Search results for: inference extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2285

Search results for: inference extraction

2015 Removal of Nickel and Vanadium from Crude Oil by Using Solvent Extraction and Electrochemical Process

Authors: Aliya Kurbanova, Nurlan Akhmetov, Abilmansur Yeshmuratov, Yerzhigit Sugurbekov, Ramiz Zulkharnay, Gulzat Demeuova, Murat Baisariyev, Gulnar Sugurbekova

Abstract:

Last decades crude oils have tended to become more challenge to process due to increasing amounts of sour and heavy crude oils. Some crude oils contain high vanadium and nickel content, for example Pavlodar LLP crude oil, which contains more than 23.09 g/t nickel and 58.59 g/t vanadium. In this study, we used two types of metal removing methods such as solvent extraction and electrochemical. The present research is conducted for comparative analysis of the deasphalting with organic solvents (cyclohexane, carbon tetrachloride, chloroform) and electrochemical method. Applying the cyclic voltametric analysis (CVA) and Inductively coupled plasma mass spectrometry (ICP MS), these mentioned types of metal extraction methods were compared in this paper. Maximum efficiency of deasphalting, with cyclohexane as the solvent, in Soxhlet extractor was 66.4% for nickel and 51.2% for vanadium content from crude oil. Percentage of Ni extraction reached maximum of approximately 55% by using the electrochemical method in electrolysis cell, which was developed for this research and consists of three sections: oil and protonating agent (EtOH) solution between two conducting membranes which divides it from two capsules of 10% sulfuric acid and two graphite electrodes which cover all three parts in electrical circuit. Ions of metals pass through membranes and remain in acid solutions. The best result was obtained in 60 minutes with ethanol to oil ratio 25% to 75% respectively, current fits into the range from 0.3A to 0.4A, voltage changed from 12.8V to 17.3V.

Keywords: demetallization, deasphalting, electrochemical removal, heavy metals, petroleum engineering, solvent extraction

Procedia PDF Downloads 326
2014 An Ontology-Based Framework to Support Asset Integrity Modeling: Case Study of Offshore Riser Integrity

Authors: Mohammad Sheikhalishahi, Vahid Ebrahimipour, Amir Hossein Radman-Kian

Abstract:

This paper proposes an Ontology framework for knowledge modeling and representation of the equipment integrity process in a typical oil and gas production plant. Our aim is to construct a knowledge modeling that facilitates translation, interpretation, and conversion of human-readable integrity interpretation into computer-readable representation. The framework provides a function structure related to fault propagation using ISO 14224 and ISO 15926 OWL-Lite/ Resource Description Framework (RDF) to obtain a generic system-level model of asset integrity that can be utilized in the integrity engineering process during the equipment life cycle. It employs standard terminology developed by ISO 15926 and ISO 14224 to map textual descriptions of equipment failure and then convert it to a causality-driven logic by semantic interpretation and computer-based representation using Lite/RDF. The framework applied for an offshore gas riser. The result shows that the approach can cross-link the failure-related integrity words and domain-specific logic to obtain a representation structure of equipment integrity with causality inference based on semantic extraction of inspection report context.

Keywords: asset integrity modeling, interoperability, OWL, RDF/XML

Procedia PDF Downloads 188
2013 Chemical Partitioning of Trace Metals in Sub-Surface Sediments of Lake Acigol, Denizli, Turkey

Authors: M. Budakoglu, M. Karaman, D. Kiran, Z. Doner, B. Zeytuncu, B. Tanç, M. Kumral

Abstract:

Lake Acıgöl is one of the large saline lacustrine environment in Turkey. Eleven trace metals (Cr, Mn, Fe, Al, Co, Ni, Cu, Zn, Cd, Pb and As) in 9 surface and subsurface sediment samples from the Lake Acıgöl were analyzed with the bulk and sequential extraction analysis methods by ICP-MS to obtain the metal distribution patterns in this extreme environment. Five stepped sequential extraction technique (1- exchangeable, 2- bond to carbonates, 3- bond to iron and manganese oxides/hydroxides, 4- bond to organic matter and sulphides, and 5- residual fraction incorporated into clay and silicate mineral lattices) was used to characterize the various forms of metals in the <63μ size sediments. The metal contents (ppm) and their percentages for each extraction step were reported and compared with the results obtained from the total digestion. Results indicate that sum of the four fraction are in good agreement with the total digestion results of Ni, Cd, As, Zn, Cu and Fe with the satisfactory recoveries (94.04–109.0%) and the method used is reliable and repeatable for these elements. It was found that there were high correlations between Fe vs. Ni loads in the fraction of F2 and F4 with R2= 0,91 and 0,81, respectively. Comparison of totally 135 chemical analysis results in three sampling location and for 5 fraction between Fe-Co, Co-Ni and Fe-Ni element couples were presented elevated correlations with R2=0,98, 0,92 and 0,91, respectively.

Keywords: Lake Acigol, sequancial extraction, recent lake sediment, geochemical speciation of heavy metals

Procedia PDF Downloads 413
2012 Counter-Current Extraction of Fish Oil and Toxic Elements from Fish Waste Using Supercritical Carbon Dioxide

Authors: Parvaneh Hajeb, Shahram Shakibazadeh, Md. Zaidul Islam Sarker

Abstract:

High-quality fish oil for human consumption requires low levels of toxic elements. The aim of this study was to develop a method to extract oil from fish wastes with the least toxic elements contamination. Supercritical fluid extraction (SFE) was applied to detoxify fish oils from toxic elements. The SFE unit used consisted of an intelligent HPLC pump equipped with a cooling jacket to deliver CO2. The freeze-dried fish waste sample was extracted by heating in a column oven. Under supercritical conditions, the oil dissolved in CO2 was separated from the supercritical phase using pressure reduction. The SFE parameters (pressure, temperature, CO2 flow rate, and extraction time) were optimized using response surface methodology (RSM) to extract the highest levels of toxic elements. The results showed that toxic elements in fish oil can be reduced using supercritical CO2 at optimum pressure 40 MPa, temperature 61 ºC, CO2 flow rate 3.8 MPa, and extraction time 4.25 hr. There were significant reductions in the mercury (98.2%), cadmium (98.9%), arsenic (96%), and lead contents (99.2%) of the fish oil. The fish oil extracted using this method contained elements at levels that were much lower than the accepted limits of 0.1 μg/g. The reduction of toxic elements using the SFE method was more efficient than that of the conventional methods due to the high selectivity of supercritical CO2 for non-polar compounds.

Keywords: food safety, toxic elements, fish oil, supercritical carbon dioxide

Procedia PDF Downloads 423
2011 Vaccination Coverage and Its Associated Factors in India: An ML Approach to Understand the Hierarchy and Inter-Connections

Authors: Anandita Mitro, Archana Srivastava, Bidisha Banerjee

Abstract:

The present paper attempts to analyze the hierarchy and interconnection of factors responsible for the uptake of BCG vaccination in India. The study uses National Family Health Survey (NFHS-5) data which was conducted during 2019-21. The univariate logistic regression method is used to understand the univariate effects while the interconnection effects have been studied using the Categorical Inference Tree (CIT) which is a non-parametric Machine Learning (ML) model. The hierarchy of the factors is further established using Conditional Inference Forest which is an extension of the CIT approach. The results suggest that BCG vaccination coverage was influenced more by system-level factors and awareness than education or socio-economic status. Factors such as place of delivery, antenatal care, and postnatal care were crucial, with variations based on delivery location. Region-specific differences were also observed which could be explained by the factors. Awareness of the disease was less impactful along with the factor of wealth and urban or rural residence, although awareness did appear to substitute for inadequate ANC. Thus, from the policy point of view, it is revealed that certain subpopulations have less prevalence of vaccination which implies that there is a need for population-specific policy action to achieve a hundred percent coverage.

Keywords: vaccination, NFHS, machine learning, public health

Procedia PDF Downloads 59
2010 Ureteral Stents with Extraction Strings: Patient-Reported Outcomes

Authors: Rammah Abdlbagi, Similoluwa Biyi, Aakash Pai

Abstract:

Introduction: Short-term ureteric stents are commonly placed after ureteroscopy procedures. The removal usually entails having a flexible cystoscopy, which entails a further invasive procedure. There are often delays in removing the stent as departments have limited cystoscopy availability. However, if stents with extraction strings are used, the patient or a clinician can remove them. The aim of the study is to assess the safety and effectiveness of the use of a stent with a string. Method: A retrospective, single-institution study was conducted over a three-month period. Twenty consecutive patients had ureteric stents with string insertion. Ten of the patients had a stent removal procedure previously with flexible cystoscopy. A validated questionnaire was used to assess outcomes. Primary outcomes included: dysuria, hematuria, urinary frequency, and disturbance of the patient’s daily activities. Secondary outcomes included pain experience during the stent removal. Result: Fifteen patients (75%) experienced hematuria and frequency. Two patients experienced pain and discomfort during the stent removal (10%). Two patients had experienced a disturbance in their daily activity (10%). All patients who had stent removal before using flexible cystoscopy preferred the removal of the stent using a string. None of the patients had stent displacement. The median stent dwell time was five days. Conclusion: Patient reported outcomes measures for the indwelling period of a stent with extraction string are equivalent to the published data on stents. Extraction strings mean that the stent dwell time can be reduced. The removal of the stent on extraction strings is more tolerable than the conventional stent.

Keywords: ureteric stent, string flexible cystoscopy, stent symptoms, validated questionnaire

Procedia PDF Downloads 94
2009 Evaluation of Methods for Simultaneous Extraction and Purification of Fungal and Bacterial DNA from Vaginal Swabs

Authors: Vanessa De Carvalho, Chad MacPherson, Julien Tremblay, Julie Champagne, Stephanie-Anne Girard

Abstract:

Background: The interactions between bacteria and fungi in the human vaginal microbiome are fundamental to the concept of health and disease. The means by which the microbiota and mycobiota interact is still poorly understood and further studies are necessary to properly characterize this complex ecosystem. The aim of this study was to select a DNA extraction method capable of recovering high qualities of fungal and bacterial DNA from a single vaginal swab. Methods: 11 female volunteers ( ≥ 20 to < 55 years old) self-collected vaginal swabs in triplicates. Three commercial extraction kits: Masterpure Yeast Purification kit (Epicenter), PureLink™ Microbiome DNA Purification kit (Invitrogen), and Quick-DNA™ Fecal/Soil Microbe Miniprep kit (Zymo) were evaluated on the ability to recover fungal and bacterial DNA simultaneously. The extraction kits were compared on the basis of recovery, yield, purity, and the community richness of bacterial (16S rRNA - V3-V4 region) and fungal (ITS1) microbiota composition by Illumina MiSeq amplicon sequencing. Results: Recovery of bacterial DNA was achieved with all three kits while fungal DNA was only consistently recovered with Masterpure Yeast Purification kit (yield and purity). Overall, all kits displayed similar microbiota profiles for the top 20 OTUs; however, Quick-DNA™ Fecal/Soil Microbe Miniprep kit (Zymo) showed more species richness than the other two kits. Conclusion: In the present study, Masterpure Yeast purification kit proved to be a good candidate for purification of high quality fungal and bacterial DNA simultaneously. These findings have potential benefits that could be applied in future vaginal microbiome research. Whilst the use of a single extraction method would lessen the burden of multiple swab sampling, decrease laboratory workload and off-set costs associated with multiple DNA extractions, thoughtful consideration must be taken when selecting an extraction kit depending on the desired downstream application.

Keywords: bacterial vaginosis, DNA extraction, microbiota, mycobiota, vagina, vulvovaginal candidiasis, women’s health

Procedia PDF Downloads 201
2008 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset

Procedia PDF Downloads 353
2007 Extraction and Analysis of Anthocyanins Contents from Different Stage Flowers of the Orchids Dendrobium Hybrid cv. Ear-Sakul

Authors: Orose Rugchati, Khumthong Mahawongwiriya

Abstract:

Dendrobium hybrid cv. Ear-Sakul has become one of the important commercial commodities in Thailand agricultural industry worldwide, either as potted plants or as cut flowers due to the attractive color produced in flower petals. Anthocyanins are the main flower pigments and responsible for the natural attractive display of petal colors. These pigments play an important role in functionality, such as to attract animal pollinators, classification, and grading of these orchids. Dendrobium hybrid cv. Ear-Sakul has been collected from local area farm in different stage flowers (F1, F2-F5, and F6). Anthocyanins pigment were extracted from the fresh flower by solvent extraction (MeOH–TFA 99.5:0.5v/v at 4ºC) and purification with ethyl acetate. The main anthocyanins components are cyanidin, pelargonidin, and delphinidin. Pure anthocyanin contents were analysis by UV-Visible spectroscopy technique at λ max 535, 520 and 546 nm respectively. The anthocyanins contents were converted in term of monomeric anthocyanins pigment (mg/L). The anthocyanins contents of all sample were compared with standard pigments cyanidin, pelargonidin and delphinidin. From this experiment is a simple extraction and analysis anthocyanins content in different stage of flowers results shown that monomeric anthocyanins pigment contents of different stage flowers (F1, F2-F5 and F6 ): cyanidin – 3 – glucoside (mg/l) are 0.85+0.08, 24.22+0.12 and 62.12+0.6; Pelargonidin 3,5-di- glucoside(mg/l) 10.37+0.12, 31.06+0.8 and 81.58+ 0.5; Delphinidin (mg/l) 6.34+0.17, 18.98+0.56 and 49.87+0.7; and the appearance of extraction pure anthocyanins in L(a, b): 2.71(1.38, -0.48), 1.06(0.39,-0.66) and 2.64(2.71,-3.61) respectively. Dendrobium Hybrid cv. Ear-Sakul could be used as a source of anthocyanins by simple solvent extraction and stage of flowers as a guideline for the prediction amount of main anthocyanins components are cyanidin, pelargonidin, and delphinidin could be application and development in quantities, and qualities with the advantage for food pharmaceutical and cosmetic industries.

Keywords: analysis, anthocyanins contents, different stage flowers, Dendrobium Hybrid cv. Ear-Sakul

Procedia PDF Downloads 150
2006 Learning to Translate by Learning to Communicate to an Entailment Classifier

Authors: Szymon Rutkowski, Tomasz Korbak

Abstract:

We present a reinforcement-learning-based method of training neural machine translation models without parallel corpora. The standard encoder-decoder approach to machine translation suffers from two problems we aim to address. First, it needs parallel corpora, which are scarce, especially for low-resource languages. Second, it lacks psychological plausibility of learning procedure: learning a foreign language is about learning to communicate useful information, not merely learning to transduce from one language’s 'encoding' to another. We instead pose the problem of learning to translate as learning a policy in a communication game between two agents: the translator and the classifier. The classifier is trained beforehand on a natural language inference task (determining the entailment relation between a premise and a hypothesis) in the target language. The translator produces a sequence of actions that correspond to generating translations of both the hypothesis and premise, which are then passed to the classifier. The translator is rewarded for classifier’s performance on determining entailment between sentences translated by the translator to disciple’s native language. Translator’s performance thus reflects its ability to communicate useful information to the classifier. In effect, we train a machine translation model without the need for parallel corpora altogether. While similar reinforcement learning formulations for zero-shot translation were proposed before, there is a number of improvements we introduce. While prior research aimed at grounding the translation task in the physical world by evaluating agents on an image captioning task, we found that using a linguistic task is more sample-efficient. Natural language inference (also known as recognizing textual entailment) captures semantic properties of sentence pairs that are poorly correlated with semantic similarity, thus enforcing basic understanding of the role played by compositionality. It has been shown that models trained recognizing textual entailment produce high-quality general-purpose sentence embeddings transferrable to other tasks. We use stanford natural language inference (SNLI) dataset as well as its analogous datasets for French (XNLI) and Polish (CDSCorpus). Textual entailment corpora can be obtained relatively easily for any language, which makes our approach more extensible to low-resource languages than traditional approaches based on parallel corpora. We evaluated a number of reinforcement learning algorithms (including policy gradients and actor-critic) to solve the problem of translator’s policy optimization and found that our attempts yield some promising improvements over previous approaches to reinforcement-learning based zero-shot machine translation.

Keywords: agent-based language learning, low-resource translation, natural language inference, neural machine translation, reinforcement learning

Procedia PDF Downloads 128
2005 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)

Procedia PDF Downloads 218
2004 Field-Programmable Gate Arrays Based High-Efficiency Oriented Fast and Rotated Binary Robust Independent Elementary Feature Extraction Method Using Feature Zone Strategy

Authors: Huang Bai-Cheng

Abstract:

When deploying the Oriented Fast and Rotated Binary Robust Independent Elementary Feature (BRIEF) (ORB) extraction algorithm on field-programmable gate arrays (FPGA), the access of global storage for 31×31 pixel patches of the features has become the bottleneck of the system efficiency. Therefore, a feature zone strategy has been proposed. Zones are searched as features are detected. Pixels around the feature zones are extracted from global memory and distributed into patches corresponding to feature coordinates. The proposed FPGA structure is targeted on a Xilinx FPGA development board of Zynq UltraScale+ series, and multiple datasets are tested. Compared with the streaming pixel patch extraction method, the proposed architecture obtains at least two times acceleration consuming extra 3.82% Flip-Flops (FFs) and 7.78% Look-Up Tables (LUTs). Compared with the non-streaming one, the proposed architecture saves 22.3% LUT and 1.82% FF, causing a latency of only 0.2ms and a drop in frame rate for 1. Compared with the related works, the proposed strategy and hardware architecture have the superiority of keeping a balance between FPGA resources and performance.

Keywords: feature extraction, real-time, ORB, FPGA implementation

Procedia PDF Downloads 122
2003 SFE as a Superior Technique for Extraction of Eugenol-Rich Fraction from Cinnamomum tamala Nees (Bay Leaf) - Process Analysis and Phytochemical Characterization

Authors: Sudip Ghosh, Dipanwita Roy, Dipan Chatterjee, Paramita Bhattacharjee, Satadal Das

Abstract:

Highest yield of eugenol-rich fractions from Cinnamomum tamala (bay leaf) leaves were obtained by supercritical carbon dioxide (SC-CO2), compared to hydro-distillation, organic solvents, liquid CO2 and subcritical CO2 extractions. Optimization of SC-CO2 extraction parameters was carried out to obtain an extract with maximum eugenol content. This was achieved using a sample size of 10 g at 55°C, 512 bar after 60 min at a flow rate of 25.0 cm3/sof gaseous CO2. This extract has the best combination of phytochemical properties such as phenolic content (1.77 mg gallic acid/g dry bay leaf), reducing power (0.80 mg BHT/g dry bay leaf), antioxidant activity (IC50 of 0.20 mg/ml) and anti-inflammatory potency (IC50 of 1.89 mg/ml). Identification of compounds in this extract was performed by GC-MS analysis and its antimicrobial potency was also evaluated. The MIC values against E. coli, P. aeruginosa and S. aureus were 0.5, 0.25 and 0.5 mg/ml, respectively.

Keywords: antimicrobial potency, Cinnamomum tamala, eugenol, supercritical carbon dioxide extraction

Procedia PDF Downloads 341
2002 Confidence Envelopes for Parametric Model Selection Inference and Post-Model Selection Inference

Authors: I. M. L. Nadeesha Jayaweera, Adao Alex Trindade

Abstract:

In choosing a candidate model in likelihood-based modeling via an information criterion, the practitioner is often faced with the difficult task of deciding just how far up the ranked list to look. Motivated by this pragmatic necessity, we construct an uncertainty band for a generalized (model selection) information criterion (GIC), defined as a criterion for which the limit in probability is identical to that of the normalized log-likelihood. This includes common special cases such as AIC & BIC. The method starts from the asymptotic normality of the GIC for the joint distribution of the candidate models in an independent and identically distributed (IID) data framework and proceeds by deriving the (asymptotically) exact distribution of the minimum. The calculation of an upper quantile for its distribution then involves the computation of multivariate Gaussian integrals, which is amenable to efficient implementation via the R package "mvtnorm". The performance of the methodology is tested on simulated data by checking the coverage probability of nominal upper quantiles and compared to the bootstrap. Both methods give coverages close to nominal for large samples, but the bootstrap is two orders of magnitude slower. The methodology is subsequently extended to two other commonly used model structures: regression and time series. In the regression case, we derive the corresponding asymptotically exact distribution of the minimum GIC invoking Lindeberg-Feller type conditions for triangular arrays and are thus able to similarly calculate upper quantiles for its distribution via multivariate Gaussian integration. The bootstrap once again provides a default competing procedure, and we find that similar comparison performance metrics hold as for the IID case. The time series case is complicated by far more intricate asymptotic regime for the joint distribution of the model GIC statistics. Under a Gaussian likelihood, the default in most packages, one needs to derive the limiting distribution of a normalized quadratic form for a realization from a stationary series. Under conditions on the process satisfied by ARMA models, a multivariate normal limit is once again achieved. The bootstrap can, however, be employed for its computation, whence we are once again in the multivariate Gaussian integration paradigm for upper quantile evaluation. Comparisons of this bootstrap-aided semi-exact method with the full-blown bootstrap once again reveal a similar performance but faster computation speeds. One of the most difficult problems in contemporary statistical methodological research is to be able to account for the extra variability introduced by model selection uncertainty, the so-called post-model selection inference (PMSI). We explore ways in which the GIC uncertainty band can be inverted to make inferences on the parameters. This is being attempted in the IID case by pivoting the CDF of the asymptotically exact distribution of the minimum GIC. For inference one parameter at a time and a small number of candidate models, this works well, whence the attained PMSI confidence intervals are wider than the MLE-based Wald, as expected.

Keywords: model selection inference, generalized information criteria, post model selection, Asymptotic Theory

Procedia PDF Downloads 89
2001 Investigation of Deep Eutectic Solvents for Microwave Assisted Extraction and Headspace Gas Chromatographic Determination of Hexanal in Fat-Rich Food

Authors: Birute Bugelyte, Ingrida Jurkute, Vida Vickackaite

Abstract:

The most complicated step of the determination of volatile compounds in complex matrices is the separation of analytes from the matrix. Traditional analyte separation methods (liquid extraction, Soxhlet extraction) require a lot of time and labour; moreover, there is a risk to lose the volatile analytes. In recent years, headspace gas chromatography has been used to determine volatile compounds. To date, traditional extraction solvents have been used in headspace gas chromatography. As a rule, such solvents are rather volatile; therefore, a large amount of solvent vapour enters into the headspace together with the analyte. Because of that, the determination sensitivity of the analyte is reduced, a huge solvent peak in the chromatogram can overlap with the peaks of the analyts. The sensitivity is also limited by the fact that the sample can’t be heated at a higher temperature than the solvent boiling point. In 2018 it was suggested to replace traditional headspace gas chromatographic solvents with non-volatile, eco-friendly, biodegradable, inexpensive, and easy to prepare deep eutectic solvents (DESs). Generally, deep eutectic solvents have low vapour pressure, a relatively wide liquid range, much lower melting point than that of any of their individual components. Those features make DESs very attractive as matrix media for application in headspace gas chromatography. Also, DESs are polar compounds, so they can be applied for microwave assisted extraction. The aim of this work was to investigate the possibility of applying deep eutectic solvents for microwave assisted extraction and headspace gas chromatographic determination of hexanal in fat-rich food. Hexanal is considered one of the most suitable indicators of lipid oxidation degree as it is the main secondary oxidation product of linoleic acid, which is one of the principal fatty acids of many edible oils. Eight hydrophilic and hydrophobic deep eutectic solvents have been synthesized, and the influence of the temperature and microwaves on their headspace gas chromatographic behaviour has been investigated. Using the most suitable DES, microwave assisted extraction conditions and headspace gas chromatographic conditions have been optimized for the determination of hexanal in potato chips. Under optimized conditions, the quality parameters of the prepared technique have been determined. The suggested technique was applied for the determination of hexanal in potato chips and other fat-rich food.

Keywords: deep eutectic solvents, headspace gas chromatography, hexanal, microwave assisted extraction

Procedia PDF Downloads 195
2000 Lexical Bundles in the Alexiad of Anna Comnena: Computational and Discourse Analysis Approach

Authors: Georgios Alexandropoulos

Abstract:

The purpose of this study is to examine the historical text of Alexiad by Anna Comnena using computational tools for the extraction of lexical bundles containing the name of her father, Alexius Comnenus. For this reason, in this research we apply corpus linguistics techniques for the automatic extraction of lexical bundles and through them we will draw conclusions about how these lexical bundles serve her support provided to her father.

Keywords: lexical bundles, computational literature, critical discourse analysis, Alexiad

Procedia PDF Downloads 625
1999 Cognitive Dissonance in Robots: A Computational Architecture for Emotional Influence on the Belief System

Authors: Nicolas M. Beleski, Gustavo A. G. Lugo

Abstract:

Robotic agents are taking more and increasingly important roles in society. In order to make these robots and agents more autonomous and efficient, their systems have grown to be considerably complex and convoluted. This growth in complexity has led recent researchers to investigate forms to explain the AI behavior behind these systems in search for more trustworthy interactions. A current problem in explainable AI is the inner workings with the logic inference process and how to conduct a sensibility analysis of the process of valuation and alteration of beliefs. In a social HRI (human-robot interaction) setup, theory of mind is crucial to ease the intentionality gap and to achieve that we should be able to infer over observed human behaviors, such as cases of cognitive dissonance. One specific case inspired in human cognition is the role emotions play on our belief system and the effects caused when observed behavior does not match the expected outcome. In such scenarios emotions can make a person wrongly assume the antecedent P for an observed consequent Q, and as a result, incorrectly assert that P is true. This form of cognitive dissonance where an unproven cause is taken as truth induces changes in the belief base which can directly affect future decisions and actions. If we aim to be inspired by human thoughts in order to apply levels of theory of mind to these artificial agents, we must find the conditions to replicate these observable cognitive mechanisms. To achieve this, a computational architecture is proposed to model the modulation effect emotions have on the belief system and how it affects logic inference process and consequently the decision making of an agent. To validate the model, an experiment based on the prisoner's dilemma is currently under development. The hypothesis to be tested involves two main points: how emotions, modeled as internal argument strength modulators, can alter inference outcomes, and how can explainable outcomes be produced under specific forms of cognitive dissonance.

Keywords: cognitive architecture, cognitive dissonance, explainable ai, sensitivity analysis, theory of mind

Procedia PDF Downloads 132
1998 Protein Isolates from Chickpea (Cicer arietinum L.) and Its Application in Cake

Authors: Mohamed Abdullah Ahmed

Abstract:

In a study of chickpea protein isolate (CPI) preparation, the wet alkaline extraction was carried out. The objectives were to determine the optimal extracting conditions of CPI and apply CPI into a sponge cake recipe to replace egg and make acceptable product. The design used in extraction was a central composite design. The response surface methodology was preferred to graphically express the relationship between extraction time and pH with the output variables of percent yield and protein content of CPI. It was noted that optimal extracting conditions were 60 min and pH 10.5 resulting in 90.07% protein content and 89.15% yield of CPI. The protein isolate (CPI) could be incorporated in cake to 20% without adversely affecting the cake physical properties such as cake hardness and sensory attributes. The higher protein content in cake was corresponding to the amount of CPI added. Therefore, adding CPI can significantly (p<0.05) increase protein content in cake. However, sensory evaluation showed that adding more than 20% of CPI decreased the overall acceptability. The results of this investigation could be used as a basic knowledge of CPI utilization in other food products.

Keywords: chick bean protein isolate, sponge cake, utilization, sponge

Procedia PDF Downloads 366
1997 The Effect of Supercritical Carbon Dioxide Process Variables on The Recovery of Extracts from Bentong Ginger: Study on Process Variables

Authors: Muhamad Syafiq Hakimi Kamaruddin, Norhidayah Suleiman

Abstract:

Ginger extracts (Zingiber officinale Rosc.) have been attributed therapeutic properties primarily as antioxidant, anticancer, and anti-inflammatory properties. Conventional extractions including Soxhlet and maceration are commonly used to extract the bioactive compounds from plant material. Nevertheless, high energy consumption and being non-environmentally friendly are the predominant limitations of the conventional extractions method. Herein, green technology, namely supercritical carbon dioxide (scCO2) extraction, is used to study process variables' effects on extract yields. Herein, green technology, namely supercritical carbon dioxide (scCO2) extraction, is used to study process variables' effects on extract yields. A pressure (10-30 MPa), temperature (40-60 °C), and median particle size (300-600 µm) were conducted at a CO2 flow rate of 0.9 ± 0.2 g/min for 120 mins. The highest overall yield was 4.58% obtained by the scCO2 extraction conditions of 300 bar and 60 °C with 300µm of ginger powder for 120 mins. In comparison, the yield of the extract was increased considerably within a short extraction time. The results show that scCO2 has a remarkable ability over ginger extract and is a promising technology for extracting bioactive compounds from plant material.

Keywords: conventional, ginger, non-environmentally, supercritical carbon dioxide, technology

Procedia PDF Downloads 116
1996 Evaluation of Two DNA Extraction Methods for Minimal Porcine (Pork) Detection in Halal Food Sample Mixture Using Taqman Real-time PCR Technique

Authors: Duaa Mughal, Syeda Areeba Nadeem, Shakil Ahmed, Ishtiaq Ahmed Khan

Abstract:

The identification of porcine DNA in Halal food items is critical to ensuring compliance with dietary restrictions and religious beliefs. In Islam, Porcine is prohibited as clearly mentioned in Quran (Surah Al-Baqrah, Ayat 173). The purpose of this study was to compare two DNA extraction procedures for detecting 0.001% of porcine DNA in processed Halal food sample mixtures containing chicken, camel, veal, turkey and goat meat using the TaqMan Real-Time PCR technology. In this research, two different commercial kit protocols were compared. The processed sample mixtures were prepared by spiking known concentration of porcine DNA to non-porcine food matrices. Afterwards, TaqMan Real-Time PCR technique was used to target a particular porcine gene from the extracted DNA samples, which was quantified after extraction. The results of the amplification were evaluated for sensitivity, specificity, and reproducibility. The results of the study demonstrated that two DNA extraction techniques can detect 0.01% of porcine DNA in mixture of Halal food samples. However, as compared to the alternative approach, Eurofins| GeneScan GeneSpin DNA Isolation kit showed more effective sensitivity and specificity. Furthermore, the commercial kit-based approach showed great repeatability with minimal variance across repeats. Quantification of DNA was done by using fluorometric assay. In conclusion, the comparison of DNA extraction methods for detecting porcine DNA in Halal food sample mixes using the TaqMan Real-Time PCR technology reveals that the commercial kit-based approach outperforms the other methods in terms of sensitivity, specificity, and repeatability. This research helps to promote the development of reliable and standardized techniques for detecting porcine DNA in Halal food items, religious conformity and assuring nutritional.

Keywords: real time PCR (qPCR), DNA extraction, porcine DNA, halal food authentication, religious conformity

Procedia PDF Downloads 78
1995 Video Shot Detection and Key Frame Extraction Using Faber-Shauder DWT and SVD

Authors: Assma Azeroual, Karim Afdel, Mohamed El Hajji, Hassan Douzi

Abstract:

Key frame extraction methods select the most representative frames of a video, which can be used in different areas of video processing such as video retrieval, video summary, and video indexing. In this paper we present a novel approach for extracting key frames from video sequences. The frame is characterized uniquely by his contours which are represented by the dominant blocks. These dominant blocks are located on the contours and its near textures. When the video frames have a noticeable changement, its dominant blocks changed, then we can extracte a key frame. The dominant blocks of every frame is computed, and then feature vectors are extracted from the dominant blocks image of each frame and arranged in a feature matrix. Singular Value Decomposition is used to calculate sliding windows ranks of those matrices. Finally the computed ranks are traced and then we are able to extract key frames of a video. Experimental results show that the proposed approach is robust against a large range of digital effects used during shot transition.

Keywords: FSDWT, key frame extraction, shot detection, singular value decomposition

Procedia PDF Downloads 398
1994 Potential Application of Modified Diglycolamide Resin for Rare Earth Element Extraction

Authors: Junnile Romero, Ilhwan Park, Vannie Joy Resabal, Carlito Tabelin, Richard Alorro, Leaniel Silva, Joshua Zoleta, Takunda Mandu, Kosei Aikawa, Mayumi Ito, Naoki Hiroyoshi

Abstract:

Rare earth elements (REE) play a vital role in technological advancement due to their unique physical and chemical properties essential for various renewable energy applications. However, this increasing demand represents a challenging task for sustainability that corresponds to various research interests relating to the development of various extraction techniques, particularly on the extractant being used. In this study, TK221 (a modified polymer resin containing diglycolamide, carbamoyl methyl phosphine oxide (CMPO), and diglycolamide (DGA-N)) has been investigated as a conjugate extractant. FTIR and SEM analysis results confirmed the presence of CMPO and DGA-N being coated onto the PS-DVB support of TK221. Moreover, the kinetic rate law and adsorption isotherm batch test was investigated to understand the corresponding adsorption mechanism. The results show that REEs’ (Nd, Y, Ce, and Er) obtained pseudo-second-order kinetics and Langmuir isotherm, suggesting that the adsorption mechanism undergoes a single monolayer adsorption site via a chemisorption process. The Qmax values of Nd, Ce, Er, Y, and Fe were 45.249 mg/g, 43.103 mg/g, 35.088 mg/g, 15.552 mg/g, and 12.315 mg/g, respectively. This research further suggests that TK221 polymer resin can be used as an alternative absorbent material for an effective REE extraction.

Keywords: rare earth element, diglycolamide, characterization, extraction resin

Procedia PDF Downloads 117
1993 Optimization of Poly-β-Hydroxybutyrate Recovery from Bacillus Subtilis Using Solvent Extraction Process by Response Surface Methodology

Authors: Jayprakash Yadav, Nivedita Patra

Abstract:

Polyhydroxybutyrate (PHB) is an interesting material in the field of medical science, pharmaceutical industries, and tissue engineering because of its properties such as biodegradability, biocompatibility, hydrophobicity, and elasticity. PHB is naturally accumulated by several microbes in their cytoplasm during the metabolic process as energy reserve material. PHB can be extracted from cell biomass using halogenated hydrocarbons, chemicals, and enzymes. In this study, a cheaper and non-toxic solvent, acetone, was used for the extraction process. The different parameters like acetone percentage, and solvent pH, process temperature, and incubation periods were optimized using the Response Surface Methodology (RSM). RSM was performed and the determination coefficient (R2) value was found to be 0.8833 from the quadratic regression model with no significant lack of fit. The designed RSM model results indicated that the fitness of the response variable was significant (P-value < 0.0006) and satisfactory to denote the relationship between the responses in terms of PHB recovery and purity with respect to the values of independent variables. Optimum conditions for the maximum PHB recovery and purity were found to be solvent pH 7, extraction temperature - 43 °C, incubation time - 70 minutes, and percentage acetone – 30 % from this study. The maximum predicted PHB recovery was found to be 0.845 g/g biomass dry cell weight and the purity was found to be 97.23 % using the optimized conditions.

Keywords: acetone, PHB, RSM, halogenated hydrocarbons, extraction, bacillus subtilis.

Procedia PDF Downloads 440
1992 The Utilization of Tea Extract within the Realm of the Food Industry

Authors: Raana Babadi Fathipour

Abstract:

Tea, a beverage widely cherished across the globe, has captured the interest of scholars with its recent acknowledgement for possessing noteworthy health advantages. Of particular significance is its proven ability to ward off ailments such as cancer and cardiovascular afflictions. Moreover, within the realm of culinary creations, lipid oxidation poses a significant challenge for food product development. In light of these aforementioned concerns, this present discourse turns its attention towards exploring diverse methodologies employed in extracting polyphenols from various types of tea leaves and examining their utility within the vast landscape of the ever-evolving food industry. Based on the discoveries unearthed in this comprehensive investigation, it has been determined that the fundamental constituents of tea are polyphenols possessed of intrinsic health-enhancing properties. This includes an assortment of catechins, namely epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate. Moreover, gallic acid, flavonoids, flavonols and theaphlavins have also been detected within this aromatic beverage. Of these myriad components examined vigorously in this study's analysis, catechin emerges as particularly beneficial. Multiple techniques have emerged over time to successfully extract key compounds from tea plants, including solvent-based extraction methodologies, microwave-assisted water extraction approaches and ultrasound-assisted extraction techniques. In particular, consideration is given to microwave-assisted water extraction method as a viable scheme which effectively procures valuable polyphenols from tea extracts. This methodology appears adaptable for implementation within sectors such as dairy production along with meat and oil industries alike.

Keywords: camellia sinensis, extraction, food application, shelf life, tea

Procedia PDF Downloads 70
1991 Functionalized Magnetic Iron Oxide Nanoparticles for Extraction of Protein and Metal Nanoparticles from Complex Fluids

Authors: Meenakshi Verma, Mandeep Singh Bakshi, Kultar Singh

Abstract:

Magnetic nanoparticles have received incredible importance in view of their diverse applications, which arise primarily due to their response to the external magnetic field. The magnetic behaviour of magnetic nanoparticles (NPs) helps them in numerous different ways. The most important amongst them is the ease with which they can be purified and also can be separated from the media in which they are present merely by applying an external magnetic field. This exceptional ease of separation of the magnetic NPs from an aqueous media enables them to use for extracting/removing metal pollutants from complex aqueous medium. Functionalized magnetic NPs can be subjected for the metallic impurities extraction if are favourably adsorbed on the NPs surfaces. We have successfully used the magnetic NPs as vehicles for gold and silver NPs removal from the complex fluids. The NPs loaded with gold and silver NPs pollutant fractions has been easily removed from the aqueous media by using external magnetic field. Similarly, we have used the magnetic NPs for extraction of protein from complex media and then constantly washed with pure water to eliminate the unwanted surface adsorbed components for quantitative estimation. The purified and protein loaded magnetic NPs are best analyzed with SDS Page to not only for characterization but also for separating the protein fractions. A collective review of the results indicates that we have synthesized surfactant coated iron oxide NPs and then functionalized these with selected materials. These surface active magnetic NPs work very well for the extraction of metallic NPs from the aqueous bulk and make the whole process environmentally sustainable. Also, magnetic NPs-Au/Ag/Pd hybrids have excellent protein extracting properties. They are much easier to use in order to extract the magnetic impurities as well as protein fractions under the effect of external magnetic field without any complex conventional purification methods.

Keywords: magnetic nanoparticles, protein, functionalized, extraction

Procedia PDF Downloads 100
1990 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas

Authors: Ahmet Kayabasi, Ali Akdagli

Abstract:

In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.

Keywords: a-shaped compact microstrip antenna, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM)

Procedia PDF Downloads 441
1989 Improved Pitch Detection Using Fourier Approximation Method

Authors: Balachandra Kumaraswamy, P. G. Poonacha

Abstract:

Automatic Music Information Retrieval has been one of the challenging topics of research for a few decades now with several interesting approaches reported in the literature. In this paper we have developed a pitch extraction method based on a finite Fourier series approximation to the given window of samples. We then estimate pitch as the fundamental period of the finite Fourier series approximation to the given window of samples. This method uses analysis of the strength of harmonics present in the signal to reduce octave as well as harmonic errors. The performance of our method is compared with three best known methods for pitch extraction, namely, Yin, Windowed Special Normalization of the Auto-Correlation Function and Harmonic Product Spectrum methods of pitch extraction. Our study with artificially created signals as well as music files show that Fourier Approximation method gives much better estimate of pitch with less octave and harmonic errors.

Keywords: pitch, fourier series, yin, normalization of the auto- correlation function, harmonic product, mean square error

Procedia PDF Downloads 412
1988 Surface Modification of TiO2 Layer with Phosphonic Acid Monolayer in Perovskite Solar Cells: Effect of Chain Length and Terminal Functional Group

Authors: Seid Yimer Abate, Ding-Chi Huang, Yu-Tai Tao

Abstract:

In this study, charge extraction characteristics at the perovskite/TiO2 interface in the conventional perovskite solar cell is studied by interface engineering. Self-assembled monolayers of phosphonic acids with different chain length and terminal functional group were used to modify mesoporous TiO2 surface to modulate the surface property and interfacial energy barrier to investigate their effect on charge extraction and transport from the perovskite to the mp-TiO2 and then the electrode. The chain length introduces a tunnelling distance and the end group modulate the energy level alignment at the mp-TiO2 and perovskite interface. The work function of these SAM-modified mp-TiO2 varied from −3.89 eV to −4.61 eV, with that of the pristine mp-TiO2 at −4.19 eV. A correlation of charge extraction and transport with respect to the modification was attempted. The study serves as a guide to engineer ETL interfaces with simple SAMs to improve the charge extraction, carrier balance and device long term stability. In this study, a maximum PCE of ~16.09% with insignificant hysteresis was obtained, which is 17% higher than the standard device.

Keywords: Energy level alignment, Interface engineering, Perovskite solar cells, Phosphonic acid monolayer, Tunnelling distance

Procedia PDF Downloads 137
1987 Implementation of Inference Fuzzy System as a Valuation Subsidiary is Based Particle Swarm Optimization for Solves the Issue of Decision Making in Middle Size Soccer Robot League

Authors: Zahra Abdolkarimi, Naser Zouri

Abstract:

Nowadays, there is unbelievable growing of Robots created a collection of complex and motivate subject in robotic and intellectual ornate, also it made a mechatronics style base of theoretical and technical way in Robocop. Additionally, robotics system recommended RoboCup factor as a provider of some standardization and testing method in case of computer discussion widely. The actual purpose of RoboCup is creating independent team of robots in 2050 based of FiFa roles to bring the victory in compare of world star team. In addition, decision making of robots depends to environment reaction, self-player and rival player with using inductive Fuzzy system valuation subsidiary to solve issue of robots in land game. The measure of selection in compare with other methods depends to amount of victories percentage in the same team that plays accidently. Consequences, shows method of our discussion is the best way for Particle Swarm Optimization and Fuzzy system compare to other decision of robotics algorithmic.

Keywords: PSO algorithm, inference fuzzy system, chaos theory, soccer robot league

Procedia PDF Downloads 403
1986 Research on Construction of Subject Knowledge Base Based on Literature Knowledge Extraction

Authors: Yumeng Ma, Fang Wang, Jinxia Huang

Abstract:

Researchers put forward higher requirements for efficient acquisition and utilization of domain knowledge in the big data era. As literature is an effective way for researchers to quickly and accurately understand the research situation in their field, the knowledge discovery based on literature has become a new research method. As a tool to organize and manage knowledge in a specific domain, the subject knowledge base can be used to mine and present the knowledge behind the literature to meet the users' personalized needs. This study designs the construction route of the subject knowledge base for specific research problems. Information extraction method based on knowledge engineering is adopted. Firstly, the subject knowledge model is built through the abstraction of the research elements. Then under the guidance of the knowledge model, extraction rules of knowledge points are compiled to analyze, extract and correlate entities, relations, and attributes in literature. Finally, a database platform based on this structured knowledge is developed that can provide a variety of services such as knowledge retrieval, knowledge browsing, knowledge q&a, and visualization correlation. Taking the construction practices in the field of activating blood circulation and removing stasis as an example, this study analyzes how to construct subject knowledge base based on literature knowledge extraction. As the system functional test shows, this subject knowledge base can realize the expected service scenarios such as a quick query of knowledge, related discovery of knowledge and literature, knowledge organization. As this study enables subject knowledge base to help researchers locate and acquire deep domain knowledge quickly and accurately, it provides a transformation mode of knowledge resource construction and personalized precision knowledge services in the data-intensive research environment.

Keywords: knowledge model, literature knowledge extraction, precision knowledge services, subject knowledge base

Procedia PDF Downloads 163