Search results for: lumped parameters model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22911

Search results for: lumped parameters model

22641 Parametric Study of Vertical Diffusion Stills for Water Desalination

Authors: A. Seleem, M. Mortada, M. El-Morsi, M. Younan

Abstract:

Diffusion stills have been effective in water desalination. The present work represents a model of the distillation process by using vertical single-effect diffusion stills. A semi-analytical model has been developed to model the process. A software computer code using Engineering Equation Solver EES software has been developed to solve the equations of the developed model. An experimental setup has been constructed, and used for the validation of the model. The model is also validated against former literature results. The results obtained from the present experimental test rig, and the data from the literature, have been compared with the results of the code to find its best range of validity. In addition, a parametric analysis of the system has been developed using the model to determine the effect of operating conditions on the system's performance. The dominant parameters that affect the productivity of the still are the hot plate temperature that ranges from (55-90 °C) and feed flow rate in range of (0.00694-0.0211 kg/m2-s).

Keywords: analytical model, solar distillation, sustainable water systems, vertical diffusion still

Procedia PDF Downloads 405
22640 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source

Authors: Zdeněk Veselý, Milan Honner, Jiří Mach

Abstract:

The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. The complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from the 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on the temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.

Keywords: computer simulation, unsteady model, heat treatment, complex boundary condition, moving heat source

Procedia PDF Downloads 393
22639 Mathematical Modeling Pressure Losses of Trapezoidal Labyrinth Channel and Bi-Objective Optimization of the Design Parameters

Authors: Nina Philipova

Abstract:

The influence of the geometric parameters of trapezoidal labyrinth channel on the pressure losses along the labyrinth length is investigated in this work. The impact of the dentate height is studied at fixed values of the dentate angle and the dentate spacing. The objective of the work presented in this paper is to derive a mathematical model of the pressure losses along the labyrinth length depending on the dentate height. The numerical simulations of the water flow movement are performed by using Commercial codes ANSYS GAMBIT and FLUENT. Dripper inlet pressure is set up to be 1 bar. As a result, the mathematical model of the pressure losses is determined as a second-order polynomial by means Commercial code STATISTIKA. Bi-objective optimization is performed by using the mean algebraic function of utility. The optimum value of the dentate height is defined at fixed values of the dentate angle and the dentate spacing. The derived model of the pressure losses and the optimum value of the dentate height are used as a basis for a more successful emitter design.

Keywords: drip irrigation, labyrinth channel hydrodynamics, numerical simulations, Reynolds stress model

Procedia PDF Downloads 154
22638 Damage Assessment of Reinforced Concrete Slabs Subjected to Blast Loading

Authors: W. Badla

Abstract:

A numerical investigation has been carried out to examine the behaviour of reinforced concrete slabs to uniform blast loading. The aim of this work is to determine the effects of various parameters on the results. Finite element simulations were performed in the non linear dynamic range using an elasto-plastic damage model. The main parameters considered are: the negative phase of blast loading, time duration, equivalent weight of TNT, distance of the explosive and slab dimensions. Numerical modelling has been performed using ABAQUS/Explicit. The results obtained in terms of displacements and propagation of damage show that the above parameters influence considerably the nonlinear dynamic behaviour of reinforced concrete slabs under uniform blast loading.

Keywords: blast loading, reinforced concrete slabs, elasto-plastic damage model, negative phase, time duration, equivalent weight of TNT, explosive distance, slab dimensions

Procedia PDF Downloads 534
22637 Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models

Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt

Abstract:

Producing faulty products can be costly for manufacturing companies and wastes resources. To reduce scrap rates in manufacturing, process parameters can be optimized using machine learning. Thus far, research mainly focused on optimizing specific processes using traditional algorithms. To develop a framework that enables real-time optimization based on a predictive model for an arbitrary production process, this study explores the application of reinforcement learning (RL) in this field. Based on a thorough review of literature about RL and process parameter optimization, a model based on maximum a posteriori policy optimization that can handle both numerical and categorical parameters is proposed. A case study compares the model to state–of–the–art traditional algorithms and shows that RL can find optima of similar quality while requiring significantly less time. These results are confirmed in a large-scale validation study on data sets from both production and other fields. Finally, multiple ways to improve the model are discussed.

Keywords: reinforcement learning, production process optimization, evolutionary algorithms, policy optimization, actor critic approach

Procedia PDF Downloads 97
22636 Control of a Quadcopter Using Genetic Algorithm Methods

Authors: Mostafa Mjahed

Abstract:

This paper concerns the control of a nonlinear system using two different methods, reference model and genetic algorithm. The quadcopter is a nonlinear unstable system, which is a part of aerial robots. It is constituted by four rotors placed at the end of a cross. The center of this cross is occupied by the control circuit. Its motions are governed by six degrees of freedom: three rotations around 3 axes (roll, pitch and yaw) and the three spatial translations. The control of such system is complex, because of nonlinearity of its dynamic representation and the number of parameters, which it involves. Numerous studies have been developed to model and stabilize such systems. The classical PID and LQ correction methods are widely used. If the latter represent the advantage to be simple because they are linear, they reveal the drawback to require the presence of a linear model to synthesize. It also implies the complexity of the established laws of command because the latter must be widened on all the domain of flight of these quadcopter. Note that, if the classical design methods are widely used to control aeronautical systems, the Artificial Intelligence methods as genetic algorithms technique receives little attention. In this paper, we suggest comparing two PID design methods. Firstly, the parameters of the PID are calculated according to the reference model. In a second phase, these parameters are established using genetic algorithms. By reference model, we mean that the corrected system behaves according to a reference system, imposed by some specifications: settling time, zero overshoot etc. Inspired from the natural evolution of Darwin's theory advocating the survival of the best, John Holland developed this evolutionary algorithm. Genetic algorithm (GA) possesses three basic operators: selection, crossover and mutation. We start iterations with an initial population. Each member of this population is evaluated through a fitness function. Our purpose is to correct the behavior of the quadcopter around three axes (roll, pitch and yaw) with 3 PD controllers. For the altitude, we adopt a PID controller.

Keywords: quadcopter, genetic algorithm, PID, fitness, model, control, nonlinear system

Procedia PDF Downloads 431
22635 Influence of Geometrical Parameters of a Wind Turbine on the Optimal Tip-Speed Ratio

Authors: Zdzislaw Piotr Kaminski, Miroslaw Wendeker, Zbigniew Czyz

Abstract:

The paper describes the geometric model, calculation algorithm and results of the CFD simulation of the airflow around a rotor in the vertical axis wind turbine (VAWT) with the ANSYS Fluent computational solver. The CFD method enables creating aerodynamic characteristics of forces acting on rotor working surfaces and determining parameters such as torque or power generated by the rotor assembly. The object of the research was a rotor whose construction is based on patent no.PL219985. The conducted tests enabled a mathematical model with a description of the generation of aerodynamic forces acting on each rotor blade. Additionally, this model was compared to the results of the wind tunnel tests. The analysis also focused on the influence of the blade angle on turbine power and the TSR. The research has shown that the turbine blade angle has a significant impact on the optimal value of the TSR.

Keywords: computational fluid dynamics, numerical analysis, renewable energy, wind turbine

Procedia PDF Downloads 153
22634 On the Mathematical Modelling of Aggregative Stability of Disperse Systems

Authors: Arnold M. Brener, Lesbek Tashimov, Ablakim S. Muratov

Abstract:

The paper deals with the special model for coagulation kernels which represents new control parameters in the Smoluchowski equation for binary aggregation. On the base of the model the new approach to evaluating aggregative stability of disperse systems has been submitted. With the help of this approach the simple estimates for aggregative stability of various types of hydrophilic nano-suspensions have been obtained.

Keywords: aggregative stability, coagulation kernels, disperse systems, mathematical model

Procedia PDF Downloads 309
22633 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors

Authors: Anwar Jarndal

Abstract:

In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.

Keywords: GaN HEMT, computer-aided design and modeling, neural networks, genetic optimization

Procedia PDF Downloads 382
22632 Computational Fluid Dynamics Analysis of Convergent–Divergent Nozzle and Comparison against Theoretical and Experimental Results

Authors: Stewart A. Keir, Faik A. Hamad

Abstract:

This study aims to use both analytical and experimental methods of analysis to examine the accuracy of Computational Fluid Dynamics (CFD) models that can then be used for more complex analyses, accurately representing more elaborate flow phenomena such as internal shockwaves and boundary layers. The geometry used in the analytical study and CFD model is taken from the experimental rig. The analytical study is undertaken using isentropic and adiabatic relationships and the output of the analytical study, the 'shockwave location tool', is created. The results from the analytical study are then used to optimize the redesign an experimental rig for more favorable placement of pressure taps and gain a much better representation of the shockwaves occurring in the divergent section of the nozzle. The CFD model is then optimized through the selection of different parameters, e.g. turbulence models (Spalart-Almaras, Realizable k-epsilon & Standard k-omega) in order to develop an accurate, robust model. The results from the CFD model can then be directly compared to experimental and analytical results in order to gauge the accuracy of each method of analysis. The CFD model will be used to visualize the variation of various parameters such as velocity/Mach number, pressure and turbulence across the shock. The CFD results will be used to investigate the interaction between the shock wave and the boundary layer. The validated model can then be used to modify the nozzle designs which may offer better performance and ease of manufacture and may present feasible improvements to existing high-speed flow applications.

Keywords: CFD, nozzle, fluent, gas dynamics, shock-wave

Procedia PDF Downloads 232
22631 Analysis of Operating Speed on Four-Lane Divided Highways under Mixed Traffic Conditions

Authors: Chaitanya Varma, Arpan Mehar

Abstract:

The present study demonstrates the procedure to analyse speed data collected on various four-lane divided sections in India. Field data for the study was collected at different straight and curved sections on rural highways with the help of radar speed gun and video camera. The data collected at the sections were analysed and parameters pertain to speed distributions were estimated. The different statistical distribution was analysed on vehicle type speed data and for mixed traffic speed data. It was found that vehicle type speed data was either follows the normal distribution or Log-normal distribution, whereas the mixed traffic speed data follows more than one type of statistical distribution. The most common fit observed on mixed traffic speed data were Beta distribution and Weibull distribution. The separate operating speed model based on traffic and roadway geometric parameters were proposed in the present study. The operating speed model with traffic parameters and curve geometry parameters were established. Two different operating speed models were proposed with variables 1/R and Ln(R) and were found to be realistic with a different range of curve radius. The models developed in the present study are simple and realistic and can be used for forecasting operating speed on four-lane highways.

Keywords: highway, mixed traffic flow, modeling, operating speed

Procedia PDF Downloads 460
22630 Ten Patterns of Organizational Misconduct and a Descriptive Model of Interactions

Authors: Ali Abbas

Abstract:

This paper presents a descriptive model of organizational misconduct based on observed patterns that occur before and after an ethical collapse. The patterns were classified by categorizing media articles in both "for-profit" and "not-for-profit" organizations. Based on the model parameters, the paper provides a descriptive model of various organizational deflection strategies under numerous scenarios, including situations where ethical complaints build-up, situations under which whistleblowers become more prevalent, situations where large scandals that relate to leadership occur, and strategies by which organizations deflect blame when pressure builds up or when media finds out. The model parameters start with the premise of a tolerance to double standards in unethical acts when conducted by leadership or by members of corporate governance. Following this premise, the model explains how organizations engage in discursive strategies to cover up the potential conflicts that arise, including secret agreements and weakening stakeholders who may oppose the organizational acts. Deflection strategies include "preemptive" and "post-complaint" secret agreements, absence of (or vague) documented procedures, engaging in blame and scapegoating, remaining silent on complaints until the media finds out, as well as being slow (if at all) to acknowledge misconduct and fast to cover it up. The results of this paper may be used to guide organizational leaders into the implications of such shortsighted strategies toward unethical acts, even if they are deemed legal. Validation of the model assumptions through numerous media articles is provided.

Keywords: ethical decision making, prediction, scandals, organizational strategies

Procedia PDF Downloads 125
22629 Zebrafish Larvae Model: A High Throughput Screening Tool to Study Autism

Authors: Shubham Dwivedi, Raghavender Medishetti, Rita Rani, Aarti Sevilimedu, Pushkar Kulkarni, Yogeeswari Perumal

Abstract:

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder of early onset, characterized by impaired sociability, cognitive function and stereotypies. There is a significant urge to develop and establish new animal models with ASD-like characteristics for better understanding of underlying mechanisms. The aim of the present study was to develop a cost and time effective zebrafish model with quantifiable parameters to facilitate mechanistic studies as well as high-throughput screening of new molecules for autism. Zebrafish embryos were treated with valproic acid and a battery of behavioral tests (anxiety, inattentive behavior, irritability and social impairment) was performed on larvae at 7th day post fertilization, followed by study of molecular markers of autism. This model shows a significant behavioural impairment in valproic acid treated larvae in comparison to control which was again supported by alteration in few marker genes and proteins of autism. The model also shows a rescue of behavioural despair with positive control drugs. The model shows robust parameters to study behavior, molecular mechanism and drug screening approach in a single frame. Thus we postulate that our 7 days zebrafish larval model for autism can help in high throughput screening of new molecules on autism.

Keywords: autism, zebrafish, valproic acid, neurodevelopment, behavioral assay

Procedia PDF Downloads 161
22628 The Influence of Microscopic Features on the Self-Cleaning Ability of Developed 3D Printed Fabric-Like Structures Using Different Printing Parameters

Authors: Ayat Adnan Atwah, Muhammad A. Khan

Abstract:

Self-cleaning surfaces are getting significant attention in industrial fields. Especially for textile fabrics, it is observed that self-cleaning textile fabric surfaces are created by manipulating the surface features with the help of coatings and nanoparticles, which are considered costly and far more complicated. However, controlling the fabrication parameters of textile fabrics at the microscopic level by exploring the potential for self-cleaning has not been addressed. This study aimed to establish the context of self-cleaning textile fabrics by controlling the fabrication parameters of the textile fabric at the microscopic level. Therefore, 3D-printed textile fabrics were fabricated using the low-cost fused filament fabrication (FFF) technique. The printing parameters, such as orientation angle (O), layer height (LH), and extruder width (EW), were used to control the microscopic features of the printed fabrics. The combination of three printing parameters was created to provide the best self-cleaning textile fabric surface: (LH) (0.15, 0.13, 0.10 mm) and (EW) (0.5, 0.4, 0.3 mm) along with two different (O) of (45º and 90º). Three different thermoplastic flexible filament materials were used: (TPU 98A), (TPE felaflex), and (TPC flex45). The printing parameters were optimised to get the optimum self-cleaning ability of the printed specimens. Furthermore, the impact of these characteristics on mechanical strength at the fabric-woven structure level was investigated. The study revealed that the printing parameters significantly affect the self-cleaning properties after adjusting the selected combination of layer height, extruder width, and printing orientation. A linear regression model was effectively developed to demonstrate the association between 3D printing parameters (layer height, extruder width, and orientation). According to the experimental results, (TPE felaflex) has a better self-cleaning ability than the other two materials.

Keywords: 3D printing, self-cleaning fabric, microscopic features, printing parameters, fabrication

Procedia PDF Downloads 90
22627 Parametric Investigation of Wire-Cut Electric Discharge Machining on Steel ST-37

Authors: Mearg Berhe Gebregziabher

Abstract:

Wire-cut electric discharge machining (WEDM) is one of the advanced machining processes. Due to the development of the current manufacturing sector, there has been no research work done before about the optimization of the process parameters based on the availability of the workpiece of the Steel St-37 material in Ethiopia. Material Removal Rate (MRR) is considered as the experimental response of WCEDM. The main objective of this work is to investigate and optimize the process parameters on machining quality that gives high MRR during machining of Steel St-37. Throughout the investigation, Pulse on Time (TON), Pulse off Time (TOFF) and Velocities of Wire Feed (WR) are used as variable parameters at three different levels, and Wire tension, flow rate, type of dielectric fluid, type of the workpiece and wire material and dielectric flow rate are keeping as constants for each experiment. The Taguchi methodology, as per Taguchi‟ 's standard L9 (3^3) Orthogonal Array (OA), has been carried out to investigate their effects and to predict the optimal combination of process parameters over MRR. Signal to Noise ratio (S/N) and Analysis of Variance (ANOVA) were used to analyze the effect of the parameters and to identify the optimum cutting parameters on MRR. MRR was measured by using the Electronic Balance Model SI-32. The results indicated that the most significant factors for MRR are TOFF, TON and lastly WR. Taguchi analysis shows that, the optimal process parameters combination is A2B2C2, i.e., TON 6μs, TOFF 29μs and WR 2 m/min. At this level, the MRR of 0.414 gram/min has been achieved.

Keywords: ANOVA, MRR, parameter, Taguchi Methode

Procedia PDF Downloads 42
22626 A Partially Accelerated Life Test Planning with Competing Risks and Linear Degradation Path under Tampered Failure Rate Model

Authors: Fariba Azizi, Firoozeh Haghighi, Viliam Makis

Abstract:

In this paper, we propose a method to model the relationship between failure time and degradation for a simple step stress test where underlying degradation path is linear and different causes of failure are possible. It is assumed that the intensity function depends only on the degradation value. No assumptions are made about the distribution of the failure times. A simple step-stress test is used to shorten failure time of products and a tampered failure rate (TFR) model is proposed to describe the effect of the changing stress on the intensities. We assume that some of the products that fail during the test have a cause of failure that is only known to belong to a certain subset of all possible failures. This case is known as masking. In the presence of masking, the maximum likelihood estimates (MLEs) of the model parameters are obtained through an expectation-maximization (EM) algorithm by treating the causes of failure as missing values. The effect of incomplete information on the estimation of parameters is studied through a Monte-Carlo simulation. Finally, a real example is analyzed to illustrate the application of the proposed methods.

Keywords: cause of failure, linear degradation path, reliability function, expectation-maximization algorithm, intensity, masked data

Procedia PDF Downloads 333
22625 A Multiobjective Damping Function for Coordinated Control of Power System Stabilizer and Power Oscillation Damping

Authors: Jose D. Herrera, Mario A. Rios

Abstract:

This paper deals with the coordinated tuning of the Power System Stabilizer (PSS) controller and Power Oscillation Damping (POD) Controller of Flexible AC Transmission System (FACTS) in a multi-machine power systems. The coordinated tuning is based on the critical eigenvalues of the power system and a model reduction technique where the Hankel Singular Value method is applied. Through the linearized system model and the parameter-constrained nonlinear optimization algorithm, it can compute the parameters of both controllers. Moreover, the parameters are optimized simultaneously obtaining the gains of both controllers. Then, the nonlinear simulation to observe the time response of the controller is performed.

Keywords: electromechanical oscillations, power system stabilizers, power oscillation damping, hankel singular values

Procedia PDF Downloads 592
22624 Modeling in the Middle School: Eighth-Grade Students’ Construction of the Summer Job Problem

Authors: Neslihan Sahin Celik, Ali Eraslan

Abstract:

Mathematical model and modeling are one of the topics that have been intensively discussed in recent years. In line with the results of the PISA studies, researchers in many countries have begun to question how much students in school-education system are prepared to solve the real-world problems they encounter in their future professional lives. As a result, many mathematics educators have begun to emphasize the importance of new skills and understanding such as constructing, Hypothesizing, Describing, manipulating, predicting, working together for complex and multifaceted problems for success in beyond the school. When students increasingly face this kind of situations in their daily life, it is important to make sure that students have enough experience to work together and interpret mathematical situations that enable them to think in different ways and share their ideas with their peers. Thus, model eliciting activities are one of main tools that help students to gain experiences and the new skills required. This research study was carried on the town center of a big city located in the Black Sea region in Turkey. The participants were eighth-grade students in a middle school. After a six-week preliminary study, three students in an eighth-grade classroom were selected using criterion sampling technique and placed in a focus group. The focus group of three students was videotaped as they worked on a model eliciting activity, the Summer Job Problem. The conversation of the group was transcribed, examined with students’ written work and then qualitatively analyzed through the lens of Blum’s (1996) modeling processing cycle. The study results showed that eighth grade students can successfully work with the model eliciting, develop a model based on the two parameters and review the whole process. On the other hand, they had difficulties to relate parameters to each other and take all parameters into account to establish the model.

Keywords: middle school, modeling, mathematical modeling, summer job problem

Procedia PDF Downloads 337
22623 Investigation of Extreme Gradient Boosting Model Prediction of Soil Strain-Shear Modulus

Authors: Ehsan Mehryaar, Reza Bushehri

Abstract:

One of the principal parameters defining the clay soil dynamic response is the strain-shear modulus relation. Predicting the strain and, subsequently, shear modulus reduction of the soil is essential for performance analysis of structures exposed to earthquake and dynamic loadings. Many soil properties affect soil’s dynamic behavior. In order to capture those effects, in this study, a database containing 1193 data points consists of maximum shear modulus, strain, moisture content, initial void ratio, plastic limit, liquid limit, initial confining pressure resulting from dynamic laboratory testing of 21 clays is collected for predicting the shear modulus vs. strain curve of soil. A model based on an extreme gradient boosting technique is proposed. A tree-structured parzan estimator hyper-parameter tuning algorithm is utilized simultaneously to find the best hyper-parameters for the model. The performance of the model is compared to the existing empirical equations using the coefficient of correlation and root mean square error.

Keywords: XGBoost, hyper-parameter tuning, soil shear modulus, dynamic response

Procedia PDF Downloads 201
22622 Comparison of the Logistic and the Gompertz Growth Functions Considering a Periodic Perturbation in the Model Parameters

Authors: Avan Al-Saffar, Eun-Jin Kim

Abstract:

Both the logistic growth model and the gompertz growth model are used to describe growth processes. Both models driven by perturbations in different cases are investigated using information theory as a useful measure of sustainability and the variability. Specifically, we study the effect of different oscillatory modulations in the system's parameters on the evolution of the system and Probability Density Function (PDF). We show the maintenance of the initial conditions for a long time. We offer Fisher information analysis in positive and/or negative feedback and explain its implications for the sustainability of population dynamics. We also display a finite amplitude solution due to the purely fluctuating growth rate whereas the periodic fluctuations in negative feedback can lead to break down the system's self-regulation with an exponentially growing solution. In the cases tested, the gompertz and logistic systems show similar behaviour in terms of information and sustainability although they develop differently in time.

Keywords: dynamical systems, fisher information, probability density function (pdf), sustainability

Procedia PDF Downloads 431
22621 Influence of Optimization Method on Parameters Identification of Hyperelastic Models

Authors: Bale Baidi Blaise, Gilles Marckmann, Liman Kaoye, Talaka Dya, Moustapha Bachirou, Gambo Betchewe, Tibi Beda

Abstract:

This work highlights the capabilities of particles swarm optimization (PSO) method to identify parameters of hyperelastic models. The study compares this method with Genetic Algorithm (GA) method, Least Squares (LS) method, Pattern Search Algorithm (PSA) method, Beda-Chevalier (BC) method and the Levenberg-Marquardt (LM) method. Four classic hyperelastic models are used to test the different methods through parameters identification. Then, the study compares the ability of these models to reproduce experimental Treloar data in simple tension, biaxial tension and pure shear.

Keywords: particle swarm optimization, identification, hyperelastic, model

Procedia PDF Downloads 171
22620 Development of an Image-Based Biomechanical Model for Assessment of Hip Fracture Risk

Authors: Masoud Nasiri Sarvi, Yunhua Luo

Abstract:

Low-trauma hip fracture, usually caused by fall from standing height, has become a main source of morbidity and mortality for the elderly. Factors affecting hip fracture include sex, race, age, body weight, height, body mass distribution, etc., and thus, hip fracture risk in fall differs widely from subject to subject. It is therefore necessary to develop a subject-specific biomechanical model to predict hip fracture risk. The objective of this study is to develop a two-level, image-based, subject-specific biomechanical model consisting of a whole-body dynamics model and a proximal-femur finite element (FE) model for more accurately assessing the risk of hip fracture in lateral falls. Required information for constructing the model is extracted from a whole-body and a hip DXA (Dual Energy X-ray Absorptiometry) image of the subject. The proposed model considers all parameters subject-specifically, which will provide a fast, accurate, and non-expensive method for predicting hip fracture risk.

Keywords: bone mineral density, hip fracture risk, impact force, sideways falls

Procedia PDF Downloads 536
22619 The DC Behavioural Electrothermal Model of Silicon Carbide Power MOSFETs under SPICE

Authors: Lakrim Abderrazak, Tahri Driss

Abstract:

This paper presents a new behavioural electrothermal model of power Silicon Carbide (SiC) MOSFET under SPICE. This model is based on the MOS model level 1 of SPICE, in which phenomena such as Drain Leakage Current IDSS, On-State Resistance RDSon, gate Threshold voltage VGSth, the transconductance (gfs), I-V Characteristics Body diode, temperature-dependent and self-heating are included and represented using behavioural blocks ABM (Analog Behavioural Models) of Spice library. This ultimately makes this model flexible and easily can be integrated into the various Spice -based simulation softwares. The internal junction temperature of the component is calculated on the basis of the thermal model through the electric power dissipated inside and its thermal impedance in the form of the localized Foster canonical network. The model parameters are extracted from manufacturers' data (curves data sheets) using polynomial interpolation with the method of simulated annealing (S A) and weighted least squares (WLS). This model takes into account the various important phenomena within transistor. The effectiveness of the presented model has been verified by Spice simulation results and as well as by data measurement for SiC MOS transistor C2M0025120D CREE (1200V, 90A).

Keywords: SiC power MOSFET, DC electro-thermal model, ABM Spice library, SPICE modelling, behavioural model, C2M0025120D CREE.

Procedia PDF Downloads 578
22618 Forecasting Etching Behavior Silica Sand Using the Design of Experiments Method

Authors: Kefaifi Aissa, Sahraoui Tahar, Kheloufi Abdelkrim, Anas Sabiha, Hannane Farouk

Abstract:

The aim of this study is to show how the Design of Experiments Method (DOE) can be put into use as a practical approach for silica sand etching behavior modeling during its primary step of leaching. In the present work, we have studied etching effect on particle size during a primary step of leaching process on Algerian silica sand with florid acid (HF) at 20% and 30 % during 4 and 8 hours. Therefore, a new purity of the sand is noted depending on the time of leaching. This study was expanded by a numerical approach using a method of experiment design, which shows the influence of each parameter and the interaction between them in the process and approved the obtained experimental results. This model is a predictive approach using hide software. Based on the measured parameters experimentally in the interior of the model, the use of DOE method can make it possible to predict the outside parameters of the model in question and can give us the optimize response without making the experimental measurement.

Keywords: acid leaching, design of experiments method(DOE), purity silica, silica etching

Procedia PDF Downloads 286
22617 Empirical Analytical Modelling of Average Bond Stress and Anchorage of Tensile Bars in Reinforced Concrete

Authors: Maruful H. Mazumder, Raymond I. Gilbert

Abstract:

The design specifications for calculating development and lapped splice lengths of reinforcement in concrete are derived from a conventional empirical modelling approach that correlates experimental test data using a single mathematical equation. This paper describes part of a recently completed experimental research program to assess the effects of different structural parameters on the development length requirements of modern high strength steel reinforcing bars, including the case of lapped splices in large-scale reinforced concrete members. The normalized average bond stresses for the different variations of anchorage lengths are assessed according to the general form of a typical empirical analytical model of bond and anchorage. Improved analytical modelling equations are developed in the paper that better correlate the normalized bond strength parameters with the structural parameters of an empirical model of bond and anchorage.

Keywords: bond stress, development length, lapped splice length, reinforced concrete

Procedia PDF Downloads 438
22616 Application of Genetic Algorithm with Multiobjective Function to Improve the Efficiency of Photovoltaic Thermal System

Authors: Sonveer Singh, Sanjay Agrawal, D. V. Avasthi, Jayant Shekhar

Abstract:

The aim of this paper is to improve the efficiency of photovoltaic thermal (PVT) system with the help of Genetic Algorithms with multi-objective function. There are some parameters that affect the efficiency of PVT system like depth and length of the channel, velocity of flowing fluid through the channel, thickness of the tedlar and glass, temperature of inlet fluid i.e. all above parameters are considered for optimization. An attempt has been made to the model and optimizes the parameters of glazed hybrid single channel PVT module when two objective functions have been considered separately. The two objective function for optimization of PVT module is overall electrical and thermal efficiency. All equations for PVT module have been derived. Using genetic algorithms (GAs), above two objective functions of the system has been optimized separately and analysis has been carried out for two cases. Two cases are: Case-I; Improvement in electrical and thermal efficiency when overall electrical efficiency is optimized, Case-II; Improvement in electrical and thermal efficiency when overall thermal efficiency is optimized. All the parameters that are used in genetic algorithms are the parameters that could be changed, and the non-changeable parameters, like solar radiation, ambient temperature cannot be used in the algorithm. It has been observed that electrical efficiency (14.08%) and thermal efficiency (19.48%) are obtained when overall thermal efficiency was an objective function for optimization. It is observed that GA is a very efficient technique to estimate the design parameters of hybrid single channel PVT module.

Keywords: genetic algorithm, energy, exergy, PVT module, optimization

Procedia PDF Downloads 605
22615 Contribution to the Analytical Study of the Stability of a DC-DC Converter (Boost) Used for MPPT Control

Authors: Mohamed Amarouayache, Badia Amrouche, Gharbi Akila, Boukadoume Mohamed

Abstract:

This work is devoted to the modeling of DC-DC converter (boost) used for MPPT applications to set conditions of stability. For this, we establish a linear mathematical model of the DC-DC converter with an average small signal model. This model has allowed us to apply conventional linear methods of automation. A mathematical relationship between the duty cycle and the voltage of the panel has been set up. With this relationship we specify the conditions of the stability in closed-loop depending on the system parameters (the elements of storage capacity and inductance, PWM control).

Keywords: MPPT, PWM, stability, criterion of Routh, average small signal model

Procedia PDF Downloads 443
22614 A Comparative Study on Sampling Techniques of Polynomial Regression Model Based Stochastic Free Vibration of Composite Plates

Authors: S. Dey, T. Mukhopadhyay, S. Adhikari

Abstract:

This paper presents an exhaustive comparative investigation on sampling techniques of polynomial regression model based stochastic natural frequency of composite plates. Both individual and combined variations of input parameters are considered to map the computational time and accuracy of each modelling techniques. The finite element formulation of composites is capable to deal with both correlated and uncorrelated random input variables such as fibre parameters and material properties. The results obtained by Polynomial regression (PR) using different sampling techniques are compared. Depending on the suitability of sampling techniques such as 2k Factorial designs, Central composite design, A-Optimal design, I-Optimal, D-Optimal, Taguchi’s orthogonal array design, Box-Behnken design, Latin hypercube sampling, sobol sequence are illustrated. Statistical analysis of the first three natural frequencies is presented to compare the results and its performance.

Keywords: composite plate, natural frequency, polynomial regression model, sampling technique, uncertainty quantification

Procedia PDF Downloads 512
22613 Diffusion Dynamics of Leech-Heart Inter-Neuron Model

Authors: Arnab Mondal, Sanjeev Kumar Sharma, Ranjit Kumar Upadhyay

Abstract:

We study the spatiotemporal dynamics of a neuronal cable. The processes of one- dimensional (1D) and 2D diffusion are considered for a single variable, which is the membrane voltage, i.e., membrane voltage diffusively interacts for spatiotemporal pattern formalism. The recovery and other variables interact through the membrane voltage. A 3D Leech-Heart (LH) model is introduced to investigate the nonlinear responses of an excitable neuronal cable. The deterministic LH model shows different types of firing properties. We explore the parameter space of the uncoupled LH model and based on the bifurcation diagram, considering v_k2_ashift as a bifurcation parameter, we analyze the 1D diffusion dynamics in three regimes: bursting, regular spiking, and a quiescent state. Depending on parameters, it is shown that the diffusive system may generate regular and irregular bursting or spiking behavior. Further, it is explored a 2D diffusion acting on the membrane voltage, where different types of patterns can be observed. The results show that the LH neurons with different firing characteristics depending on the control parameters participate in a collective behavior of an information processing system that depends on the overall network.

Keywords: bifurcation, pattern formation, spatio-temporal dynamics, stability analysis

Procedia PDF Downloads 222
22612 Using Nonhomogeneous Poisson Process with Compound Distribution to Price Catastrophe Options

Authors: Rong-Tsorng Wang

Abstract:

In this paper, we derive a pricing formula for catastrophe equity put options (or CatEPut) with non-homogeneous loss and approximated compound distributions. We assume that the loss claims arrival process is a nonhomogeneous Poisson process (NHPP) representing the clustering occurrences of loss claims, the size of loss claims is a sequence of independent and identically distributed random variables, and the accumulated loss distribution forms a compound distribution and is approximated by a heavy-tailed distribution. A numerical example is given to calibrate parameters, and we discuss how the value of CatEPut is affected by the changes of parameters in the pricing model we provided.

Keywords: catastrophe equity put options, compound distributions, nonhomogeneous Poisson process, pricing model

Procedia PDF Downloads 167