Search results for: rapid microbial identification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6235

Search results for: rapid microbial identification

5965 Application of Rapid Eye Imagery in Crop Type Classification Using Vegetation Indices

Authors: Sunita Singh, Rajani Srivastava

Abstract:

For natural resource management and in other applications about earth observation revolutionary remote sensing technology plays a significant role. One of such application in monitoring and classification of crop types at spatial and temporal scale, as it provides latest, most precise and cost-effective information. Present study emphasizes the use of three different vegetation indices of Rapid Eye imagery on crop type classification. It also analyzed the effect of each indices on classification accuracy. Rapid Eye imagery is highly demanded and preferred for agricultural and forestry sectors as it has red-edge and NIR bands. The three indices used in this study were: the Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) and all of these incorporated the Red Edge band. The study area is Varanasi district of Uttar Pradesh, India and Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Classification was performed with these three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 85% was obtained using three vegetation indices. The study concluded that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the Rapid Eye imagery can get satisfactory results of classification accuracy without original bands.

Keywords: GNDVI, NDRE, NDVI, rapid eye, vegetation indices

Procedia PDF Downloads 362
5964 A Palmprint Identification System Based Multi-Layer Perceptron

Authors: David P. Tantua, Abdulkader Helwan

Abstract:

Biometrics has been recently used for the human identification systems using the biological traits such as the fingerprints and iris scanning. Identification systems based biometrics show great efficiency and accuracy in such human identification applications. However, these types of systems are so far based on some image processing techniques only, which may decrease the efficiency of such applications. Thus, this paper aims to develop a human palmprint identification system using multi-layer perceptron neural network which has the capability to learn using a backpropagation learning algorithms. The developed system uses images obtained from a public database available on the internet (CASIA). The processing system is as follows: image filtering using median filter, image adjustment, image skeletonizing, edge detection using canny operator to extract features, clear unwanted components of the image. The second phase is to feed those processed images into a neural network classifier which will adaptively learn and create a class for each different image. 100 different images are used for training the system. Since this is an identification system, it should be tested with the same images. Therefore, the same 100 images are used for testing it, and any image out of the training set should be unrecognized. The experimental results shows that this developed system has a great accuracy 100% and it can be implemented in real life applications.

Keywords: biometrics, biological traits, multi-layer perceptron neural network, image skeletonizing, edge detection using canny operator

Procedia PDF Downloads 371
5963 Metagenomics Analysis on Microbial Communities of Sewage Sludge from Nyeri-Kangemi Wastewater Treatment Plant, Nyeri County-Kenya

Authors: Allan Kiptanui Kimisto, Geoffrey Odhiambo Ongondo, Anastasia Wairimu Muia, Cyrus Ndungu Kimani

Abstract:

The major challenge to proper sewage sludge treatment processes is the poor understanding of sludge microbiome diversities. This study applied the whole-genome. shotgun metagenomics technique to profile the microbial composition of sewage sludge in two active digestion lagoons at the Nyeri-Kangemi Wastewater Treatment Plant in Nyeri County, Kenya. Total microbial community DNA was extracted from samples using the available ZymoBIOMICS™ DNA Miniprep Kit and sequenced using Shotgun metagenomics. Samples were analyzed using MG-RAST software (Project ID: mgp100988), which allowed for comparing taxonomic diversity before β-diversities studies for Bacteria, Archaea and Eukaryotes. The study identified 57 phyla, 145 classes, 301 orders, 506 families, 963 genera, and 1980 species. Bacteria dominated the microbes and comprised 28 species, 51 classes, 110 orders, 243 families, 597 genera, and 1518 species. The Bacteroides(6.77%) were dominant, followed by Acinetobacter(1.44%) belonging to the Gammaproteobacteria and Acidororax (1.36%), Bacillus (1.24%) and Clostridium (1.02%) belonging to Betaproteobacteria. Archaea recorded 5 phyla, 13 classes, 19 orders, 29 families, 60 genera,and87 species, with the dominant genera being Methanospirillum (16.01%), methanosarcina (15.70%), and Methanoregula(14.80%) and Methanosaeta (8.74%), Methanosphaerula(5.48%) and Methanobrevibacter(5.03%) being the subdominant group. The eukaryotes were the least in abundance and comprised 24 phyla, 81 classes, 301 orders, 506 families, 963 genera, and 980 species. Arabidopsis (4.91%) and Caenorhabditis (4.81%) dominated the eukaryotes, while Dityostelium (3.63%) and Drosophila(2.08%) were the subdominant genera. All these microbes play distinct roles in the anaerobic treatment process of sewage sludge. The local sludge microbial composition and abundance variations may be due to age difference differences between the two digestion lagoons in operation at the plant and the different degradation rales played by the taxa. The information presented in this study can help in the genetic manipulation or formulation of optimal microbial ratios to improve their effectiveness in sewage sludge treatment. This study recommends further research on how the different taxa respond to environmental changes over time and space.

Keywords: shotgun metagenomics, sludge, bacteria, archaea, eukaryotes

Procedia PDF Downloads 99
5962 Microbes in Aquaculture: New Trends and Application in Freshwater Fish Culture

Authors: Muhammad Younis Laghari

Abstract:

Microbial communities play the most important role in aquatic ecosystems. These microbes have a great role in fish growth and aquaculture production. Unfortunately, the farmers are unaware of these useful creatures. Nowadays, the trend of fish farming is developed to re-circulatory aquaculture system (RAS) to increase production and reduce the investment/management cost to increase the profit. However, sometimes, it has been observed that even the growth of fish is decreased in RAS without apparent changes in water quality. There is a great importance of microorganisms in aquaculture, where they occur naturally. However, they can be added artificially by applying different roles. Even these microbes play an important role in the degradation of organic matter and recycling nutrients, along with nutritional support to fish. Even some microorganisms may protect fish and larvae against diseases. But if not managed/utilized properly, they may cause to infect or kill the fish and their larvae. However, manipulating the microbes and monitoring them in aquaculture systems hold great potential to assess and improve the water quality as well as to control the development of microbial infections. While there is an utmost need for research to determine the microbiomes of healthy aquaculture systems, we also need to develop authentic methods for the successful manipulation of microbes as well as engineer these microbiomes. Hence, we should develop a plan to utilize and get full advantage from these microbial interactions for the successful management of aquaculture through advanced research and technology.

Keywords: aquaculture, ecology system, degradation, microbes, nutrient recycling, water quality

Procedia PDF Downloads 82
5961 Photoactivated Chromophore for Keratitis-Cross Linking Window Absorption Alone versus Combined Pack-CXL Window Absorption and Standard Anti-microbial Therapy for Treatment of Infectious Keratitis: A Prospective Study

Authors: Mohammed M. Mahdy Tawfeek

Abstract:

Objective: The aim of this work is to compare the outcome of photoactivated chromophore for keratitis-cross linking (PACK-CXL) window absorption (WA) alone with combined PACK-CXL WA and standard anti-microbial therapy (SAT) for the treatment of infectious keratitis. Patients and Methods: This is a randomized prospective comparative clinical trial. Thirty eyes with clinically suspected infectious keratitis were randomly assigned into two equal groups of 15 eyes each: Group (A) was treated by PACK-CXL WA alone and group (B) was treated by PACK-CXL WA combined with SAT. Identification of organisms was made by lab study before treatment. Corneal healing was evaluated by corneal examination and anterior segment OCT (AS-OCT). Written informed consent was obtained from all participants and the study was approved by the research ethics committee of the Faculty of Medicine, Zagazig University. The work has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for studies involving humans. Results: Complete healing and resolution (Successful treatment) were observed in 10 eyes (66.7%) of a group (A) and 14 eyes (93.3%) of group (B) and failure was observed in 5 eyes (33.3%) of a group (A) and one eye (6.67%) of group (B). They were statistically significant (P =0.042 and 0.003) in a comparison between both groups regarding success and failure of treatment, respectively. Complete corneal healing was reported in the third month postoperatively in 10 eyes (66.7%) of group (A) and 14 eyes (93.3%) of group (B). Complications were absent in 12 patients (80%) in group (A) and 14 patients (93.3%) of group (B); however, perforation and impending perforation were found in 3 patients of group (A) and only one patient of group (B). Conclusion: PACK-CXL is a promising, non-invasive treatment option for infectious keratitis, especially when performed with the window absorption (WA) technique, either alone or combined with SAT. It has a synergistic effect with a standard antimicrobial treatment that gives good outcome results in the treatment of infectious keratitis. Also, it avoids the antibiotics resistance that has become rapidly spreading worldwide.

Keywords: corneal cross linking, infectious keratitis, PACK-CXL, window absorption

Procedia PDF Downloads 140
5960 Isolation and Identification of Microorganisms from Marine-Associated Samples under Laboratory Conditions

Authors: Sameen Tariq, Saira Bano, Sayyada Ghufrana Nadeem

Abstract:

The Ocean, which covers over 70% of the world's surface, is wealthy in biodiversity as well as a rich wellspring of microorganisms with huge potential. The oceanic climate is home to an expansive scope of plants, creatures, and microorganisms. Marine microbial networks, which incorporate microscopic organisms, infections, and different microorganisms, enjoy different benefits in biotechnological processes. Samples were collected from marine environments, including soil and water samples, to cultivate the uncultured marine organisms by using Zobell’s medium, Sabouraud’s dextrose agar, and casein media for this purpose. Following isolation, we conduct microscopy and biochemical tests, including gelatin, starch, glucose, casein, catalase, and carbohydrate hydrolysis for further identification. The results show that more gram-positive and gram-negative bacteria. The isolation process of marine organisms is essential for understanding their ecological roles, unraveling their biological secrets, and harnessing their potential for various applications. Marine organisms exhibit remarkable adaptations to thrive in the diverse and challenging marine environment, offering vast potential for scientific, medical, and industrial applications. The isolation process plays a crucial role in unlocking the secrets of marine organisms, understanding their biological functions, and harnessing their valuable properties. They offer a rich source of bioactive compounds with pharmaceutical potential, including antibiotics, anticancer agents, and novel therapeutics. This study is an attempt to explore the diversity and dynamics related to marine microflora and their role in biofilm formation.

Keywords: marine microorganisms, ecosystem, fungi, biofilm, gram-positive, gram-negative

Procedia PDF Downloads 45
5959 Performance Evaluation of Acoustic-Spectrographic Voice Identification Method in Native and Non-Native Speech

Authors: E. Krasnova, E. Bulgakova, V. Shchemelinin

Abstract:

The paper deals with acoustic-spectrographic voice identification method in terms of its performance in non-native language speech. Performance evaluation is conducted by comparing the result of the analysis of recordings containing native language speech with recordings that contain foreign language speech. Our research is based on Tajik and Russian speech of Tajik native speakers due to the character of the criminal situation with drug trafficking. We propose a pilot experiment that represents a primary attempt enter the field.

Keywords: speaker identification, acoustic-spectrographic method, non-native speech, performance evaluation

Procedia PDF Downloads 446
5958 Wastewater Treatment and Bio-Electricity Generation via Microbial Fuel Cell Technology Operating with Starch Proton Exchange Membrane

Authors: Livinus A. Obasi, Augustine N. Ajah

Abstract:

Biotechnology in recent times has tried to develop a mechanism whereby sustainable electricity can be generated by the activity of microorganisms on waste and renewable biomass (often regarded as “negative value”) in a device called microbial fuel cell, MFC. In this paper, we established how the biocatalytic activities of bacteria on organic matter (substrates) produced some electrons with the associated removal of some water pollution parameters; Biochemical oxygen demand (BOD), chemical oxygen demand (COD) to the tune of 77.2% and 88.3% respectively from a petrochemical sanitary wastewater. The electricity generation was possible by conditioning the bacteria to operate anaerobically in one chamber referred to as the anode while the electrons are transferred to the fully aerated counter chamber containing the cathode. Power densities ranging from 12.83 mW/m2 to 966.66 mW/m2 were achieved using a dual-chamber starch membrane MFC experimental set-up. The maximum power density obtained in this research shows an improvement in the use of low cost MFC set up to achieve power production. Also, the level of organic matter removal from the sanitary waste water by the operation of this device clearly demonstrates its potential benefit in achieving an improved benign environment. The beauty of the MFCs is their potential utility in areas lacking electrical infrastructures like in most developing countries.

Keywords: bioelectricity, COD, microbial fuel cell, sanitary wastewater, wheat starch

Procedia PDF Downloads 256
5957 Face Tracking and Recognition Using Deep Learning Approach

Authors: Degale Desta, Cheng Jian

Abstract:

The most important factor in identifying a person is their face. Even identical twins have their own distinct faces. As a result, identification and face recognition are needed to tell one person from another. A face recognition system is a verification tool used to establish a person's identity using biometrics. Nowadays, face recognition is a common technique used in a variety of applications, including home security systems, criminal identification, and phone unlock systems. This system is more secure because it only requires a facial image instead of other dependencies like a key or card. Face detection and face identification are the two phases that typically make up a human recognition system.The idea behind designing and creating a face recognition system using deep learning with Azure ML Python's OpenCV is explained in this paper. Face recognition is a task that can be accomplished using deep learning, and given the accuracy of this method, it appears to be a suitable approach. To show how accurate the suggested face recognition system is, experimental results are given in 98.46% accuracy using Fast-RCNN Performance of algorithms under different training conditions.

Keywords: deep learning, face recognition, identification, fast-RCNN

Procedia PDF Downloads 140
5956 Green Sustainability Using Radio Frequency Identification: Technology-Organization-Environment Perspective Using Two Case Studies

Authors: Rebecca Angeles

Abstract:

This qualitative case study seeks to understand and explain the deployment of radio frequency identification (RFID) systems in two countries (i.e. in Taiwan for the adoption of electric scooters and in Finland for supporting glass bottle recycling) using the 'Technology-Organization-Environment' theoretical framework. This study also seeks to highlight the relevance and importance of pursuing environmental sustainability in firms and in society in general due to the social urgency of the issues involved.

Keywords: environmental sustainability, radio frequency identification, technology-organization-environment framework, RFID system implementation, case study, content analysis

Procedia PDF Downloads 444
5955 Influencer Marketing, Fan Satisfaction, Team Identification and Purchase Intention and Different Effects of Influencer Marketing: Influencer’s Personal Attributes and Their Add-value to Baseball Games

Authors: Shih-Ting Fu

Abstract:

This study aimed to investigate the influence of influencer marketing on fan satisfaction, purchase intention, and team identification. The research employed a questionnaire survey targeting the Chinese Professional Baseball League (CPBL). The sample included 205 participants, encompassing both existing CPBL fans and individuals with no prior baseball viewing habits. The survey assessed the impact of influencer marketing on participants' knowledge, attitudes, and behaviors related to the CPBL. Additionally, it evaluated team identification, fan satisfaction, and purchase intention. Data analysis using SPSS software aimed to identify correlations and effects among the variables. Findings revealed that influencer marketing has a significant positive impact on fan satisfaction, purchase intention, and team identification. Notably, further analysis indicated that the personal characteristics and charisma of influencers significantly influenced fans' perceptions, leading to increased purchase intention and satisfaction. This effect was even stronger than the influence of influencers' expertise and information dissemination regarding sports events or products.

Keywords: influencer marketing, fan satisfaction, team identification, purchase intention, Chinese professional baseball league (CPBL)

Procedia PDF Downloads 34
5954 Effect of Palm Oil Mill Effluent on Microbial Composition in Soil Samples in Isiala Mbano Lga

Authors: Eze Catherine Chinwe, J. D. Njoku

Abstract:

Background: Palm oil mill effluent is the voluminous liquid waste that comes from the sterilization and clarification sections of the oil palm milling process. The raw effluent contains 90-95% water and includes residual oil, soil particles, and suspended solids. Palm oil mill effluent is a highly polluting material and much research has been dedicated to means of alleviating its threat to the environment. Objectives: 1. To compare Physico-chemical and microbiological analysis of soil samples from POME and non-POME sites. 2. To make recommendations on how best to handle POME in the study area. Methods: Quadrant approach was adopted for sampling POME (A) and Non POME (B) locations. Qualities were determined using standard analytical procedures. Conclusions: Results of the analysis were obtained in the following range; pH (3.940 –7.435), dissolved oxygen (DO) (1.582–6.234mg/l), biological oxygen demand (BOD) (50–5463mg/l etc. For the various locations, the population of total heterotrophic bacteria (THB) ranged from 1.36x106–2.42x106 cfu/ml, the total heterotrophic fungi (THF) ranged from 1.22–3.05 x 104 cfu/ml. The frequency of occurrence revealed the microbial isolates Pseudomonas sp., Bacillus sp., Staphylococcus, as the most frequently occurring isolates. Analysis of variance showed that there were significant differences (P<0.05) in microbial populations among locations. The discharge of industrial effluents into the soil in Nigeria invariably results in the presence of high concentrations of pollutant in the soil environment.

Keywords: effluents, mirobial composition, soil samples, isiala mbano

Procedia PDF Downloads 314
5953 Pion/Muon Identification in a Nuclear Emulsion Cloud Chamber Using Neural Networks

Authors: Kais Manai

Abstract:

The main part of this work focuses on the study of pion/muon separation at low energy using a nuclear Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The work consists of two parts: particle reconstruction algorithm and a Neural Network that assigns to each reconstructed particle the probability to be a muon or a pion. The pion/muon separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data. The algorithm allows to achieve a 60% muon identification efficiency with a pion misidentification smaller than 3%.

Keywords: nuclear emulsion, particle identification, tracking, neural network

Procedia PDF Downloads 506
5952 Rapid and Culture-Independent Detection of Staphylococcus Aureus by PCR Based Protocols

Authors: V. Verma, Syed Riyaz-ul-Hassan

Abstract:

Staphylococcus aureus is one of the most commonly found pathogenic bacteria and is hard to eliminate from the human environment. It is responsible for many nosocomial infections, besides being the main causative agent of food intoxication by virtue of its variety of enterotoxins. Routine detection of S. aureus in food is usually carried out by traditional methods based on morphological and biochemical characterization. These methods are time-consuming and tedious. In addition, misclassifications with automated susceptibility testing systems or commercially available latex agglutination kits have been reported by several workers. Consequently, there is a need for methods to specifically discriminate S. aureus from other staphylococci as quickly as possible. Data on protocols developed using molecular means like PCR technology will be presented for rapid and specific detection of this pathogen in food, clinical and environmental samples, especially milk.

Keywords: food Pathogens, PCR technology, rapid and specific detection, staphylococcus aureus

Procedia PDF Downloads 513
5951 Impact of Microbial Pathogen on Aquatic Environment

Authors: Muhammad Younis Laghari

Abstract:

Global climate change has had many effects on the aquatic environment, and the major issue is pollution. Along with the other pollutants, there are a significant number of human microbial pathogens that pollute the water bodies. Another concern about the water quality is that the major aquatic resources bring water-borne pathogens and other related diseases. These resources include industrial effluent, untreated domestic sewage, acid mine drainage, etc. However, these water discharges through various routes may have treatment to eliminate the pathogenic microbes. Therefore, it is essential to control the leakage from sewer systems, residential discharge, and agricultural run-off. These pathogenic microbes have been implicated in the lives of water health (fishes), which is harmful and causes diseases. Mostly, the mortality of aquatic species results because of catastrophic floods due to poor water waste treatment and sanitation that introduce pathogenic bacteria into rivers. Pathogens survive in rivers and remain poorly known but essential to control water-borne diseases. The presence of bacteria in watercourses is diverse and constitutes a complicated subject. Many species are autochthonous and play an important role in aquatic ecosystems, while many others arise from untreated or poorly treated waste from industrial and domestic sources. Further, more investigation is required to know the induction of water-borne pathogens in various water resources and the potential impacts of water resource development on pathogen contamination.

Keywords: microbial pathogens, contamination, water resources, river water body

Procedia PDF Downloads 75
5950 Complications of Contact Lens-Associated Keratitis: A Refresher for Emergency Departments

Authors: S. Selman, T. Gout

Abstract:

Microbial keratitis is a serious complication of contact lens wear that can be vision and eye-threatening. Diverse presentations relating to contact lens wear include dry corneal surface, corneal infiltrate, ulceration, scarring, and complete corneal melt leading to perforation. Contact lens wear is a major risk factor and, as such, is an important consideration in any patient presenting with a red eye in the primary care setting. This paper aims to provide an overview of the risk factors, common organisms, and spectrum of contact lens-associated keratitis (CLAK) complications. It will highlight some of the salient points relevant to the assessment and workup of patients suspected of CLAK in the emergency department based on the recent literature and therapeutic guidelines. An overview of the management principles will also be provided.

Keywords: microbial keratitis, corneal pathology, contact lens-associated complications, painful vision loss

Procedia PDF Downloads 110
5949 Impact of Different Ripening Accelerators on the Microbial Load and Proximate Composition of Plantain (Musa paradisiaca) and Banana (Musa sapientum), during the Ripening Process, and the Nutrition Implication for Food Security

Authors: Wisdom Robert Duruji, Oluwasegun Christopher Akinleye

Abstract:

This study reports on the impact of different ripening accelerators on the microbial load and proximate composition of plantain (Musa paradisiaca) and Banana (Musa sapientum) during the ripening process, and the nutrition implication for food security. The study comprised of four treatments, namely: Calcium carbide, Irvingia gabonensis fruits, Newbouldia laevis leaves and a control, where no ripening accelerator was applied to the fingers of plantain and banana. The unripe and ripened plantain and banana were subjected to microbial analysis by isolating and enumerating their micro flora using pour plate method; and also, their proximate composition was determined using standard methods. The result indicated that the bacteria count of plantain increased from 3.25 ± 0.33 for unripe to 5.31 ± 0.30 log cfu/g for (treated) ripened, and that of banana increased from 3.69 ± 0.11 for unripe to 5.26 ± 0.21 log cfu/g for ripened. Also, the fungal count of plantain increased from 3.20 ± 0.16 for unripe to 4.88 ± 0.22 log sfu/g for ripened; and that of banana increased from 3.61 ± 0.19 for unripe to 5.43 ± 0.26 for ripened. Ripened plantain fingers without any ripening accelerator (control) had significantly (p < 0.05) higher values of crude protein 3.56 ± 0.06%, crude fat 0.42 ± 0.04%, total ash 2.74 ± 0.15 and carbohydrate 31.10 ± 0.20; but with significantly lower value of moisture 62.14 ± 0.07% when compared with treated plantain. The proximate composition trend of treated and banana fingers control is similar to that of treated and plantain control, except that higher moisture content of 75.11 ± 0.07% and lesser protein, crude fat, total ash and carbohydrate were obtained from treated and ripened banana control when the treatments were compared with that of plantain. The study concluded that plantain is more nutritious (mealy) than a banana; also, the ripening accelerators increased the microbial load and reduced the nutritional status of plantain and banana.

Keywords: food nutrition, calcium carbide, rvingia gabonensis, newbouldia laevis, plantain, banana

Procedia PDF Downloads 323
5948 The Potential Effect of Biochar Application on Microbial Activities and Availability of Mineral Nitrogen in Arable Soil Stressed by Drought

Authors: Helena Dvořáčková, Jakub Elbl, Irina Mikajlo, Antonín Kintl, Jaroslav Hynšt, Olga Urbánková, Jaroslav Záhora

Abstract:

Application of biochar to arable soils represents a new approach to restore soil health and quality. Many studies reported the positive effect of biochar application on soil fertility and development of soil microbial community. Moreover biochar may affect the soil water retention, but this effect has not been sufficiently described yet. Therefore this study deals with the influence of biochar application on: microbial activities in soil, availability of mineral nitrogen in soil for microorganisms, mineral nitrogen retention and plant production. To demonstrate the effect of biochar addition on the above parameters, the pot experiment was realized. As a model crop, Lactuca sativa L. was used and cultivated from December 10th 2014 till March 22th 2015 in climate chamber in thoroughly homogenized arable soil with and without addition of biochar. Five variants of experiment (V1–V5) with different regime of irrigation were prepared. Variants V1–V2 were fertilized by mineral nitrogen, V3–V4 by biochar and V5 was a control. The significant differences were found only in plant production and mineral nitrogen retention. The highest content of mineral nitrogen in soil was detected in V1 and V2, about 250 % in comparison with the other variants. The positive effect of biochar application on soil fertility, mineral nitrogen availability was not found. On the other hand results of plant production indicate the possible positive effect of biochar application on soil water retention.

Keywords: arable soil, biochar, drought, mineral nitrogen

Procedia PDF Downloads 426
5947 Enhancing Protein Incorporation in Calcium Phosphate Coating on Titanium by Rapid Biomimetic Co-Precipitation Technique

Authors: J. Suwanprateeb, F. Thammarakcharoen

Abstract:

Calcium phosphate coating (CaP) has been employed for protein delivery, but the typical direct protein adsorption on the coating led to low incorporation content and fast release of the protein from the coating. By using bovine serum albumin (BSA) as a model protein, rapid biomimetic co-precipitation between calcium phosphate and BSA was employed to control the distribution of BSA within calcium phosphate coating during biomimetic formation on titanium surface for only 6 h at 50 oC in an accelerated calcium phosphate solution. As a result, the amount of BSA incorporation and release duration could be increased by using a rapid biomimetic co-precipitation technique. Up to 43 fold increases in the BSA incorporation content and the increase from 6 h to more than 360 h in release duration compared to typical direct adsorption technique were observed depending on the initial BSA concentration used during co-precipitation (1, 10, and 100 microgram/ml). From X-ray diffraction and Fourier transform infrared spectroscopy studies, the coating composition was not altered with the incorporation of BSA by this rapid biomimetic co-precipitation and mainly comprised octacalcium phosphate and hydroxyapatite. However, the microstructure of calcium phosphate crystals changed from straight, plate-like units to curved, plate-like units with increasing BSA content.

Keywords: biomimetic, Calcium Phosphate Coating, protein, titanium

Procedia PDF Downloads 385
5946 Influence of Optimization Method on Parameters Identification of Hyperelastic Models

Authors: Bale Baidi Blaise, Gilles Marckmann, Liman Kaoye, Talaka Dya, Moustapha Bachirou, Gambo Betchewe, Tibi Beda

Abstract:

This work highlights the capabilities of particles swarm optimization (PSO) method to identify parameters of hyperelastic models. The study compares this method with Genetic Algorithm (GA) method, Least Squares (LS) method, Pattern Search Algorithm (PSA) method, Beda-Chevalier (BC) method and the Levenberg-Marquardt (LM) method. Four classic hyperelastic models are used to test the different methods through parameters identification. Then, the study compares the ability of these models to reproduce experimental Treloar data in simple tension, biaxial tension and pure shear.

Keywords: particle swarm optimization, identification, hyperelastic, model

Procedia PDF Downloads 171
5945 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem

Authors: Brandon Foggo, Nanpeng Yu

Abstract:

Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.

Keywords: distribution network, machine learning, network topology, phase identification, smart grid

Procedia PDF Downloads 299
5944 Risk Identification of Investment Feasibility in Indonesia’s Toll Road Infrastructure Investment

Authors: Christo Februanto Putra

Abstract:

This paper presents risk identification that affects investment feasibility on toll road infrastructure in Indonesia using qualitative methods survey based on the expert practitioner in investor, contractor, and state officials. The problems on infrastructure investment in Indonesia, especially on KPBU model contract, is many risk factors in the investment plan is not calculated in detail thoroughly. Risk factor is a value used to provide an overview of the risk level assessment of an event which is a function of the probability of the occurrence and the consequences of the risks that arise. As results of the survey which is to show which risk factors impacts directly to the investment feasibility and rank them by their impacts on the investment.

Keywords: risk identification, indonesia toll road, investment feasibility

Procedia PDF Downloads 280
5943 Efficiency of Natural Metabolites on Quality Milk Production in Mixed Breed Cows.

Authors: Mariam Azam, Sajjad Ur Rahman, Mukarram Bashir, Muhammad Tahir, Seemal Javaid, Jawad, Aoun Muhammad, Muhammad Zohaib, Hannan Khan

Abstract:

Products of microbial origin are of great importance as they have proved their value in healthcare and nutrition, use of these microbial metabolites acquired from partially fermented soya hulls and wheat bran along with Saccharomyces cerevisiae (DL-22 S/N) substantiates to be a great source for an increase in the total milk production and quality yield.1×109 CFU/ml cells of Saccharomyces cerevisiae (DL-22 S/N) were further grown under in-vivo conditions for the assessment of quality milk production. Two groups with twelve cows, each having the same physical characteristics (Group A and Group B), were under study, Group A was daily fed with 12gm of biological metabolites and 22% protein-pelleted feed. On the other hand, the animals of Group B were provided with no metabolites in their feed. In thirty days of trial, improvement in the overall health, body score, milk protein, milk fat, yield, incidence rate of mastitis, ash, and solid not fat (SNF) was observed. The collected data showed that the average quality milk production was elevated up to 0.45 liter/h/d. However, a reduction in the milk fats up to 0.45% and uplift in the SNF value up to 0.53% of cow milk was also observed. At the same time, the incidence rate of mastitis recorded for the animals under trial was reduced to half, and improved non specific immunity was reported.

Keywords: microbial metabolites, post-biotics, animal supplements, animal nutrition, proteins, animal production, fermentation

Procedia PDF Downloads 101
5942 Rhizospheric Oxygen Release of Hydroponically Grown Wetland Macrophytes as Passive Source for Cathodic Reduction in Microbial Fuel Cell

Authors: Chabungbam Niranjit Khuman, Makarand Madhao Ghangrekar, Arunabha Mitra

Abstract:

The cost of aeration is one of the limiting factors in the upscaling of microbial fuel cells (MFC) for field-scale applications. Wetland macrophytes have the ability to release oxygen into the water to maintain aerobic conditions in their root zone. In this experiment, the efficacy of rhizospheric oxygen release of wetland macrophytes as a source of oxygen in the cathodic chamber of MFC was conducted. The experiment was conducted in an MFC consisting of a three-liter anodic chamber made of ceramic cylinder and a 27 L cathodic chamber. Untreated carbon felts were used as electrodes (i.e., anode and cathode) and connected to an external load of 100 Ω using stainless steel wire. Wetland macrophytes (Canna indica) were grown in the cathodic chamber of the MFC in a hydroponic fashion using a styrofoam sheet (termed as macrophytes assisted-microbial fuel cell, M-MFC). The catholyte (i.e., water) in the M-MFC had negligible contact with atmospheric air due to the styrofoam sheet used for maintaining the hydroponic condition. There was no mixing of the catholyte in the M-MFC. Sucrose based synthetic wastewater having chemical oxygen demand (COD) of 3000 mg/L was fed into the anodic chamber of the MFC in fed-batch mode with a liquid retention time of four days. The C. indica thrived well throughout the duration of the experiment without much care. The average dissolved oxygen (DO) concentration and pH value in the M-MFC were 3.25 mg/L and 7.07, respectively, in the catholyte. Since the catholyte was not in contact with air, the DO in the catholyte might be considered as solely liberated from the rhizospheric oxygen release of C. indica. The maximum COD removal efficiency of M-MFC observed during the experiment was 76.9%. The inadequacy of terminal electron acceptor in the cathodic chamber in M-MFC might have hampered the electron transfer, which in turn, led to slower specific microbial activity, thereby resulting in lower COD removal efficiency than the traditional MFC with aerated catholyte. The average operating voltage (OV) and open-circuit voltage (OCV) of 294 mV and 594 mV, respectively, were observed in M-MFC. The maximum power density observed during polarization was 381 mW/m³, and the maximum sustainable power density observed during the experiment was 397 mW/m³ in M-MFC. The maximum normalized energy recovery and coulombic efficiency of 38.09 Wh/m³ and 1.27%, respectively, were observed. Therefore, it was evidenced that rhizospheric oxygen release of wetland macrophytes (C. indica) was capable of sustaining the cathodic reaction in MFC for field-scale applications.

Keywords: hydroponic, microbial fuel cell, rhizospheric oxygen release, wetland macrophytes

Procedia PDF Downloads 132
5941 Chipless RFID Capacity Enhancement Using the E-pulse Technique

Authors: Haythem H. Abdullah, Hesham Elkady

Abstract:

With the fast increase in radio frequency identification (RFID) applications such as medical recording, library management, etc., the limitation of active tags stems from its need to external batteries as well as passive or active chips. The chipless RFID tag reduces the cost to a large extent but at the expense of utilizing the spectrum. The reduction of the cost of chipless RFID is due to the absence of the chip itself. The identification is done by utilizing the spectrum in such a way that the frequency response of the tags consists of some resonance frequencies that represent the bits. The system capacity is decided by the number of resonators within the pre-specified band. It is important to find a solution to enhance the spectrum utilization when using chipless RFID. Target identification is a process that results in a decision that a specific target is present or not. Several target identification schemes are present, but one of the most successful techniques in radar target identification in the oscillatory region is the extinction pulse technique (E-Pulse). The E-Pulse technique is used to identify targets via its characteristics (natural) modes. By introducing an innovative solution for chipless RFID reader and tag designs, the spectrum utilization goes to the optimum case. In this paper, a novel capacity enhancement scheme based on the E-pulse technique is introduced to improve the performance of the chipless RFID system.

Keywords: chipless RFID, E-pulse, natural modes, resonators

Procedia PDF Downloads 80
5940 Identification of Workplace Hazards of Underground Coal Mines

Authors: Madiha Ijaz, Muhammad Akram, Sima Mir

Abstract:

Underground mining of coal is carried out manually in Pakistan. Exposure to ergonomic hazards (musculoskeletal disorders) are very common among the coal cutters of these mines. Cutting coal in narrow spaces poses a great threat to both upper and lower limbs of these workers. To observe the prevalence of such hazards, a thorough study was conducted on 600 workers from 30 mines (20 workers from 1 mine), located in two districts of province Punjab, Pakistan. Rapid Upper Limb Assessment sheet and Rapid Entire Body Assessment sheet were used for the study along with a standard Nordic Musculoskeleton disorder questionnaire. SPSS, 25, software was used for data analysis on upper and lower limb disorders, and regression analysis models were run for upper and lower back pain. According to the results obtained, it was found that work stages (drilling & blasting, coal cutting, timbering & supporting, etc.), wok experience and number of repetitions performed/minute were significant (with p-value 0.00,0.004 and 0.009, respectively) for discomfort in upper and lower limb. Age got p vale 0.00 for upper limb and 0.012 for lower limb disorder. The task of coal cutting was strongly associated with the pain in upper back (with odd ratios13.21, 95% confidence interval (CI)14.0-21.64)) and lower back pain (3.7, 95% confidence interval 1.3-4.2). scored on RULA and REBA sheets, every work-stage was ranked at 7-highest level of risk involved. Workers were young (mean value of age= 28.7 years) with mean BMI 28.1 kg/m2

Keywords: workplace hazards, ergonomic disorders, limb disorders, MSDs.

Procedia PDF Downloads 84
5939 Evaluation of Diagnosis Performance Based on Pairwise Model Construction and Filtered Data

Authors: Hyun-Woo Cho

Abstract:

It is quite important to utilize right time and intelligent production monitoring and diagnosis of industrial processes in terms of quality and safety issues. When compared with monitoring task, fault diagnosis represents the task of finding process variables responsible causing a specific fault in the process. It can be helpful to process operators who should investigate and eliminate root causes more effectively and efficiently. This work focused on the active use of combining a nonlinear statistical technique with a preprocessing method in order to implement practical real-time fault identification schemes for data-rich cases. To compare its performance to existing identification schemes, a case study on a benchmark process was performed in several scenarios. The results showed that the proposed fault identification scheme produced more reliable diagnosis results than linear methods. In addition, the use of the filtering step improved the identification results for the complicated processes with massive data sets.

Keywords: diagnosis, filtering, nonlinear statistical techniques, process monitoring

Procedia PDF Downloads 243
5938 User Intention Generation with Large Language Models Using Chain-of-Thought Prompting Title

Authors: Gangmin Li, Fan Yang

Abstract:

Personalized recommendation is crucial for any recommendation system. One of the techniques for personalized recommendation is to identify the intention. Traditional user intention identification uses the user’s selection when facing multiple items. This modeling relies primarily on historical behaviour data resulting in challenges such as the cold start, unintended choice, and failure to capture intention when items are new. Motivated by recent advancements in Large Language Models (LLMs) like ChatGPT, we present an approach for user intention identification by embracing LLMs with Chain-of-Thought (CoT) prompting. We use the initial user profile as input to LLMs and design a collection of prompts to align the LLM's response through various recommendation tasks encompassing rating prediction, search and browse history, user clarification, etc. Our tests on real-world datasets demonstrate the improvements in recommendation by explicit user intention identification and, with that intention, merged into a user model.

Keywords: personalized recommendation, generative user modelling, user intention identification, large language models, chain-of-thought prompting

Procedia PDF Downloads 53
5937 Microbial Fuel Cells: Performance and Applications

Authors: Andrea Pietrelli, Vincenzo Ferrara, Bruno Allard, Francois Buret, Irene Bavasso, Nicola Lovecchio, Francesca Costantini, Firas Khaled

Abstract:

This paper aims to show some applications of microbial fuel cells (MFCs), an energy harvesting technique, as clean power source to supply low power device for application like wireless sensor network (WSN) for environmental monitoring. Furthermore, MFC can be used directly as biosensor to analyse parameters like pH and temperature or arranged in form of cluster devices in order to use as small power plant. An MFC is a bioreactor that converts energy stored in chemical bonds of organic matter into electrical energy, through a series of reactions catalysed by microorganisms. We have developed a lab-scale terrestrial microbial fuel cell (TMFC), based on soil that acts as source of bacteria and flow of nutrient and a lab-scale waste water microbial fuel cell (WWMFC), where waste water acts as flow of nutrient and bacteria. We performed large series of tests to exploit the capability as biosensor. The pH value has strong influence on the open circuit voltage (OCV) delivered from TMFCs. We analyzed three condition: test A and B were filled with same soil but changing pH from 6 to 6.63, test C was prepared using a different soil with a pH value of 6.3. Experimental results clearly show how with higher pH value a higher OCV was produced; indeed reactors are influenced by different values of pH which increases the voltage in case of a higher pH value until the best pH value of 7 is achieved. The influence of pH on OCV of lab-scales WWMFC was analyzed at pH value of 6.5, 7, 7.2, 7.5 and 8. WWMFCs are influenced from temperature more than TMFCs. We tested the power performance of WWMFCs considering four imposed values of ambient temperature. Results show how power performance increase proportionally with higher temperature values, doubling the output power from 20° to 40°. The best value of power produced from our lab-scale TMFC was equal to 310 μW using peaty soil, at 1KΩ, corresponding to a current of 0.5 mA. A TMFC can supply proper energy to low power devices of a WSN by means of the design of three stages scheme of an energy management system, which adapts voltage level of TMFC to those required by a WSN node, as 3.3V. Using a commercial DC/DC boost converter, that needs an input voltage of 700 mV, the current source of 0.5 mA, charges a capacitor of 6.8 mF until it will have accumulated an amount of charge equal to 700 mV in a time of 10 s. The output stage includes an output switch that close the circuit after a time of 10s + 1.5ms because the converter can boost the voltage from 0.7V to 3.3V in 1.5 ms. Furthermore, we tested in form of clusters connected in series up to 20 WWMFCs, we have obtained a high voltage value as output, around 10V, but low current value. MFC can be considered a suitable clean energy source to be used to supply low power devices as a WSN node or to be used directly as biosensor.

Keywords: energy harvesting, low power electronics, microbial fuel cell, terrestrial microbial fuel cell, waste-water microbial fuel cell, wireless sensor network

Procedia PDF Downloads 207
5936 Microbial and SARS-CoV-2 Efficiency Analysis of Froumann HEPA Filter Air Cleaner Brand

Authors: Serap Gedikli, Hakan Çakmak, M. Buğra Güldiken, Duygu Yalnızoğlu

Abstract:

Air, which is necessary for living things to survive; while it carries some useful substances in it, it can also carry foreign particles of different sizes that may be harmful to the health. All airborne organic substances of biological origin, including bacteria, fungi, fungal spores, viruses, pollen, and their components, are called "bioaerosols". Nowadays, everyone spends most of their time in closed areas such as home, workplace, school, etc. Although it is known that outdoor air pollution affects health, it is not known that indoor air pollution has harmful effects in terms of health. In this study, indoor air microbial load and SARS-CoV-2 virus cleaning efficiency of Froumann brand air cleaners were studied. This work in 300 m³, 600 m³, and 1000 m³ completely closed areas without any air circulation with Froumann N80, N90, and N100 air-cleaning devices. Analyzes were performed for both areas at 60 minutes before and after the device was operated using a particle measuring device (Particles Plus 7302) and an air sampler (Mas-100 ECO). The measurements were taken by placing the test equipment 1.5-2 m away from the air cleaner. At the same time, the efficiency of the HEPA filter was evaluated by taking samples from the air outlet point of the HEPA filter using the air sampling device (Mas-100 ECO) after the device was started. Nutrient agar and malt agar are used as total mesophilic bacteria and total fungi. The number of colony-forming units per m³ (cfu/m³) was calculated by counting colonies in Petri dishes after incubation for 48 hours at 37°C for bacteria and 72 hours at 30°C for fungi. The change in the number of colonies and the decrease in the microbial load was calculated as a percentage value. SARS-CoV-2 activity analysis studies were carried out by İnönü University Microbiology Department in accordance with the World Health Organization regulations. Finally, the HEPA filter in the devices used was taken and kept under a certain temperature and humidity, and the change in the microbial load on it was monitored over a 6-month period. At the end of the studies, a 91%-94% reduction was determined in the total mesophilic bacteria count of Frouman brand N80, N90, and N100 model air cleaners. A decrease of 94%-96% was detected in the total number of yeast/molds. HEPA filter efficiency was evaluated, and at the end of the analysis, 98% of the bacterial load and approximately 100% of yeast/mold load at the HEPA filter air outlet point were decreased. According to the SARS- CoV-2 analysis results, when the device is operating at the medium airflow level 3, it can filter virus-carrying aerosols by 99%. As a result, it was determined that the Froumann model air cleaner was effective in controlling and reducing the microbial load in the indoor air.

Keywords: HEPA filter, indoor air quality, microbial load, SARS-CoV-2

Procedia PDF Downloads 204