Search results for: luggage handling
445 Iraqi Short Term Electrical Load Forecasting Based on Interval Type-2 Fuzzy Logic
Authors: Firas M. Tuaimah, Huda M. Abdul Abbas
Abstract:
Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.Keywords: short term load forecasting, prediction interval, type 2 fuzzy logic systems, electric, computer systems engineering
Procedia PDF Downloads 397444 A Comparison of Methods for Neural Network Aggregation
Authors: John Pomerat, Aviv Segev
Abstract:
Recently, deep learning has had many theoretical breakthroughs. For deep learning to be successful in the industry, however, there need to be practical algorithms capable of handling many real-world hiccups preventing the immediate application of a learning algorithm. Although AI promises to revolutionize the healthcare industry, getting access to patient data in order to train learning algorithms has not been easy. One proposed solution to this is data- sharing. In this paper, we propose an alternative protocol, based on multi-party computation, to train deep learning models while maintaining both the privacy and security of training data. We examine three methods of training neural networks in this way: Transfer learning, average ensemble learning, and series network learning. We compare these methods to the equivalent model obtained through data-sharing across two different experiments. Additionally, we address the security concerns of this protocol. While the motivating example is healthcare, our findings regarding multi-party computation of neural network training are purely theoretical and have use-cases outside the domain of healthcare.Keywords: neural network aggregation, multi-party computation, transfer learning, average ensemble learning
Procedia PDF Downloads 162443 Clinical Psychology Interns' Lived Experience with Suicidal Clients
Authors: Elaine Llantos Elayda, John Mark S. Distor
Abstract:
This paper explores the lived experiences of clinical psychology interns' who have encountered suicidal clients during their internship. Employing qualitative phenomenological investigation, semi-structured interviews were conducted and analyzed using interpretative phenomenological analysis (IPA). The study employed purposive sampling to gather valuable data. The results highlighted that those encounters with suicidal clients triggered various reactions among interns, leading to self-doubt and a sense of unpreparedness in handling such cases. Many interns struggled with managing their own emotions, especially when clients' traumas mirrored their own experiences. The study emphasized the importance of a robust support system in helping interns cope with the challenges of their work. Supervision and professional support played critical roles in interns' development, providing guidance and enhancing their confidence in managing distressing situations. Despite the challenges, the interns found purpose in witnessing significant client progress and emphasized the importance of self-care and ongoing training to prepare future clinicians for similar experiences.Keywords: polytechnic university of the Philippines, clinical psychology interns, suicidal clients, clinical psychology training
Procedia PDF Downloads 28442 Establishment of Farmed Fish Welfare Biomarkers Using an Omics Approach
Authors: Pedro M. Rodrigues, Claudia Raposo, Denise Schrama, Marco Cerqueira
Abstract:
Farmed fish welfare is a very recent concept, widely discussed among the scientific community. Consumers’ interest regarding farmed animal welfare standards has significantly increased in the last years posing a huge challenge to producers in order to maintain an equilibrium between good welfare principles and productivity, while simultaneously achieve public acceptance. The major bottleneck of standard aquaculture is to impair considerably fish welfare throughout the production cycle and with this, the quality of fish protein. Welfare assessment in farmed fish is undertaken through the evaluation of fish stress responses. Primary and secondary stress responses include release of cortisol and glucose and lactate to the blood stream, respectively, which are currently the most commonly used indicators of stress exposure. However, the reliability of these indicators is highly dubious, due to a high variability of fish responses to an acute stress and the adaptation of the animal to a repetitive chronic stress. Our objective is to use comparative proteomics to identify and validate a fingerprint of proteins that can present an more reliable alternative to the already established welfare indicators. In this way, the culture conditions will improve and there will be a higher perception of mechanisms and metabolic pathway involved in the produced organism’s welfare. Due to its high economical importance in Portuguese aquaculture Gilthead seabream will be the elected species for this study. Protein extracts from Gilthead Seabream fish muscle, liver and plasma, reared for a 3 month period under optimized culture conditions (control) and induced stress conditions (Handling, high densities, and Hipoxia) are collected and used to identify a putative fish welfare protein markers fingerprint using a proteomics approach. Three tanks per condition and 3 biological replicates per tank are used for each analisys. Briefly, proteins from target tissue/fluid are extracted using standard established protocols. Protein extracts are then separated using 2D-DIGE (Difference gel electrophoresis). Proteins differentially expressed between control and induced stress conditions will be identified by mass spectrometry (LC-Ms/Ms) using NCBInr (taxonomic level - Actinopterygii) databank and Mascot search engine. The statistical analysis is performed using the R software environment, having used a one-tailed Mann-Whitney U-test (p < 0.05) to assess which proteins were differentially expressed in a statistically significant way. Validation of these proteins will be done by comparison of the RT-qPCR (Quantitative reverse transcription polymerase chain reaction) expressed genes pattern with the proteomic profile. Cortisol, glucose, and lactate are also measured in order to confirm or refute the reliability of these indicators. The identified liver proteins under handling and high densities induced stress conditions are responsible and involved in several metabolic pathways like primary metabolism (i.e. glycolysis, gluconeogenesis), ammonia metabolism, cytoskeleton proteins, signalizing proteins, lipid transport. Validition of these proteins as well as identical analysis in muscle and plasma are underway. Proteomics is a promising high-throughput technique that can be successfully applied to identify putative welfare protein biomarkers in farmed fish.Keywords: aquaculture, fish welfare, proteomics, welfare biomarkers
Procedia PDF Downloads 156441 Energy Saving in Handling the Air-Conditioning Latent-Load Using a Liquid Desiccant Air Conditioner: Parametric Experimental Analysis
Authors: Mustafa Jaradat
Abstract:
Reasonable energy saving for dehumidification is feasible with the use of desiccants. Desiccants are able to lower the humidity content in the air irrespective of the dew point temperature. In this paper, a tube bundle liquid desiccant air conditioner was experimentally designed and evaluated using lithium chloride as a desiccant. Several experiments were conducted to evaluate the influence of the inlet parameters on the dehumidifier performance. The results show a reduction in the relative humidity in the range of 17 to 46%, and the change in the humidity ratio was between 1.5 to 4.7 g/kg, depending on the inlet conditions. A water removal rate in the range between 0.54 and 1.67 kg/h was observed. The effects of air relative humidity and the desiccant flow rate on the dehumidifier’s performance were investigated. It was found that the moisture removal rate remarkably increased with increasing desiccant flow rate and air inlet humidity ratio. The dehumidifier effectiveness increased sharply with increasing desiccant flow rate. Also, it was found that the dehumidifier effectiveness slightly decreased with air humidity ratio.Keywords: air conditioning, dehumidification, desiccant, lithium chloride, tube bundle
Procedia PDF Downloads 144440 Friction Calculation and Simulation of Column Electric Power Steering System
Authors: Seyed Hamid Mirmohammad Sadeghi, Raffaella Sesana, Daniela Maffiodo
Abstract:
This study presents a procedure for friction calculation of column electric power steering (C-EPS) system which affects handling and comfort in driving. The friction losses estimation is obtained from experimental tests and mathematical calculation. Parts in C-EPS mainly involved in friction losses are bearings and worm gear. In the theoretical approach, the gear geometry and Hertz law were employed to measure the normal load and the sliding velocity and contact areas from the worm gears driving conditions. The viscous friction generated in the worm gear was obtained with a theoretical approach and the result was applied to model the friction in the steering system. Finally, by viscous friction coefficient and Coulomb friction coefficient, values of friction in worm gear were calculated. According to the Bearing Company and the characteristics of each bearing, the friction torques due to load and due to speed were calculated. A MATLAB Simulink model for calculating the friction in bearings and worm gear in C-EPS were done and the total friction value was estimated.Keywords: friction, worm gear, column electric power steering system, simulink, bearing, EPS
Procedia PDF Downloads 358439 Spontaneous Message Detection of Annoying Situation in Community Networks Using Mining Algorithm
Authors: P. Senthil Kumari
Abstract:
Main concerns in data mining investigation are social controls of data mining for handling ambiguity, noise, or incompleteness on text data. We describe an innovative approach for unplanned text data detection of community networks achieved by classification mechanism. In a tangible domain claim with humble secrecy backgrounds provided by community network for evading annoying content is presented on consumer message partition. To avoid this, mining methodology provides the capability to unswervingly switch the messages and similarly recover the superiority of ordering. Here we designated learning-centered mining approaches with pre-processing technique to complete this effort. Our involvement of work compact with rule-based personalization for automatic text categorization which was appropriate in many dissimilar frameworks and offers tolerance value for permits the background of comments conferring to a variety of conditions associated with the policy or rule arrangements processed by learning algorithm. Remarkably, we find that the choice of classifier has predicted the class labels for control of the inadequate documents on community network with great value of effect.Keywords: text mining, data classification, community network, learning algorithm
Procedia PDF Downloads 508438 A Robust Optimization Model for Multi-Objective Closed-Loop Supply Chain
Authors: Mohammad Y. Badiee, Saeed Golestani, Mir Saman Pishvaee
Abstract:
In recent years consumers and governments have been pushing companies to design their activities in such a way as to reduce negative environmental impacts by producing renewable product or threat free disposal policy more and more. It is therefore important to focus more accurate to the optimization of various aspect of total supply chain. Modeling a supply chain can be a challenging process due to the fact that there are a large number of factors that need to be considered in the model. The use of multi-objective optimization can lead to overcome those problems since more information is used when designing the model. Uncertainty is inevitable in real world. Considering uncertainty on parameters in addition to use multi-objectives are ways to give more flexibility to the decision making process since the process can take into account much more constraints and requirements. In this paper we demonstrate a stochastic scenario based robust model to cope with uncertainty in a closed-loop multi-objective supply chain. By applying the proposed model in a real world case, the power of proposed model in handling data uncertainty is shown.Keywords: supply chain management, closed-loop supply chain, multi-objective optimization, goal programming, uncertainty, robust optimization
Procedia PDF Downloads 416437 Non-parametric Linear Technique for Measuring the Efficiency of Winter Road Maintenance in the Arctic Area
Authors: Mahshid Hatamzad, Geanette Polanco
Abstract:
Improving the performance of Winter Road Maintenance (WRM) can increase the traffic safety and reduce the cost as well as environmental impacts. This study evaluates the efficiency of WRM technique, named salting, in the Arctic area by using Data Envelopment Analysis (DEA), which is a non-parametric linear method to measure the efficiencies of decision-making units (DMUs) based on handling multiple inputs and multiple outputs at the same time that their associated weights are not known. Here, roads are considered as DMUs for which the efficiency must be determined. The three input variables considered are traffic flow, road area and WRM cost. In addition, the two output variables included are level of safety in the roads and environment impacts resulted from WRM, which is also considered as an uncontrollable factor in the second scenario. The results show the performance of DMUs from the most efficient WRM to the inefficient/least efficient one and this information provides decision makers with technical support and the required suggested improvements for inefficient WRM, in order to achieve a cost-effective WRM and a safe road transportation during wintertime in the Arctic areas.Keywords: environmental impacts, DEA, risk and safety, WRM
Procedia PDF Downloads 118436 Managing Incomplete PSA Observations in Prostate Cancer Data: Key Strategies and Best Practices for Handling Loss to Follow-Up and Missing Data
Authors: Madiha Liaqat, Rehan Ahmed Khan, Shahid Kamal
Abstract:
Multiple imputation with delta adjustment is a versatile and transparent technique for addressing univariate missing data in the presence of various missing mechanisms. This approach allows for the exploration of sensitivity to the missing-at-random (MAR) assumption. In this review, we outline the delta-adjustment procedure and illustrate its application for assessing the sensitivity to deviations from the MAR assumption. By examining diverse missingness scenarios and conducting sensitivity analyses, we gain valuable insights into the implications of missing data on our analyses, enhancing the reliability of our study's conclusions. In our study, we focused on assessing logPSA, a continuous biomarker in incomplete prostate cancer data, to examine the robustness of conclusions against plausible departures from the MAR assumption. We introduced several approaches for conducting sensitivity analyses, illustrating their application within the pattern mixture model (PMM) under the delta adjustment framework. This proposed approach effectively handles missing data, particularly loss to follow-up.Keywords: loss to follow-up, incomplete response, multiple imputation, sensitivity analysis, prostate cancer
Procedia PDF Downloads 89435 A New Complex Method for Integrated Warehouse Design in Aspect of Dynamic and Static Capacity
Authors: Tamas Hartvanyi, Zoltan Andras Nagy, Miklos Szabo
Abstract:
The dynamic and static capacity are two opposing aspect of warehouse design. Static capacity optimization aims to maximize the space-usage for goods storing, while dynamic capacity needs more free place to handling them. They are opposing by the building structure and the area utilization. According to Pareto principle: the 80% of the goods are the 20% of the variety. From the origin of this statement, it worth to store the big amount of same products by fulfill the space with minimal corridors, meanwhile the rest 20% of goods have the 80% variety of the whole range, so there is more important to be fast-reachable instead of the space utilizing, what makes the space fulfillment numbers worse. The warehouse design decisions made in present practice by intuitive and empiric impressions, the planning method is formed to one selected technology, making this way the structure of the warehouse homogeny. Of course the result can’t be optimal for the inhomogeneous demands. A new innovative model based on our research will be introduced in this paper to describe the technic capacities, what makes possible to define optimal cluster of technology. It is able to optimize the space fulfillment and the dynamic operation together with this cluster application.Keywords: warehouse, warehouse capacity, warehouse design method, warehouse optimization
Procedia PDF Downloads 141434 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis
Authors: Yakin Hajlaoui, Richard Labib, Jean-François Plante, Michel Gamache
Abstract:
This study introduces the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs' processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW's ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. it employ gradient descent and backpropagation to train ML-IDW, comparing its performance against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. the results highlight the efficacy of ML-IDW, particularly in handling complex spatial datasets, exhibiting lower mean square error in regression and higher F1 score in classification.Keywords: deep learning, multi-layer neural networks, gradient descent, spatial interpolation, inverse distance weighting
Procedia PDF Downloads 52433 An Analytical Wall Function for 2-D Shock Wave/Turbulent Boundary Layer Interactions
Authors: X. Wang, T. J. Craft, H. Iacovides
Abstract:
When handling the near-wall regions of turbulent flows, it is necessary to account for the viscous effects which are important over the thin near-wall layers. Low-Reynolds- number turbulence models do this by including explicit viscous and also damping terms which become active in the near-wall regions, and using very fine near-wall grids to properly resolve the steep gradients present. In order to overcome the cost associated with the low-Re turbulence models, a more advanced wall function approach has been implemented within OpenFoam and tested together with a standard log-law based wall function in the prediction of flows which involve 2-D shock wave/turbulent boundary layer interactions (SWTBLIs). On the whole, from the calculation of the impinging shock interaction, the three turbulence modelling strategies, the Lauder-Sharma k-ε model with Yap correction (LS), the high-Re k-ε model with standard wall function (SWF) and analytical wall function (AWF), display good predictions of wall-pressure. However, the SWF approach tends to underestimate the tendency of the flow to separate as a result of the SWTBLI. The analytical wall function, on the other hand, is able to reproduce the shock-induced flow separation and returns predictions similar to those of the low-Re model, using a much coarser mesh.Keywords: SWTBLIs, skin-friction, turbulence modeling, wall function
Procedia PDF Downloads 346432 Deployment of Electronic Healthcare Records and Development of Big Data Analytics Capabilities in the Healthcare Industry: A Systematic Literature Review
Authors: Tigabu Dagne Akal
Abstract:
Electronic health records (EHRs) can help to store, maintain, and make the appropriate handling of patient histories for proper treatment and decision. Merging the EHRs with big data analytics (BDA) capabilities enable healthcare stakeholders to provide effective and efficient treatments for chronic diseases. Though there are huge opportunities and efforts that exist in the deployment of EMRs and the development of BDA, there are challenges in addressing resources and organizational capabilities that are required to achieve the competitive advantage and sustainability of EHRs and BDA. The resource-based view (RBV), information system (IS), and non- IS theories should be extended to examine organizational capabilities and resources which are required for successful data analytics in the healthcare industries. The main purpose of this study is to develop a conceptual framework for the development of healthcare BDA capabilities based on past works so that researchers can extend. The research question was formulated for the search strategy as a research methodology. The study selection was made at the end. Based on the study selection, the conceptual framework for the development of BDA capabilities in the healthcare settings was formulated.Keywords: EHR, EMR, Big data, Big data analytics, resource-based view
Procedia PDF Downloads 131431 Improving Alginate Bioink by Recombinant Spider-Silk Biopolymer
Authors: Dean Robinson, Miriam Gublebank, Ella Sklan, Tali Tavor Re'em
Abstract:
Alginate, a natural linear polysaccharide polymer extracted from brown seaweed, is extensively applied due to its biocompatibility, all- aqueous ease of handling, and relatively low costs. Alginate easily forms a hydrogel when crosslinked with a divalent ion, such as calcium. However, Alginate hydrogel holds low mechanical properties and is cell-inert. To overcome these drawbacks and to improve alginate as a bio-ink for bioprinting, we produced a new alginate matrix combined with spider silk, one of the most resilient, elastic, strong materials known to men. Recombinant spider silk biopolymer has a sponge-like structure and is known to be biocompatible and non-immunogenic. Our results indicated that combining synthetic spider-silk into bio-printed cell-seeded alginate hydrogels resulted in improved properties compared to alginate: improved mechanical properties of the matrix, achieving a tunable gel viscosity and high printability, alongside prolonged and higher cell viability in culture, probably due to the improved cell-matrix interactions. The new bio-ink was then used for bilayer bioprinting of epithelial and stromal endometrial cells. Such a co-culture model will be used for the formation of the complex endometrial tissue for studying the embryo implantation process.Keywords: cell culture, tissue engineering, spider silk, alginate, bioprinting
Procedia PDF Downloads 197430 A Real Time Monitoring System of the Supply Chain Conditions, Products and Means of Transport
Authors: Dimitris E. Kontaxis, George Litainas, Dimitris P. Ptochos
Abstract:
Real-time monitoring of the supply chain conditions and procedures is a critical element for the optimal coordination and safety of the deliveries, as well as for the minimization of the delivery time and cost. Real-time monitoring requires IoT data streams, which are related to the conditions of the products and the means of transport (e.g., location, temperature/humidity conditions, kinematic state, ambient light conditions, etc.). These streams are generated by battery-based IoT tracking devices, equipped with appropriate sensors, and are transmitted to a cloud-based back-end system. Proper handling and processing of the IoT data streams, using predictive and artificial intelligence algorithms, can provide significant and useful results, which can be exploited by the supply chain stakeholders in order to enhance their financial benefits, as well as the efficiency, security, transparency, coordination, and sustainability of the supply chain procedures. The technology, the features, and the characteristics of a complete, proprietary system, including hardware, firmware, and software tools -developed in the context of a co-funded R&D programme- are addressed and presented in this paper.Keywords: IoT embedded electronics, real-time monitoring, tracking device, sensor platform
Procedia PDF Downloads 177429 Opinions of Individuals from Different Age and Income Brackets on the Duterte Administration's Overall Performance
Authors: Jose Carlos Montemayor, Kendrick Thomas Angelo Santos
Abstract:
Filipinos have been divided on President Rodrigo Duterte’s leadership ever since his election in 2016. This study aimed to gain a thorough, in-depth understanding of the opinions of Filipinos from different age and income brackets on these issues in order to address the lack of studies analysing the current Philippine political landscape. An interview tackling relevant national issues were conducted with twelve respondents from the intersections of four age groups and three income brackets. The government’s handling of some issues received mixed opinions, some had neutral viewpoints, while others had more unfavorable ones. The responses differed on three levels: (1) the general stance on an issue; (2) the strength of a stance; and (3) the factoring in of an issue in forming an overall perception on the administration’s performance. Contrary to previous studies on political thought, opinions varied greatly such that no unique set of viewpoints could be attributed to any of the defined age or income groups. These results will be most useful to political science researchers, political analysts, and candidates shaping their platforms for the upcoming elections. Future studies are recommended to tackle more national issues and to consider other factors that may affect political opinions and behavior.Keywords: age groups, opinion formation, socioeconomic brackets, Philippine politics, Rodrigo Duterte
Procedia PDF Downloads 137428 Enhancing the Performance of Bug Reporting System by Handling Duplicate Reporting Reports: Artificial Intelligence Based Mantis
Authors: Afshan Saad, Muhammad Saad, Shah Muhammad Emaduddin
Abstract:
Bug reporting systems are most important tool that guides regarding different maintenance activities in software engineering. Duplicate bug reports which describe the bugs and issues in bug reporting system repository increases processing time of bug triage that monitors all such activities and software programmers who are working and spending time on reports which were assigned by triage. These reports can reveal imperfections and degrade software quality. As there is a number of the potential duplicate bug reports increases, the number of bug reports in bug repository increases. Identifying duplicate bug reports help in decreasing development work load in fixing defects. However, it is difficult to manually identify all possible duplicates because of the huge number of already reported bug reports. In this paper, an artificial intelligence based system using Mantis is proposed to automatically detect duplicate bug reports. When new bugs are submitted to repository triages will mark it with a tag. It will investigate that whether it is a duplicate of an existing bug report by matching or not. Reports with duplicate tags will be eliminated from the repository which not only will improve the performance of the system but can also save cost and effort waste on bug triage and finding the duplicate bug.Keywords: bug tracking, triager, tool, quality assurance
Procedia PDF Downloads 194427 Simulating Economic Order Quantity and Reorder Point Policy for a Repairable Items Inventory System
Authors: Mojahid F. Saeed Osman
Abstract:
Repairable items inventory system is a management tool used to incorporate all information concerning inventory levels and movements for repaired and new items. This paper presents development of an effective simulation model for managing the inventory of repairable items for a production system where production lines send their faulty items to a repair shop considering the stochastic failure behavior and repair times. The developed model imitates the process of handling the on-hand inventory of repaired items and the replenishment of the inventory of new items using Economic Order Quantity and Reorder Point ordering policy in a flexible and risk-free environment. We demonstrate the appropriateness and effectiveness of the proposed simulation model using an illustrative case problem. The developed simulation model can be used as a reliable tool for estimating a healthy on-hand inventory of new and repaired items, backordered items, and downtime due to unavailability of repaired items, and validating and examining Economic Order Quantity and Reorder Point ordering policy, which would further be compared with other ordering strategies as future work.Keywords: inventory system, repairable items, simulation, maintenance, economic order quantity, reorder point
Procedia PDF Downloads 144426 Blockchain for IoT Security and Privacy in Healthcare Sector
Authors: Umair Shafique, Hafiz Usman Zia, Fiaz Majeed, Samina Naz, Javeria Ahmed, Maleeha Zainab
Abstract:
The Internet of Things (IoT) has become a hot topic for the last couple of years. This innovative technology has shown promising progress in various areas, and the world has witnessed exponential growth in multiple application domains. Researchers are working to investigate its aptitudes to get the best from it by harnessing its true potential. But at the same time, IoT networks open up a new aspect of vulnerability and physical threats to data integrity, privacy, and confidentiality. It's is due to centralized control, data silos approach for handling information, and a lack of standardization in the IoT networks. As we know, blockchain is a new technology that involves creating secure distributed ledgers to store and communicate data. Some of the benefits include resiliency, integrity, anonymity, decentralization, and autonomous control. The potential for blockchain technology to provide the key to managing and controlling IoT has created a new wave of excitement around the idea of putting that data back into the hands of the end-users. In this manuscript, we have proposed a model that combines blockchain and IoT networks to address potential security and privacy issues in the healthcare domain. Then we try to describe various application areas, challenges, and future directions in the healthcare sector where blockchain platforms merge with IoT networks.Keywords: IoT, blockchain, cryptocurrency, healthcare, consensus, data
Procedia PDF Downloads 180425 Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design
Authors: Vahid Nademi
Abstract:
In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.Keywords: blood glucose monitoring, insulin pump, predictive control, optimization
Procedia PDF Downloads 136424 Analysis of Cyber Activities of Potential Business Customers Using Neo4j Graph Databases
Authors: Suglo Tohari Luri
Abstract:
Data analysis is an important aspect of business performance. With the application of artificial intelligence within databases, selecting a suitable database engine for an application design is also very crucial for business data analysis. The application of business intelligence (BI) software into some relational databases such as Neo4j has proved highly effective in terms of customer data analysis. Yet what remains of great concern is the fact that not all business organizations have the neo4j business intelligence software applications to implement for customer data analysis. Further, those with the BI software lack personnel with the requisite expertise to use it effectively with the neo4j database. The purpose of this research is to demonstrate how the Neo4j program code alone can be applied for the analysis of e-commerce website customer visits. As the neo4j database engine is optimized for handling and managing data relationships with the capability of building high performance and scalable systems to handle connected data nodes, it will ensure that business owners who advertise their products at websites using neo4j as a database are able to determine the number of visitors so as to know which products are visited at routine intervals for the necessary decision making. It will also help in knowing the best customer segments in relation to specific goods so as to place more emphasis on their advertisement on the said websites.Keywords: data, engine, intelligence, customer, neo4j, database
Procedia PDF Downloads 193423 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks
Authors: Radhika Ranjan Roy
Abstract:
Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve
Procedia PDF Downloads 78422 A Thermodynamic Study of Parameters that Affect the Nitration of Glycerol with Nitric Acid
Authors: Erna Astuti, Supranto, Rochmadi, Agus Prasetya
Abstract:
Biodiesel production from vegetable oil will produce glycerol as by-product about 10% of the biodiesel production. The amount of glycerol that was produced needed alternative way to handling immediately so as to not become the waste that polluted environment. One of the solutions was to process glycerol to polyglycidyl nitrate (PGN). PGN is synthesized from glycerol by three-step reactions i.e. nitration of glycerol, cyclization of 13- dinitroglycerine and polymerization of glycosyl nitrate. Optimum condition of nitration of glycerol with nitric acid has not been known. Thermodynamic feasibility should be done before run experiments in the laboratory. The aim of this study was to determine the parameters those affect nitration of glycerol and nitric acid and chose the operation condition. Many parameters were simulated to verify its possibility to experiment under conditions which would get the highest conversion of 1, 3-dinitroglycerine and which was the ideal condition to get it. The parameters that need to be studied to obtain the highest conversion of 1, 3-dinitroglycerine were mol ratio of nitric acid/glycerol, reaction temperature, mol ratio of glycerol/dichloromethane and pressure. The highest conversion was obtained in the range of mol ratio of nitric acid /glycerol between 2/1 – 5/1, reaction temperature of 5-25o C and pressure of 1 atm. The parameters that need to be studied further to obtain the highest conversion of 1.3 DNG are mol ratio of nitric acid/glycerol and reaction temperature.Keywords: Nitration, glycerol, thermodynamic, optimum condition
Procedia PDF Downloads 316421 Determinants for Transportation Services in Addis Ababa City
Authors: Yared Yitagesu Tilahun
Abstract:
Every nation, developed or developing, relies on transportation, but Addis Abeba City's transportation service is impacted by a number of variables. The current study's objectives are to determine the factors that influence transportation and gauge consumer satisfaction with such services in Addis Abeba. Customers and employees of Addis Ababa's transportation service authority would be the study's target group. 40 workers of the authority would be counted as part of the 310 000 clients that make up the population of the searcher service. Using a straightforward random selection technique, the researcher only chose 99 customers and 28 staff from this enormous group due to the considerable cost and time involved. Data gathering and analysis options included both quantitative and qualitative approaches. The results of this poll show that young people between the ages of 18 and 25 make up the majority of respondents (51.6%). The majority of employees and customers indicated that they are not satisfied with Addis Ababa's overall transportation system. The Addis Abeba Transportation Authority prioritizes client happiness by providing fair service. The company should have a system in place for managing time, resources, and people effectively. It should also provide employees the opportunity to contribute to client handling policies.Keywords: customer satisfaction, transportation, services, determinants
Procedia PDF Downloads 77420 The Reef as Multiple: Coral Reefs between Exploitation and Protection along the Mexican Riviera Maya
Authors: Laura Otto
Abstract:
Sargasso algae currently threatens both livelihoods and marine eco systems along the Riviera Maya in Mexico. While the area was previously known for its white beaches, pristine waters, and intact, colorful reefs, the algae has turned the beaches into ‘stinky stretches of sand,’ made the water brown, and has led to reef degradation causing coral colonies to die off in vast amounts. Drawing on ethnographic research in the area, this paper shows how the reef was exploited for tourism before the Sargasso algae landed, and reef protection played a minor role among hoteliers, tourists, and tour operators. However, since Sargasso began arriving in large quantities, the reef has taken on new significance. Both natural science research and the everyday handling of Sargasso along the coast show that an intact reef provides a natural barrier for the algae and keeps them from reaching the beaches. Clean beaches are important to various local actors–among them, hotel operators, tourists, environmentalists – and against the backdrop of beach commodification, reefs are now taking on new meaning. The paper consequently discusses the commodification of beaches as more-than-human entanglements and illuminates which new human-environment relationships are currently emerging in the Anthropocene.Keywords: anthropocene, human-environment-relations, fieldwork, mexico
Procedia PDF Downloads 219419 Exploring Problem-Based Learning and University-Industry Collaborations for Fostering Students’ Entrepreneurial Skills: A Qualitative Study in a German Urban Setting
Authors: Eylem Tas
Abstract:
This empirical study aims to explore the development of students' entrepreneurial skills through problem-based learning within the context of university-industry collaborations (UICs) in curriculum co-design and co-delivery (CDD). The research question guiding this study is: "How do problem-based learning and university-industry collaborations influence the development of students' entrepreneurial skills in the context of curriculum co-design and co-delivery?” To address this question, the study was conducted in a big city in Germany and involved interviews with stakeholders from various industries, including the private sector, government agencies (govt), and non-governmental organizations (NGOs). These stakeholders had established collaborative partnerships with the targeted university for projects encompassing entrepreneurial development aspects in CDD. The study sought to gain insights into the intricacies and subtleties of UIC dynamics and their impact on fostering entrepreneurial skills. Qualitative content analysis, based on Mayring's guidelines, was employed to analyze the interview transcriptions. Through an iterative process of manual coding, 442 codes were generated, resulting in two main sections: "the role of problem-based learning and UIC in fostering entrepreneurship" and "challenges and requirements of problem-based learning within UIC for systematical entrepreneurship development.” The chosen experimental approach of semi-structured interviews was justified by its capacity to provide in-depth perspectives and rich data from stakeholders with firsthand experience in UICs in CDD. By enlisting participants with diverse backgrounds, industries, and company sizes, the study ensured a comprehensive and heterogeneous sample, enhancing the credibility of the findings. The first section of the analysis delved into problem-based learning and entrepreneurial self-confidence to gain a deeper understanding of UIC dynamics from an industry standpoint. It explored factors influencing problem-based learning, alignment of students' learning styles and preferences with the experiential learning approach, specific activities and strategies, and the role of mentorship from industry professionals in fostering entrepreneurial self-confidence. The second section focused on various interactions within UICs, including communication, knowledge exchange, and collaboration. It identified key elements, patterns, and dynamics of interaction, highlighting challenges and limitations. Additionally, the section emphasized success stories and notable outcomes related to UICs' positive impact on students' entrepreneurial journeys. Overall, this research contributes valuable insights into the dynamics of UICs and their role in fostering students' entrepreneurial skills. UICs face challenges in communication and establishing a common language. Transparency, adaptability, and regular communication are vital for successful collaboration. Realistic expectation management and clearly defined frameworks are crucial. Responsible data handling requires data assurance and confidentiality agreements, emphasizing the importance of trust-based relationships when dealing with data sharing and handling issues. The identified key factors and challenges provide a foundation for universities and industrial partners to develop more effective UIC strategies for enhancing students' entrepreneurial capabilities and preparing them for success in today's digital age labor market. The study underscores the significance of collaborative learning and transparent communication in UICs for entrepreneurial development in CDD.Keywords: collaborative learning, curriculum co-design and co-delivery, entrepreneurial skills, problem-based learning, university-industry collaborations
Procedia PDF Downloads 60418 Inverse Heat Conduction Analysis of Cooling on Run-Out Tables
Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi
Abstract:
In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.Keywords: inverse analysis, function specification, neural net works, particle swarm, run-out table
Procedia PDF Downloads 240417 Impact of Marketing towards Behavior Intention
Authors: Sathyamangalam Rangasamy Guru Prasath
Abstract:
Due to the increasing homogeneity in product offerings, the attendant services provided are emerging as a key differentiator in the mind of the consumers. Services marketing are a sub field of marketing which covers the marketing of both goods and services. Service marketing differs from product marketing due to the face that services are intangible and typically require personal interaction with the customer. Relationships are a key factor when it comes to the marketing of services. The role of interpersonal relationships distinguishes service and product marketing in strategic vision and organizational considerations. This paper explores some of the trends in service marketing as they relate to strategic vision, operational and organizational changes, and marketing tactics. The presence of the customer in the service facility means that capacity management becomes an important driver of the firm’s profitability service marketing is a process from the organization’s point of view, but an experience from the customer’s perspective. The quality of the experience is a function of the careful design of customer service processes, adoption of standardized procedures, rigorous management of service quality, high standards of training and automation. Services marketing helps to ensure that these processes are designed from the customer’s perspective. Services marketing includes customer loyalty, managing relationships, complaint handling, improving service quality and productivity of service operations, and how to become a service leader in your industry.Keywords: customer perspective, product marketing, service marketing, rigorous management
Procedia PDF Downloads 370416 Marketing of Global Business Systems Technologies as a Panacea to Unemployment Problem in Ogun State, Nigeria
Authors: Oluwatosin Oyewale
Abstract:
This research work seeks to take technology used for business systems as a product that requires marketing activities. Technology is invented and innovated upon in developed countries and are introduced into Africa through marketing activities. Businesses in Africa now adopt this technology for global competitiveness and hitherto unemployed but educationally advantaged people are trained in handling and utilising the technology. The aim of this study is to examine how marketing activities make this technology help in solving the unemployment problem in Africa. The areas of study are both the premier local government and the local government of the industrial haven in Ogun State, Nigeria. Area or cluster sampling technique was employed and Questionnaires were administered to two hundred respondents in the areas of study. Findings revealed that marketing has contributed to the promotion of technology; thereby making businesses globally competitive. In addition, technology has helped in reducing unemployment in developing countries. Recommendations are that training programmes that will address existing knowledge gap in technology utilisation needs to be conducted for the labour force in Africa. Moreover, adequate power supply that will aid effective utilisation of these technologies needs to be put in place by the government in these various African countries.Keywords: marketing, unemployment, problem, panacea
Procedia PDF Downloads 220