock at varying depths around the sites, which exhibits high resistivity values in the range 2500-8000ohm.m and corresponding high velocities in the range 1000-2400 m/s. The dolomite layer was found to be overlain by a weathered chert-poor dolomite layer, which has resistivities between the range 250-2400ohm.m, and velocities ranging from 500-600m/s, from which the large sinkhole has been found to collapse/ cave in. A compiled 2.5D high resolution Shear Wave Velocity (Vs) map of the study area was created using 2D profiles of MASW data, offering insights into the prevailing lithological setup conducive for formation various types of karstic features around the site. 3D magnetic models of the site highlighted the regions of possible subsurface interconnections between the currently existing large sinkhole and the other subsidence feature at the site. A number of depth slices were used to detail the conditions near the sinkhole as depth increases. Gravity surveys results mapped the possible formational pathways for development of new karstic features around the site. Combination and correlation of different geophysical techniques proved useful in delineation of the site geotechnical characteristics and mapping the possible depth extend of the currently existing sinkhole.

Keywords: resistivity, magnetics, sinkhole, gravity, karst, delineation, VES

Procedia PDF Downloads 81
882 Comparison of Finite-Element and IEC Methods for Cable Thermal Analysis under Various Operating Environments

Authors: M. S. Baazzim, M. S. Al-Saud, M. A. El-Kady

Abstract:

In this paper, steady-state ampacity (current carrying capacity) evaluation of underground power cable system by using analytical and numerical methods for different conditions (depth of cable, spacing between phases, soil thermal resistivity, ambient temperature, wind speed), for two system voltage level were used 132 and 380 kV. The analytical method or traditional method that was used is based on the thermal analysis method developed by Neher-McGrath and further enhanced by International Electrotechnical Commission (IEC) and published in standard IEC 60287. The numerical method that was used is finite element method and it was recourse commercial software based on finite element method.

Keywords: cable ampacity, finite element method, underground cable, thermal rating

Procedia PDF Downloads 379
881 Physico-Chemical Properties of Silurian Hot Shale in Ahnet Basin, Algeria: Case Study Well ASS-1

Authors: Mohamed Mehdi Kadri

Abstract:

The prediction of hot shale interval in Silurian formation in a well drilled vertically in Ahnet basin Is by logging Data (Resistivity, Gamma Ray, Sonic) with the calculation of total organic carbon (TOC) using ∆ log R Method. The aim of this paper is to present Physico-chemical Properties of Hot Shale using IR spectroscopy and gas chromatography-mass spectrometry analysis; this mixture of measurements, evaluation and characterization show that the hot shale interval located in the lower of Silurian, the molecules adsorbed at the surface of shale sheet are significantly different from petroleum hydrocarbons this result are also supported with gas-liquid chromatography showed that the study extract is a hydroxypropyl.

Keywords: physic-chemical analysis, reservoirs characterization, sweet window evaluation, Silurian shale, Ahnet basin

Procedia PDF Downloads 101
880 Photoluminescence and Spectroscopic Studies of Tm3+ Ions Doped Lead Tungsten Tellurite Glasses for Visible Red and Near-Ir Laser Applications

Authors: M. Venkateswarlu, Srinivasa Rao Allam, S. K. Mahamuda, K. Swapna, G. Vijaya Prakash

Abstract:

Lead Tungsten Tellurite (LTT) glasses doped with different concentrations of Tm3+ ions were prepared by using melt quenching technique and characterized through optical absorption, photoluminescence and decay spectral studies to know the feasibility of using these glasses as luminescent devices in visible Red and NIR regions. By using optical absorption spectral data, the energy band gaps for all the glasses were evaluated and were found to be in the range of 2.34-2.59 eV; which is very useful for the construction of optical devices. Judd-Ofelt (J-O)theory has been applied to the optical absorption spectral profiles to calculate the J-O intensity parameters Ωλ (λ=2, 4 and 6) and consecutively used to evaluate various radiative properties such as radiative transition probability (AR), radiative lifetimes (τ_R) and branching ratios (β_R) for the prominent luminescent levels. The luminescence spectra for all the LTT glass samples have shown two intense peaks in bright red and Near Infrared regions at 650 nm (1G4→3F4) and 800 nm (3H4→3H6) respectively for which effective bandwidths (〖Δλ〗_P), experimental branching ratios (β_exp) and stimulated emission cross-sections (σ_se) are evaluated. The decay profiles for all the glasses were also recorded to measure the quantum efficiency of the prepared LTT glasses by coupling the radiative and experimental lifetimes. From the measured emission cross-sections, quantum efficiency and CIE chromaticity coordinates, it was found that 0.5 mol% of Tm3+ ions doped LTT glass is most suitable for generating bright visible red and NIR lasers to operate at 650 and 800 nm respectively.

Keywords: glasses, JO parameters, optical materials, thullium

Procedia PDF Downloads 254
879 Light Weight Mortars Produced from Recycled Foam

Authors: Siwat Kamonkunanon

Abstract:

This paper presents results of an experimental study on the use of recycled foam with cement-based mixtures to produce light weight mortar. Several mortar grades were obtained by mixing cement with different amounts of recycled foam, aggregate and water. The physical and mechanical properties of the samples such as density, thermal conductivity, thermal resistivity and compressive strength were investigated. Results show that an increase in the amount of recycled foam affects the mortar, decreasing its density and mechanical properties while increasing its workability, permeability, and occluded air content. These results confirm that mortar produced with recycled foam is comparable to light weight mortar made with traditional materials.

Keywords: light weight, mortars, recycled foam, civil engineering

Procedia PDF Downloads 315
878 The Impact of Cooperative Learning on Numerical Methods Course

Authors: Sara Bilal, Abdi Omar Shuriye, Raihan Othman

Abstract:

Numerical Methods is a course that can be conducted using workshops and group discussion. This study has been implemented on undergraduate students of level two at the Faculty of Engineering, International Islamic University Malaysia. The Numerical Method course has been delivered to two Sections 1 and 2 with 44 and 22 students in each section, respectively. Systematic steps have been followed to apply the student centered learning approach in teaching Numerical Method course. Initially, the instructor has chosen the topic which was Euler’s Method to solve Ordinary Differential Equations (ODE) to be learned. The students were then divided into groups with five members in each group. Initial instructions have been given to the group members to prepare their subtopics before meeting members from other groups to discuss the subtopics in an expert group inside the classroom. For the time assigned for the classroom discussion, the setting of the classroom was rearranged to accommodate the student centered learning approach. Teacher strength was by monitoring the process of learning inside and outside the class. The students have been assessed during the migrating to the expert groups, recording of a video explanation outside the classroom and during the final examination. Euler’s Method to solve the ODE was set as part of Question 3(b) in the final exam. It is observed that none of the students from both sections obtained a zero grade in Q3(b), compared to Q3(a) and Q3(c). Also, for Section 1(44 students), 29 students obtained the full mark of 7/7, while only 10 obtained 7/7 for Q3(a) and no students obtained 6/6 for Q3(c). Finally, we can recommend that the Numerical Method course be moved toward more student-centered Learning classrooms where the students will be engaged in group discussion rather than having a teacher one man show.

Keywords: teacher centered learning, student centered learning, mathematic, numerical methods

Procedia PDF Downloads 367
877 Light and Electron Microscopy Study of Acrylamide-Induced Hypothalamic Neuropathy

Authors: Keivan Jmahidi, Afshin Zahedi

Abstract:

To evaluate neurotoxic effects of ACR on hypothalamus of rat, amino-cupric silver staining technique of de Olmos and electron microscopic examination were conducted. For this purpose 60 adult male Wistar rats (± 250 g) were selected. Randomly assigned groups of rats (10 rats per exposure group, as A, B, C, D, E) were exposed to 0.5, 5, 50, 100 and 500 mg/kg per day×11days i.p. respectively. The remaining 10 rats were housed in group F as control group. Control rats received daily i.p. injections of 0.9% saline (3ml/kg). As indices of developing neurotoxicity, daily weight gain, gait scores and landing hindlimb foot splay (LHF) were determined. After 11 days, two rats for silver stain, and two rats for EM, were randomly selected, dissected and proper samples were collected from hypothalamus. Rats in groups D and E died within 1-2 hours due to sever toxemia. In histopathological studies no argyrophilic neurons or processes were observed in stained sections obtained from hypothalamus of rats belong to groups A, B and F, while moderate to severe argyrophilic changes were observed in different nuclei and regions of stained sections obtained from hypothalamus of rats belong to group C. In ultrastructural studies some variations in the myelin sheet of injured axons including decompactation, interlaminar space formation, disruption of the laminar sheet, accumulation of neurofilaments, vacculation and clumping inside the axolem, and finaly complete disappearance of laminar sheet were observed.

Keywords: acrylamide (ACR), amino-cupric silver staining technique of de Olmos, argyrophilia, hypothalamic neuropathy

Procedia PDF Downloads 546
876 Radiation Hardness Materials Article Review

Authors: S. Abou El-Azm, U. Kruchonak, M. Gostkin, A. Guskov, A. Zhemchugov

Abstract:

Semiconductor detectors are widely used in nuclear physics and high-energy physics experiments. The application of semiconductor detectors could be limited by their ultimate radiation resistance. The increase of radiation defects concentration leads to significant degradation of the working parameters of semiconductor detectors. The investigation of radiation defects properties in order to enhance the radiation hardness of semiconductor detectors is an important task for the successful implementation of a number of nuclear physics experiments; we presented some information about radiation hardness materials like diamond, sapphire and CdTe. Also, the results of measurements I-V characteristics, charge collection efficiency and its dependence on the bias voltage for different doses of high resistivity (GaAs: Cr) and Si at LINAC-200 accelerator and reactor IBR-2 are presented.

Keywords: semiconductor detectors, radiation hardness, GaAs, Si, CCE, I-V, C-V

Procedia PDF Downloads 114
875 Grain and Grain Boundary Behavior of Sm Substituted Barium Titanate Based Ceramics

Authors: Parveen Kumar, J. K. Juneja, Chandra Prakash, K. K. Raina

Abstract:

A series of polycrystalline ferroelectric ceramics with compositional formula Ba0.80-xSmxPb0.20Ti0.90Zr0.10O3 with x varying from 0 to 0.01 in the steps of 0.0025 has been prepared by solid state reaction method. The dielectric constant and tangent loss was measured as a function of frequency from 100Hz to 1MHz at different temperatures (200-500oC). The electrical behavior was then investigated using complex impedance spectroscopy (CIS) technique. From the CIS study, it has been found that there is a contribution of both grain and grain boundary in the electrical behavior of such ceramics. Grain and grain boundary resistivity and capacitance were calculated at different temperature using CIS technique. The present paper is about the discussion of grain and grain boundary contribution towards the electrical properties of Sm modified BaTiO3 based ceramics at high temperature.

Keywords: grain, grain boundary, impedance, dielectric

Procedia PDF Downloads 398
874 Improving Part-Time Instructors’ Academic Outcomes with Gamification

Authors: Jared R. Chapman

Abstract:

This study introduces a type of motivational information system called an educational engagement information system (EEIS). An EEIS draws on principles of behavioral economics, motivation theory, and learning cognition theory to design information systems that help students want to improve their performance. This study compares academic outcomes for course sections taught by part- and full-time instructors both with and without an EEIS. Without an EEIS, students in the part-time instructor's course sections demonstrated significantly higher failure rates (a 143.8% increase) and dropout rates (a 110.4% increase) with significantly fewer students scoring a B- or higher (39.8% decrease) when compared to students in the course sections taught by a full-time instructor. It is concerning that students in the part-time instructor’s course without an EEIS had significantly lower academic outcomes, suggesting less understanding of the course content. This could impact retention and continuation in a major. With an EEIS, when comparing part- and full-time instructors, there was no significant difference in failure and dropout rates or in the number of students scoring a B- or higher in the course. In fact, with an EEIS, the failure and dropout rates were statistically identical for part- and full-time instructor courses. When using an EEIS (compared with not using an EEIS), the part-time instructor showed a 62.1% decrease in failures, a 61.4% decrease in dropouts, and a 41.7% increase in the number of students scoring a B- or higher in the course. We are unaware of other interventions that yield such large improvements in academic performance. This suggests that using an EEIS such as Delphinium may compensate for part-time instructors’ limitations of expertise, time, or rewards that can have a negative impact on students’ academic outcomes. The EEIS had only a minimal impact on failure rates (7.7% decrease) and dropout rates (18.8% decrease) for the full-time instructor. This suggests there is a ceiling effect for the improvements that an EEIS can make in student performance. This may be because experienced instructors are already doing the kinds of things that an EEIS does, such as motivating students, tracking grades, and providing feedback about progress. Additionally, full-time instructors have more time to dedicate to students outside of class than part-time instructors and more rewards for doing so. Using adjunct and other types of part-time instructors will likely remain a prevalent practice in higher education management courses. Given that using part-time instructors can have a negative impact on student graduation and persistence in a field of study, it is important to identify ways we can augment part-time instructors’ performance. We demonstrated that when part-time instructors use an EEIS, it can result in significantly lower students’ failure and dropout rates and an increase in the rate of students earning a B- or above; and bring their students’ performance to parity with the performance of students taught by a full-time instructor.

Keywords: gamification, engagement, motivation, academic outcomes

Procedia PDF Downloads 70
873 Finite Element Analysis of Cold Formed Steel Screwed Connections

Authors: Jikhil Joseph, S. R. Satish Kumar

Abstract:

Steel Structures are commonly used for rapid erections and multistory constructions due to its inherent advantages. However, the high accuracy required in detailing and heavier sections, make it difficult to erect in place and transport. Cold Formed steel which are specially made by reducing carbon and other alloys are used nowadays to make thin-walled structures. Various types of connections are being reported as well as practiced for the thin-walled members such as bolting, riveting, welding and other mechanical connections. Commonly self-drilling screw connections are used for cold-formed purlin sheeting connection. In this paper an attempt is made to develop a moment resting frame which can be rapidly and remotely constructed with thin walled sections and self-drilling screws. Semi-rigid Moment connections are developed with Rectangular thin-walled tubes and the screws. The Finite Element Analysis programme ABAQUS is used for modelling the screwed connections. The various modelling procedures for simulating the connection behavior such as tie-constraint model, oriented spring model and solid interaction modelling are compared and are critically reviewed. From the experimental validations the solid-interaction modelling identified to be the most accurate one and are used for predicting the connection behaviors. From the finite element analysis, hysteresis curves and the modes of failure were identified. Parametric studies were done on the connection model to optimize the connection configurations to get desired connection characteristics.

Keywords: buckling, cold formed steel, finite element analysis, screwed connections

Procedia PDF Downloads 188
872 Development of an Integrated Route Information Management Software

Authors: Oluibukun G. Ajayi, Joseph O. Odumosu, Oladimeji T. Babafemi, Azeez Z. Opeyemi, Asaleye O. Samuel

Abstract:

The need for the complete automation of every procedure of surveying and most especially, its engineering applications cannot be overemphasized due to the many demerits of the conventional manual or analogue approach. This paper presents the summarized details of the development of a Route Information Management (RIM) software. The software, codenamed ‘AutoROUTE’, was encoded using Microsoft visual studio-visual basic package, and it offers complete automation of the computational procedures and plan production involved in route surveying. It was experimented using a route survey data (longitudinal profile and cross sections) of a 2.7 km road which stretches from Dama to Lunko village in Minna, Niger State, acquired with the aid of a Hi-Target DGPS receiver. The developed software (AutoROUTE) is capable of computing the various simple curve parameters, horizontal curve, and vertical curve, and it can also plot road alignment, longitudinal profile, and cross-section with a capability to store this on the SQL incorporated into the Microsoft visual basic software. The plotted plans with AutoROUTE were compared with the plans produced with the conventional AutoCAD Civil 3D software, and AutoROUTE proved to be more user-friendly and accurate because it plots in three decimal places whereas AutoCAD plots in two decimal places. Also, it was discovered that AutoROUTE software is faster in plotting and the stages involved is less cumbersome compared to AutoCAD Civil 3D software.

Keywords: automated systems, cross sections, curves, engineering construction, longitudinal profile, route surveying

Procedia PDF Downloads 149
871 Customized Temperature Sensors for Sustainable Home Appliances

Authors: Merve Yünlü, Nihat Kandemir, Aylin Ersoy

Abstract:

Temperature sensors are used in home appliances not only to monitor the basic functions of the machine but also to minimize energy consumption and ensure safe operation. In parallel with the development of smart home applications and IoT algorithms, these sensors produce important data such as the frequency of use of the machine, user preferences, and the compilation of critical data in terms of diagnostic processes for fault detection throughout an appliance's operational lifespan. Commercially available thin-film resistive temperature sensors have a well-established manufacturing procedure that allows them to operate over a wide temperature range. However, these sensors are over-designed for white goods applications. The operating temperature range of these sensors is between -70°C and 850°C, while the temperature range requirement in home appliance applications is between 23°C and 500°C. To ensure the operation of commercial sensors in this wide temperature range, usually, a platinum coating of approximately 1-micron thickness is applied to the wafer. However, the use of platinum in coating and the high coating thickness extends the sensor production process time and therefore increases sensor costs. In this study, an attempt was made to develop a low-cost temperature sensor design and production method that meets the technical requirements of white goods applications. For this purpose, a custom design was made, and design parameters (length, width, trim points, and thin film deposition thickness) were optimized by using statistical methods to achieve the desired resistivity value. To develop thin film resistive temperature sensors, one side polished sapphire wafer was used. To enhance adhesion and insulation 100 nm silicon dioxide was coated by inductively coupled plasma chemical vapor deposition technique. The lithography process was performed by a direct laser writer. The lift-off process was performed after the e-beam evaporation of 10 nm titanium and 280 nm platinum layers. Standard four-point probe sheet resistance measurements were done at room temperature. The annealing process was performed. Resistivity measurements were done with a probe station before and after annealing at 600°C by using a rapid thermal processing machine. Temperature dependence between 25-300 °C was also tested. As a result of this study, a temperature sensor has been developed that has a lower coating thickness than commercial sensors but can produce reliable data in the white goods application temperature range. A relatively simplified but optimized production method has also been developed to produce this sensor.

Keywords: thin film resistive sensor, temperature sensor, household appliance, sustainability, energy efficiency

Procedia PDF Downloads 73
870 Derivation of BCK\BCI-Algebras

Authors: Tumadhir Fahim M Alsulami

Abstract:

The concept of this paper builds on connecting between two important notions, fuzzy ideals of BCK-algebras and derivation of BCI-algebras. The result we got is a new concept called derivation fuzzy ideals of BCI-algebras. Followed by various results and important theorems on different types of ideals. In chapter 1: We presented the basic and fundamental concepts of BCK\ BCI- algebras as follows: BCK/BCI-algebras, BCK sub-algebras, bounded BCK-algebras, positive implicative BCK-algebras, commutative BCK-algebras, implicative BCK- algebras. Moreover, we discussed ideals of BCK-algebras, positive implicative ideals, implicative ideals and commutative ideals. In the last section of chapter 1 we proposed the notion of derivation of BCI-algebras, regular derivation of BCI-algebras and basic definitions and properties. In chapter 2: It includes 3 sections as follows: Section 1 contains elementary concepts of fuzzy sets and fuzzy set operations. Section 2 shows O. G. Xi idea, where he applies fuzzy sets concept to BCK-algebras and we studied fuzzy sub-algebras as well. Section 3 contains fuzzy ideals of BCK-algebras basic definitions, closed fuzzy ideals, fuzzy commutative ideals, fuzzy positive implicative ideals, fuzzy implicative ideals, fuzzy H-ideals and fuzzy p-ideals. Moreover, we investigated their concepts in diverse theorems and propositions. In chapter 3: The main concept of our thesis on derivation fuzzy ideals of BCI- algebras is introduced. Chapter 3 splits into 4 sections. We start with General definitions and important theorems on derivation fuzzy ideal theory in section 1. Section 2 and 3 contain derivations fuzzy p-ideals and derivations fuzzy H-ideals of BCI- algebras, several important theorems and propositions were introduced. The last section studied derivations fuzzy implicative ideals of BCI-algebras and it includes new theorems and results. Furthermore, we presented a new theorem that associate derivations fuzzy implicative ideals, derivations fuzzy positive implicative ideals and derivations fuzzy commutative ideals. These concepts and the new results were obtained and introduced in chapter 3 were submitted in two separated articles and accepted for publication.

Keywords: BCK, BCI, algebras, derivation

Procedia PDF Downloads 124
869 General Formula for Water Surface Profile over Side Weir in the Combined, Trapezoidal and Exponential, Channels

Authors: Abdulrahman Abdulrahman

Abstract:

A side weir is a hydraulic structure set into the side of a channel. This structure is used for water level control in channels, to divert flow from a main channel into a side channel when the water level in the main channel exceeds a specific limit and as storm overflows from urban sewerage system. Computation of water surface over the side weirs is essential to determine the flow rate of the side weir. Analytical solutions for water surface profile along rectangular side weir are available only for the special cases of rectangular and trapezoidal channels considering constant specific energy. In this paper, a rectangular side weir located in a combined (trapezoidal with exponential) channel was considered. Expanding binominal series of integer and fraction powers and the using of reduction formula of cosine function integrals, a general analytical formula was obtained for water surface profile along a side weir in a combined (trapezoidal with exponential) channel. Since triangular, rectangular, trapezoidal and parabolic cross-sections are special cases of the combined cross section, the derived formula, is applicable to triangular, rectangular, trapezoidal cross-sections as analytical solution and semi-analytical solution to parabolic cross-section with maximum relative error smaller than 0.76%. The proposed solution should be a useful engineering tool for the evaluation and design of side weirs in open channel.

Keywords: analytical solution, combined channel, exponential channel, side weirs, trapezoidal channel, water surface profile

Procedia PDF Downloads 237
868 An Investigation on Viscoelastic and Electrical Properties of Biopolymer-Based Composites

Authors: K. Sever, Y. Seki, Z. Yenier, İ. Şen, M. Sarikanat

Abstract:

It is known that Chitosan, as a natural polymer, has many excellent properties such as bicompotability, biodegradability and nontoxicity. Besides it has some limitations such as poor solubility in water and low conductivity in electrical devices and sensor applications. In order to improve electrical conductivity properties grapheme loading was conducted into chitosan. For this aim, chitosan solution was prepared in acidic condition and Graphene at different ratios was mixed with chitosan solution by the help of homogenizator. After film formation electrical conductivity values of chitosan and graphene loaded chitosan were determined. After grapheme loading into chitosan,solution significant increases in surface resistivity value of chitosan were observed. Besides variations on viscoeleastic properties with graphene loading was determined by dynamic mechanical analysis. Storage and Loss moduli were obtained for chitosan and grapheme loaded chitosan samples.

Keywords: chitosan, graphene, viscoelastic properties, electrical conductivity

Procedia PDF Downloads 486
867 Copper Doped P-Type Nickel Oxide Transparent Conducting Oxide Thin Films

Authors: Kai Huang, Assamen Ayalew Ejigu, Mu-Jie Lin, Liang-Chiun Chao

Abstract:

Nickel oxide and copper-nickel oxide thin films have been successfully deposited by reactive ion beam sputter deposition. Experimental results show that nickel oxide deposited at 300°C is single phase NiO while best crystalline quality is achieved with an O_pf of 0.5. XRD analysis of nickel-copper oxide deposited at 300°C shows a Ni2O3 like crystalline structure at low O_pf while changes to NiO like crystalline structure at high O_pf. EDS analysis shows that nickel-copper oxide deposited at low O_pf is CuxNi2-xO3 with x = 1, while nickel-copper oxide deposited at high O_pf is CuxNi1-xO with x = 0.5, which is supported by Raman analysis. The bandgap of NiO is ~ 3.5 eV regardless of O_pf while the band gap of nickel-copper oxide decreases from 3.2 to 2.3 eV as Opf reaches 1.0.

Keywords: copper, ion beam, NiO, oxide, resistivity, transparent

Procedia PDF Downloads 312
866 Light and Electron Study of Acrylamide–Induced Hypothalamic Changes

Authors: Keivan Jamshidi

Abstract:

Distal swelling and eventual degeneration of axon in the CNS and PNS have been considered to be the characteristic neuropathological effects of acrylamide (ACR) neuropathy. This study was conducted to determine the neurotoxic effects of different doses of ACR (0.5, 5, 50, 100, and 500 mg/kg per day × 11days i. p.) on hypothalamus of rat using the de Olmos amino cupric-silver stain and electron microscopy. For this purpose 60 adult male rats (Wistar, approximately 250 g) were randomly assigned in 5 treatment groups as A, B, C, D, E) exposed to 0.5, 5, 50, 100, and 500 mg/kg per dayx11days i. p. and one control group as F received daily i. p. injections of 0.9% saline (3ml/kg). As indices of developing neurotoxicity, weight gain, gait scores and landing hindlimb foot splay were determined. After 11 days, two rats for silver stain, and two rats for EM were randomly selected; dissected and proper samples were collected from hypothalamus. Results did show no neurological behavior in groups A, B and F were observed in group C. Rats in groups D and E died within 1-2 hours due to sever toxemia. In histopathological studies based on de Olmos technique no argyrophilic neurons or processes were observed in stained sections obtained from hypothalamus of rats belong to groups A, B, and F while moderate to severe argyrophilic changes were observed in different nuclei and regions of stained sections obtained from hypothalamus of rats belong to group C. In ultra-structural studies some variations in the myelin sheet of injured axons including decompactation, interlaminar space formation, disruption of the laminar sheet, accumulation of neurofilaments, vacculation, and clumping inside the axolem, and finally complete disappearance of laminar sheet were observed.

Keywords: acrylamide, hypothalamus, rat, de Olmos amino cupric, silver stain, electron microscopy

Procedia PDF Downloads 530
865 Reliability of Dissimilar Metal Soldered Joint in Fabrication of Electromagnetic Interference Shielded Door Frame

Authors: Rehan Waheed, Hasan Aftab Saeed, Wasim Tarar, Khalid Mahmood, Sajid Ullah Butt

Abstract:

Electromagnetic Interference (EMI) shielded doors made from brass extruded channels need to be welded with shielded enclosures to attain optimum shielding performance. Control of welding induced distortion is a problem in welding dissimilar metals like steel and brass. In this research, soldering of the steel-brass joint has been proposed to avoid weld distortion. The material used for brass channel is UNS C36000. The thickness of brass is defined by the manufacturing process, i.e. extrusion. The thickness of shielded enclosure material (ASTM A36) can be varied to produce joint between the dissimilar metals. Steel sections of different gauges are soldered using (91% tin, 9% zinc) solder to the brass, and strength of joint is measured by standard test procedures. It is observed that thin steel sheets produce a stronger bond with brass. The steel sections further require to be welded with shielded enclosure steel sheets through TIG welding process. Stresses and deformation in the vicinity of soldered portion is calculated through FE simulation. Crack formation in soldered area is also studied through experimental work. It has been found that in thin sheets deformation produced due to applied force is localized and has no effect on soldered joint area whereas in thick sheets profound cracks have been observed in soldered joint. The shielding effectiveness of EMI shielded door is compromised due to these cracks. The shielding effectiveness of the specimens is tested and results are compared.

Keywords: dissimilar metal, EMI shielding, joint strength, soldering

Procedia PDF Downloads 163
864 Decoration of Multi-Walled Carbon Nanotubes by CdS Nanoparticles Using Magnetron Sputtering Method

Authors: Z. Ghorannevis, E. Akbarnejad, B. Aghazadeh, M. Ghoranneviss

Abstract:

Carbon nanotubes (CNTs) modified with semiconductor nanocrystalline particles may find wide applications due to their unique properties. Here Cadmium Sulfide (CdS) nanoparticles were successfully grown on Multi-Walled Carbon Nanotubes (MWNTs) via a magnetron sputtering method for the first time. The CdS/MWNTs sample was characterized with X-ray diffraction (XRD), Field Emission Scanning and High Resolution Transmission Electron Microscopies (SEM/TEM) and four point probe. The obtained images show clearly the decoration of the MWNTs by the CdS nanoparticles, and the XRD measurements indicate the CdS structure as hexagonal type. Moreover, the physical properties of the CdS/MWNTs were compared with the physical properties of the CdS nanoparticles grown on the silicon. Electrical measurements of CdS and CdS/MWNTs reveal that CdS/MWNTs has lower resistivity than the CdS sample which may be due to the higher carrier concentrations.

Keywords: CdS, MWNTs, HRTEM, magnetron sputtering

Procedia PDF Downloads 406